In Vitro and In Vivo Comparison of Selected Ga-68 and Zr-89 Labelled Siderophores
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
Grantová podpora
P 25899
Austrian Science Fund FWF - Austria
PubMed
26424719
PubMed Central
PMC4870302
DOI
10.1007/s11307-015-0897-6
PII: 10.1007/s11307-015-0897-6
Knihovny.cz E-zdroje
- Klíčová slova
- Gallium-68, Imaging, PET, Siderophores, Zirconium-89,
- MeSH
- myši inbrední BALB C MeSH
- počítačová rentgenová tomografie MeSH
- pozitronová emisní tomografie MeSH
- radioizotopy galia chemie MeSH
- radionuklidy MeSH
- siderofory chemie MeSH
- tkáňová distribuce MeSH
- zirkonium chemie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- radioizotopy galia MeSH
- radionuklidy MeSH
- siderofory MeSH
- zirkonium MeSH
PURPOSE: Some [(68)Ga]siderophores show promise in specific and sensitive imaging of infection. Here, we compare the in vitro and in vivo behaviour of selected Ga-68 and Zr-89 labelled siderophores. PROCEDURES: Radiolabelling was performed in HEPES or sodium acetate buffer systems. Radiochemical purity of labelled siderophores was determined using chromatography. Partition coefficients, in vitro stability and protein binding affinities were determined. Ex vivo biodistribution and animal imaging was studied in mice. RESULTS: Certain differences among studied siderophores were observed in labelling efficiency. Protein binding and stability tests showed highest stabilities and lowest protein binding affinities for Ga-68 and [(89)Zr]triacetylfusarinine C (TAFC). All studied Ga-68 and [(89)Zr]siderophores exhibited a similar biodistribution and pharmacokinetics in mice with the exception of [(89)Zr]ferrioxamine E (FOXE). CONCLUSIONS: Zr-89 and [(68)Ga]siderophores showed analogous in vitro and in vivo behaviour. Tested [(89)Zr]siderophores could be applied for longitudinal positron emission tomography (PET) studies of fungal infections and especially TAFC for the development of novel bioconjugates.
Clinical Department of Nuclear Medicine Medical University Innsbruck Innsbruck Austria
Division of Molecular Biology Biocenter Medical University Innsbruck Innsbruck Austria
Zobrazit více v PubMed
Neilands JB. Siderophores: structure and function of microbial iron transport compounds. J Biol Chem. 1995;270:26723–26726. doi: 10.1074/jbc.270.45.26723. PubMed DOI
Hider RC, Kong X. Chemistry and biology of siderophores. Nat Prod Rep. 2010;27:637–657. doi: 10.1039/b906679a. PubMed DOI
Cassat JE, Skaar EP. Iron in infection and immunity. Cell Host Microbe. 2013;13:509–519. doi: 10.1016/j.chom.2013.04.010. PubMed DOI PMC
Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat Prod Rep. 2014;31:1266–1276. doi: 10.1039/C4NP00071D. PubMed DOI PMC
Ali SS, Vidhale NN. Bacterial siderophore and their application: a review. Int J Curr Microbiol App Sci. 2013;2:303–312.
Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev. 2007;71:413–451. doi: 10.1128/MMBR.00012-07. PubMed DOI PMC
Petrik M, Franssen GM, Haas H, et al. Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur J Nucl Med Mol Imaging. 2012;39:1175–1183. doi: 10.1007/s00259-012-2110-3. PubMed DOI PMC
Velikyan I. Prospective of 68Ga-radiopharmaceutical development. Theranostics. 2014;4:47–80. doi: 10.7150/thno.7447. PubMed DOI PMC
Decristoforo C. Gallium-68—a new opportunity for PET available from a long shelf-life generator—automation and applications. Curr Radiopharm. 2012;5:212–220. doi: 10.2174/1874471011205030212. PubMed DOI
Radchenko V, Busse S, Roesch F. Desferrioxamine as an appropriate chelator for 90Nb: comparison of its complexation properties for M-Df-Octreotide (M = Nb, Fe, Ga, Zr) Nucl Med Biol. 2014;41:721–727. doi: 10.1016/j.nucmedbio.2014.06.006. PubMed DOI
Fischer G, Seibold U, Schirrmacher R, et al. 89Zr, a radiometal nuclide with high potential for molecular imaging with PET: chemistry, applications and remaining challenges. Molecules. 2013;18:6469–6490. doi: 10.3390/molecules18066469. PubMed DOI PMC
Holland JP, Sheh YC, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol. 2009;36:729–739. doi: 10.1016/j.nucmedbio.2009.05.007. PubMed DOI PMC
