In Vitro and In Vivo Comparison of Selected Ga-68 and Zr-89 Labelled Siderophores

. 2016 Jun ; 18 (3) : 344-52.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26424719

Grantová podpora
P 25899 Austrian Science Fund FWF - Austria

Odkazy

PubMed 26424719
PubMed Central PMC4870302
DOI 10.1007/s11307-015-0897-6
PII: 10.1007/s11307-015-0897-6
Knihovny.cz E-zdroje

PURPOSE: Some [(68)Ga]siderophores show promise in specific and sensitive imaging of infection. Here, we compare the in vitro and in vivo behaviour of selected Ga-68 and Zr-89 labelled siderophores. PROCEDURES: Radiolabelling was performed in HEPES or sodium acetate buffer systems. Radiochemical purity of labelled siderophores was determined using chromatography. Partition coefficients, in vitro stability and protein binding affinities were determined. Ex vivo biodistribution and animal imaging was studied in mice. RESULTS: Certain differences among studied siderophores were observed in labelling efficiency. Protein binding and stability tests showed highest stabilities and lowest protein binding affinities for Ga-68 and [(89)Zr]triacetylfusarinine C (TAFC). All studied Ga-68 and [(89)Zr]siderophores exhibited a similar biodistribution and pharmacokinetics in mice with the exception of [(89)Zr]ferrioxamine E (FOXE). CONCLUSIONS: Zr-89 and [(68)Ga]siderophores showed analogous in vitro and in vivo behaviour. Tested [(89)Zr]siderophores could be applied for longitudinal positron emission tomography (PET) studies of fungal infections and especially TAFC for the development of novel bioconjugates.

Zobrazit více v PubMed

Neilands JB. Siderophores: structure and function of microbial iron transport compounds. J Biol Chem. 1995;270:26723–26726. doi: 10.1074/jbc.270.45.26723. PubMed DOI

Hider RC, Kong X. Chemistry and biology of siderophores. Nat Prod Rep. 2010;27:637–657. doi: 10.1039/b906679a. PubMed DOI

Cassat JE, Skaar EP. Iron in infection and immunity. Cell Host Microbe. 2013;13:509–519. doi: 10.1016/j.chom.2013.04.010. PubMed DOI PMC

Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat Prod Rep. 2014;31:1266–1276. doi: 10.1039/C4NP00071D. PubMed DOI PMC

Ali SS, Vidhale NN. Bacterial siderophore and their application: a review. Int J Curr Microbiol App Sci. 2013;2:303–312.

Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev. 2007;71:413–451. doi: 10.1128/MMBR.00012-07. PubMed DOI PMC

Petrik M, Franssen GM, Haas H, et al. Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur J Nucl Med Mol Imaging. 2012;39:1175–1183. doi: 10.1007/s00259-012-2110-3. PubMed DOI PMC

Velikyan I. Prospective of 68Ga-radiopharmaceutical development. Theranostics. 2014;4:47–80. doi: 10.7150/thno.7447. PubMed DOI PMC

Decristoforo C. Gallium-68—a new opportunity for PET available from a long shelf-life generator—automation and applications. Curr Radiopharm. 2012;5:212–220. doi: 10.2174/1874471011205030212. PubMed DOI

Radchenko V, Busse S, Roesch F. Desferrioxamine as an appropriate chelator for 90Nb: comparison of its complexation properties for M-Df-Octreotide (M = Nb, Fe, Ga, Zr) Nucl Med Biol. 2014;41:721–727. doi: 10.1016/j.nucmedbio.2014.06.006. PubMed DOI

Fischer G, Seibold U, Schirrmacher R, et al. 89Zr, a radiometal nuclide with high potential for molecular imaging with PET: chemistry, applications and remaining challenges. Molecules. 2013;18:6469–6490. doi: 10.3390/molecules18066469. PubMed DOI PMC

Holland JP, Sheh YC, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol. 2009;36:729–739. doi: 10.1016/j.nucmedbio.2009.05.007. PubMed DOI PMC

Van Dongen GAMS, Visser GWM, Hooge MNLD, et al. Immuno-PET: a navigator in monoclonal antibody development and applications. Oncologist. 2007;12:1379–1389. doi: 10.1634/theoncologist.12-12-1379. PubMed DOI

Petrik M, Haas H, Schrettl M, Helbok A, Blatzer M, Decristoforo C. In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging. Nucl Med Biol. 2012;39:361–369. doi: 10.1016/j.nucmedbio.2011.09.012. PubMed DOI PMC

Petrik M, Haas H, Dobrozemsky G, et al. 68Ga-siderophores for PET imaging of invasive pulmonary aspergillosis: proof of principle. J Nucl Med. 2010;51:639–645. doi: 10.2967/jnumed.109.072462. PubMed DOI PMC

Petrik M, Haas H, Laverman P, et al. 68Ga-triacetylfusarinine C and 68Ga-ferrioxamine E for Aspergillus infection imaging: uptake specificity in various microorganisms. Mol Imaging Biol. 2014;16:102–108. doi: 10.1007/s11307-013-0654-7. PubMed DOI PMC

Deri MA, Zeglis BM, Francesconi LC, Lewis JS. PET imaging with 89Zr: from radiochemistry to the clinic. Nucl Med Biol. 2013;40:3–14. doi: 10.1016/j.nucmedbio.2012.08.004. PubMed DOI PMC

