Comparison of Ga-68-Labeled Fusarinine C-Based Multivalent RGD Conjugates and [(68)Ga]NODAGA-RGD-In Vivo Imaging Studies in Human Xenograft Tumors
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
Grantová podpora
P 25899
Austrian Science Fund FWF - Austria
PubMed
26905697
PubMed Central
PMC5010584
DOI
10.1007/s11307-016-0931-3
PII: 10.1007/s11307-016-0931-3
Knihovny.cz E-zdroje
- Klíčová slova
- Fusarinine C, Gallium-68, Integrins, Positron emission tomography (PET), RGD peptides,
- MeSH
- acetáty chemie MeSH
- endocytóza MeSH
- heterocyklické sloučeniny monocyklické chemie MeSH
- kyseliny hydroxamové chemie MeSH
- lidé MeSH
- melanom diagnostické zobrazování patologie MeSH
- myši inbrední BALB C MeSH
- myši nahé MeSH
- nádorové buněčné linie MeSH
- oligopeptidy chemie MeSH
- PET/CT * MeSH
- radiofarmaka chemie MeSH
- radioizotopy galia MeSH
- tkáňová distribuce MeSH
- xenogenní modely - testy antitumorózní aktivity * MeSH
- železité sloučeniny chemie MeSH
- zobrazování trojrozměrné MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- 1-(1,3-carboxypropyl)-4,7-carboxymethyl-1,4,7-triazacyclononane MeSH Prohlížeč
- acetáty MeSH
- arginyl-glycyl-aspartic acid MeSH Prohlížeč
- fusigen MeSH Prohlížeč
- heterocyklické sloučeniny monocyklické MeSH
- kyseliny hydroxamové MeSH
- oligopeptidy MeSH
- radiofarmaka MeSH
- radioizotopy galia MeSH
- železité sloučeniny MeSH
PURPOSE: Multimeric arginine-glycine-aspartic acid (RGD) peptides have advantages for imaging integrin αvβ3 expression. Here, we compared the in vitro and in vivo behavior of three different Ga-68-labeled multimeric Fusarinine C-RGD (FSC-RGD) conjugates, whereby RGD was coupled directly, via a succinic acid or PEG linker (FSC(RGDfE)3, FSC(succ-RGD)3, FSC(Mal-RGD)3). The positron emission tomography/X-ray computed tomography (PET/CT) imaging properties were further compared using [(68)Ga]FSC(succ-RGD)3 with the monomeric [(68)Ga]NODAGA-RGD in a murine tumor model. PROCEDURE: FSC-RGD conjugates were labeled with Ga-68, and stability properties were studied. For in vitro characterization, the partition coefficient, integrin αvβ3 binding affinity, and cell uptake were determined. To characterize the in vivo properties, biodistribution studies and microPET/CT were carried out using mice bearing either human M21/M21-L melanoma or human U87MG glioblastoma tumor xenografts. RESULTS: All FSC-RGD conjugates were quantitatively labeled with Ga-68 within 10 min at RT. The [(68)Ga]FSC-RGD conjugates exhibited high stability and hydrophilic character, with only minor differences between the different conjugates. In vitro and in vivo studies showed enhanced integrin αvβ3 binding affinity, receptor-selective tumor uptake, and rapid renal excretion resulting in good imaging properties. CONCLUSIONS: The type of linker between FSC and RGD had no pronounced effect on targeting properties of [(68)Ga]FSC-RGD trimers. In particular, [(68)Ga]FSC(succ-RGD)3 exhibited improved properties compared to [(68)Ga]NODAGA-RGD, making it an alternative for imaging integrin αvβ3 expression.