Van Dongen GAMS, Visser GWM, Hooge MNLD, et al. Immuno-PET: a navigator in monoclonal antibody development and applications. Oncologist. 2007;12:1379–1389. doi: 10.1634/theoncologist.12-12-1379. PubMed DOI
Petrik M, Haas H, Schrettl M, Helbok A, Blatzer M, Decristoforo C. In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging. Nucl Med Biol. 2012;39:361–369. doi: 10.1016/j.nucmedbio.2011.09.012. PubMed DOI PMC
Petrik M, Haas H, Dobrozemsky G, et al. 68Ga-siderophores for PET imaging of invasive pulmonary aspergillosis: proof of principle. J Nucl Med. 2010;51:639–645. doi: 10.2967/jnumed.109.072462. PubMed DOI PMC
Petrik M, Haas H, Laverman P, et al. 68Ga-triacetylfusarinine C and 68Ga-ferrioxamine E for Aspergillus infection imaging: uptake specificity in various microorganisms. Mol Imaging Biol. 2014;16:102–108. doi: 10.1007/s11307-013-0654-7. PubMed DOI PMC
Deri MA, Zeglis BM, Francesconi LC, Lewis JS. PET imaging with 89Zr: from radiochemistry to the clinic. Nucl Med Biol. 2013;40:3–14. doi: 10.1016/j.nucmedbio.2012.08.004. PubMed DOI PMC
Holland JP, Williamson MJ, Lewis JS. Unconventional nuclides for radiopharmaceuticals. Mol Imaging. 2010;9:1–20. PubMed PMC
Van Dongen GA, Vosjan MJ. Immuno-positron emission tomography: shedding light on clinical antibody therapy. Cancer Biother Radiopharm. 2010;25:375–385. doi: 10.1089/cbr.2010.0812. PubMed DOI
Kiss T, Farkas E. Metal-binding ability of desferrioxamine B. J Incl Phenom Mol Recog Chem. 1998;32:385–403. doi: 10.1023/A:1008046330815. DOI
Holland JP, Divilov V, Bander NH, et al. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med. 2010;51:1293–1300. doi: 10.2967/jnumed.110.076174. PubMed DOI PMC
Van Rij CM, Sharkey RM, Goldenberg DM, Frielink C, et al. Imaging of prostate cancer with immuno-PET and immuno-SPECT using a radiolabeled anti-EGP-1 monoclonal antibody. J Nucl Med. 2011;52:1601–1607. doi: 10.2967/jnumed.110.086520. PubMed DOI
Verel I, Visser GW, Boellaard R, et al. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med. 2003;44:1271–1281. PubMed
Perk L, Vosjan MWD, Visser GM, et al. p-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging. Eur J Nucl Med Mol Imaging. 2010;37:250–259. doi: 10.1007/s00259-009-1263-1. PubMed DOI PMC
Guerard F, Lee YS, Tripier R, et al. Investigation of Zr(IV) and 89Zr(IV) complexation with hydroxamates: progress towards designing a better chelator than desferrioxamine B for immuno-PET imaging. Chem Commun. 2013;49:1002–1004. doi: 10.1039/C2CC37549D. PubMed DOI PMC
Guérard F, Lee YS, Brechbiel MW. Rational design, synthesis, and evaluation of tetrahydroxamic acid chelators for stable complexation of zirconium (IV) Chem Eur J. 2014;20:5584–5591. doi: 10.1002/chem.201304115. PubMed DOI PMC
Deri MA, Ponnala S, Zeglis BM, et al. An alternative chelator for 89Zr radiopharmaceuticals: radiolabeling and evaluation of 3,4,3-(LI-1, 2-HOPO) J Med Chem. 2014;57:4849–4860. doi: 10.1021/jm500389b. PubMed DOI PMC
Patra M, Bauman A, Mari C, et al. An octadentate bifunctional chelating agent for the development of stable zirconium-89 based molecular imaging probes. Chem Commun. 2014;50:11523–11525. doi: 10.1039/C4CC05558F. PubMed DOI
Ma MT, Meszaros LK, Paterson BM, et al. Tripodal tris (hydroxypyridinone) ligands for immunoconjugate PET imaging with 89Zr4+: comparison with desferrioxamine-B. Dalton Trans. 2015;44:4884–4900. doi: 10.1039/C4DT02978J. PubMed DOI PMC
Knetsch PA, Zhai C, Rangger C, et al. [68Ga]FSC-(RGD)3 a trimeric RGD peptide for imaging αvβ3 integrin expression based on novel siderophore derived chelating scaffold—synthesis and evaluation. Nucl Med Biol. 2015;42:115–122. doi: 10.1016/j.nucmedbio.2014.10.001. PubMed DOI PMC
Zhai C, Summer D, Rangger C, et al. Novel bifunctional cyclic chelator for 89Zr labelling-radiolabeling and targeting properties of RGD conjugates. Mol Pharmaceut. 2015;12:2142–2150. doi: 10.1021/acs.molpharmaceut.5b00128. PubMed DOI PMC
Radiotracer Development for Fungal-Specific Imaging: Past, Present, and Future
68Ga-labelled desferrioxamine-B for bacterial infection imaging
Siderophores for molecular imaging applications