Holland JP, Williamson MJ, Lewis JS. Unconventional nuclides for radiopharmaceuticals. Mol Imaging. 2010;9:1–20. PubMed PMC

Van Dongen GA, Vosjan MJ. Immuno-positron emission tomography: shedding light on clinical antibody therapy. Cancer Biother Radiopharm. 2010;25:375–385. doi: 10.1089/cbr.2010.0812. PubMed DOI

Kiss T, Farkas E. Metal-binding ability of desferrioxamine B. J Incl Phenom Mol Recog Chem. 1998;32:385–403. doi: 10.1023/A:1008046330815. DOI

Holland JP, Divilov V, Bander NH, et al. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med. 2010;51:1293–1300. doi: 10.2967/jnumed.110.076174. PubMed DOI PMC

Van Rij CM, Sharkey RM, Goldenberg DM, Frielink C, et al. Imaging of prostate cancer with immuno-PET and immuno-SPECT using a radiolabeled anti-EGP-1 monoclonal antibody. J Nucl Med. 2011;52:1601–1607. doi: 10.2967/jnumed.110.086520. PubMed DOI

Verel I, Visser GW, Boellaard R, et al. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med. 2003;44:1271–1281. PubMed

Perk L, Vosjan MWD, Visser GM, et al. p-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging. Eur J Nucl Med Mol Imaging. 2010;37:250–259. doi: 10.1007/s00259-009-1263-1. PubMed DOI PMC

Guerard F, Lee YS, Tripier R, et al. Investigation of Zr(IV) and 89Zr(IV) complexation with hydroxamates: progress towards designing a better chelator than desferrioxamine B for immuno-PET imaging. Chem Commun. 2013;49:1002–1004. doi: 10.1039/C2CC37549D. PubMed DOI PMC

Guérard F, Lee YS, Brechbiel MW. Rational design, synthesis, and evaluation of tetrahydroxamic acid chelators for stable complexation of zirconium (IV) Chem Eur J. 2014;20:5584–5591. doi: 10.1002/chem.201304115. PubMed DOI PMC

Deri MA, Ponnala S, Zeglis BM, et al. An alternative chelator for 89Zr radiopharmaceuticals: radiolabeling and evaluation of 3,4,3-(LI-1, 2-HOPO) J Med Chem. 2014;57:4849–4860. doi: 10.1021/jm500389b. PubMed DOI PMC

Patra M, Bauman A, Mari C, et al. An octadentate bifunctional chelating agent for the development of stable zirconium-89 based molecular imaging probes. Chem Commun. 2014;50:11523–11525. doi: 10.1039/C4CC05558F. PubMed DOI

Ma MT, Meszaros LK, Paterson BM, et al. Tripodal tris (hydroxypyridinone) ligands for immunoconjugate PET imaging with 89Zr4+: comparison with desferrioxamine-B. Dalton Trans. 2015;44:4884–4900. doi: 10.1039/C4DT02978J. PubMed DOI PMC

Knetsch PA, Zhai C, Rangger C, et al. [68Ga]FSC-(RGD)3 a trimeric RGD peptide for imaging αvβ3 integrin expression based on novel siderophore derived chelating scaffold—synthesis and evaluation. Nucl Med Biol. 2015;42:115–122. doi: 10.1016/j.nucmedbio.2014.10.001. PubMed DOI PMC

Zhai C, Summer D, Rangger C, et al. Novel bifunctional cyclic chelator for 89Zr labelling-radiolabeling and targeting properties of RGD conjugates. Mol Pharmaceut. 2015;12:2142–2150. doi: 10.1021/acs.molpharmaceut.5b00128. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Biomimetic Analogues of the Desferrioxamine E Siderophore for PET Imaging of Invasive Aspergillosis: Targeting Properties and Species Specificity

. 2024 Jul 25 ; 67 (14) : 12143-12154. [epub] 20240622

Radiotracer Development for Fungal-Specific Imaging: Past, Present, and Future

. 2023 Oct 03 ; 228 (Suppl 4) : S259-S269.

68Ga-labelled desferrioxamine-B for bacterial infection imaging

. 2021 Feb ; 48 (2) : 372-382. [epub] 20200730

Siderophore-Based Molecular Imaging of Fungal and Bacterial Infections-Current Status and Future Perspectives

. 2020 May 29 ; 6 (2) : . [epub] 20200529

Imaging of Pseudomonas aeruginosa infection with Ga-68 labelled pyoverdine for positron emission tomography

. 2018 Oct 24 ; 8 (1) : 15698. [epub] 20181024

Siderophores for molecular imaging applications

. 2017 ; 5 (1) : 15-27. [epub] 20161011

Comparison of Ga-68-Labeled Fusarinine C-Based Multivalent RGD Conjugates and [(68)Ga]NODAGA-RGD-In Vivo Imaging Studies in Human Xenograft Tumors

. 2016 Oct ; 18 (5) : 758-67.

Novel Bifunctional Cyclic Chelator for (89)Zr Labeling-Radiolabeling and Targeting Properties of RGD Conjugates

. 2015 Jun 01 ; 12 (6) : 2142-50. [epub] 20150519

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...