Department of Nuclear Medicine Medical University Innsbruck Innsbruck Austria
Department of Nuclear Medicine Radboud University Nijmegen Medical Centre Nijmegen The Netherlands
Division of Molecular Biology Medical University Innsbruck Innsbruck Austria
Zobrazit více v PubMed
Haubner R, Maschauer S, Prante O. PET radiopharmaceuticals for imaging integrin expression: tracers in clinical studies and recent developments. Biomed Res Int. 2014;2014:871609. PubMed PMC
Haubner R, Gratias R, Diefenbach B, et al. Structural and functional aspects of RGD-containing cyclic pentapeptides as highly potent and selective integrin αvβ3 antagonists. J Am Chem Soc. 1996;118:7461–7472. doi: 10.1021/ja9603721. DOI
Marchi‐Artzner V, Lorz B, Hellerer U, et al. Selective adhesion of endothelial cells to artificial membranes with a synthetic RGD-lipopeptide. Chemistry. 2001;7:1095–1101. doi: 10.1002/1521-3765(20010302)7:5<1095::AID-CHEM1095>3.0.CO;2-B. PubMed DOI
Haubner R, Decristoforo C. Radiolabelled RGD peptides and peptidomimetics for tumor targeting. Front Biosci. 2009;14:872–886. doi: 10.2741/3283. PubMed DOI
Gaertner FC, Kessler H, Wester HJ, et al. Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol Imaging. 2012;39(Suppl 1):S126–S138. doi: 10.1007/s00259-011-2028-1. PubMed DOI
Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin αvβ3 targeted radiotracers for tumor imaging. Mol Pharm. 2006;3:472–487. doi: 10.1021/mp060049x. PubMed DOI
Haubner R, Wester H-J, Burkhart F, et al. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med. 2001;42:326–336. PubMed
Haubner R, Wester H-J, Weber WA, et al. Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res. 2001;61:1781–1785. PubMed
Haubner R, Kuhnast B, Mang C, et al. [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem. 2004;15:61–69. doi: 10.1021/bc034170n. PubMed DOI
Haubner R, Weber WA, Beer AJ, et al. Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F] Galacto-RGD. PLOS Med. 2005;2 doi: 10.1371/journal.pmed.0020070. PubMed DOI PMC
Knetsch PA, Petrik M, Griessinger CM, et al. [68Ga]NODAGA-RGD for imaging αvβ3 integrin expression. Eur J Nucl Med Mol Imaging. 2011;38:1303–1312. doi: 10.1007/s00259-011-1778-0. PubMed DOI
Pohle K, Notni J, Bussemer J, et al. 68Ga-NODAGA-RGD is a suitable substitute for 18F-Galacto-RGD and can be produced with high specific activity in a cGMP/GRP compliant automated process. Nucl Med Biol. 2012;39:777–784. doi: 10.1016/j.nucmedbio.2012.02.006. PubMed DOI
Notni J, Pohle K, Wester H-J. Be spoilt for choice with radiolabelled RGD peptides: preclinical evaluation of 68Ga-TRAP(RGD)3. Nucl Med Biol. 2013;40:33–41. doi: 10.1016/j.nucmedbio.2012.08.006. PubMed DOI
Knetsch PA, Zhai C, Rangger C, et al. [68Ga]FSC-(RGD)3, a trimeric RGD peptide for imaging αvβ3 integrin expression based on a novel siderophore derived chelating scaffold—synthesis and evaluation. Nucl Med Biol. 2015;42:115–122. doi: 10.1016/j.nucmedbio.2014.10.001. PubMed DOI PMC
Zhai C, Summer D, Rangger C, et al. Fusarinine C, a novel siderophore-based bifunctional chelator for radiolabeling with Gallium-68. J Labelled Comp Radiopharm. 2015;58:209–214. doi: 10.1002/jlcr.3286. PubMed DOI PMC
Zhai C, Summer D, Rangger C, et al. Novel bifunctional cyclic chelator for 89Zr labeling–radiolabeling and targeting properties of RGD conjugates. Mol Pharm. 2015;12:2142–2150. doi: 10.1021/acs.molpharmaceut.5b00128. PubMed DOI PMC
Petrik M, Zhai C, Novy Z, et al. (2015) In vitro and in vivo comparison of selected Ga-68 and Zr-89 labelled siderophores. Mol Imaging Biol, doi:10.1007/s11307-11015-10897-11306. PubMed PMC
Haubner R, Wester HJ, Reuning U, et al. Radiolabeled alpha(v)beta3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med. 1999;40:1061–1071. PubMed
Yardeni T, Eckhaus M, Morris HD, et al. Retro-orbital injections in mice. Lab animal. 2011;40:155. doi: 10.1038/laban0511-155. PubMed DOI PMC
Liu S. Radiolabeled cyclic RGD peptide bioconjugates as radiotracers targeting multiple integrins. Bioconjug Chem. 2015;26:1413–1438. doi: 10.1021/acs.bioconjchem.5b00327. PubMed DOI PMC
Preclinical Evaluation of Radiolabeled Peptides for PET Imaging of Glioblastoma Multiforme
Siderophores for molecular imaging applications
Developing Targeted Hybrid Imaging Probes by Chelator Scaffolding