Preclinical Evaluation of Radiolabeled Peptides for PET Imaging of Glioblastoma Multiforme
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LO1304
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31288488
PubMed Central
PMC6651196
DOI
10.3390/molecules24132496
PII: molecules24132496
Knihovny.cz E-resources
- Keywords
- 18F-FDG, 18F-FLT, PET, RGD peptides, biodistribution, gallium-68, glioblastoma multiforme,
- MeSH
- Glioblastoma diagnostic imaging metabolism MeSH
- Humans MeSH
- Mice, SCID MeSH
- Cell Line, Tumor MeSH
- Brain Neoplasms diagnostic imaging metabolism MeSH
- Oligopeptides chemistry MeSH
- Positron Emission Tomography Computed Tomography MeSH
- Tomography, X-Ray Computed MeSH
- Positron-Emission Tomography methods MeSH
- Radiopharmaceuticals chemistry MeSH
- Fluorine Radioisotopes MeSH
- Gallium Radioisotopes chemistry MeSH
- Tissue Distribution MeSH
- Neoplasm Transplantation MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- arginyl-glycyl-aspartic acid MeSH Browser
- Fluorine-18 MeSH Browser
- Oligopeptides MeSH
- Radiopharmaceuticals MeSH
- Fluorine Radioisotopes MeSH
- Gallium Radioisotopes MeSH
In this study, we have compared four 68Ga-labeled peptides (three Arg-Gly-Asp (RGD) peptides and substance-P) with two 18F-tracers clinically approved for tumor imaging. We have studied in vitro and in vivo characteristics of selected radiolabeled tracers in a glioblastoma multiforme tumor model. The in vitro part of the study was mainly focused on the evaluation of radiotracers stability under various conditions. We have also determined in vivo stability of studied 68Ga-radiotracers by analysis of murine urine collected at various time points after injection. The in vivo behavior of tested 68Ga-peptides was evaluated through ex vivo biodistribution studies and PET/CT imaging. The obtained data were compared with clinically used 18F-tracers. 68Ga-RGD peptides showed better imaging properties compared to 18F-tracers, i.e., higher tumor/background ratios and no accumulation in non-target organs except for excretory organs.
See more in PubMed
Ladomersky E., Scholtens D.M., Kocherginsky M., Hibler E.A., Bartom E.T., Otto-Meyer S., Zhai L., Lauing K.L., Choi J., Sosman J.A., et al. The Coincidence Between Increasing Age, Immunosuppression, and the Incidence of Patients With Glioblastoma. Front. Pharmacol. 2019;10:200. doi: 10.3389/fphar.2019.00200. PubMed DOI PMC
Ahmed R., Oborski M.J., Hwang M., Lieberman F.S., Mountz J.M. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods. Cancer Manag. Res. 2014;6:149–170. PubMed PMC
Frosina G. Positron emission tomography of high-grade gliomas. J. Neuro Oncol. 2016;127:415–425. doi: 10.1007/s11060-016-2077-1. PubMed DOI
Frosina G. Non-routine tracers for PET imaging of high-grade glioma. Anticancer Res. 2016;36:3253–3260. PubMed
Chen W. Clinical Applications of PET in Brain Tumors. J. Nucl. Med. 2007;48:1468–1481. doi: 10.2967/jnumed.106.037689. PubMed DOI
Li D., Zhao X., Zhang L., Li F., Ji N., Gao Z., Wang J., Kang P., Liu Z., Shi J., et al. 68Ga-PRGD2 PET/CT in the Evaluation of Glioma: A Prospective Study. Mol. Pharm. 2014;11:3923–3929. doi: 10.1021/mp5003224. PubMed DOI PMC
Schnell O., Krebs B., Wagner E., Romagna A., Beer A.J., Grau S.J., Thon N., Goetz C., Kretzschmar H.A., Tonn J.C., et al. Expression of integrin alphavbeta3 in gliomas correlates with tumor grade and is not restricted to tumor vasculature. Brain Pathol. 2008;18:378–386. doi: 10.1111/j.1750-3639.2008.00137.x. PubMed DOI PMC
Holmes K.M., Annala M., Chua C.Y.X., Dunlap S.M., Liu Y., Hugen N., Moore L.M., Cogdell D., Hu L., Nykter M., et al. Insulin-like growth factor-binding protein 2-driven glioma progression is prevented by blocking a clinically significant integrin, integrin-linked kinase, and NF-κB network. Proc. Natl. Acad. Sci. USA. 2012;109:3475–3480. doi: 10.1073/pnas.1120375109. PubMed DOI PMC
Nieberler M., Reuning U., Reichart F., Notni J., Wester H.-J., Schwaiger M., Weinmüller M., Räder A., Steiger K., Kessler H. Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers. 2017;9:116. doi: 10.3390/cancers9090116. PubMed DOI PMC
Haubner R., Weber W.A., Beer A.J., Vabuliene E., Reim D., Sarbia M., Becker K.F., Goebel M., Hein R., Wester H.J., et al. Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med. 2005;2:e70. doi: 10.1371/journal.pmed.0020070. PubMed DOI PMC
Li Z.B., Chen K., Chen X. (68)Ga-labeled multimeric RGD peptides for microPET imaging of integrin alpha(v)beta (3) expression. Eur. J. Nucl. Med. Mol. Imaging. 2008;35:1100–1108. doi: 10.1007/s00259-007-0692-y. PubMed DOI
Knetsch P.A., Petrik M., Griessinger C.M., Rangger C., Fani M., Kesenheimer C., Von Guggenberg E., Pichler B.J., Virgolini I., Decristoforo C., et al. [68Ga]NODAGA-RGD for imaging αvβ3 integrin expression. Eur. J. Nucl. Med. Mol. Imaging. 2011;38:1303–1312. doi: 10.1007/s00259-011-1778-0. PubMed DOI
Haubner R., Kuhnast B., Mang C., Weber W.A., Kessler H., Wester H.-J., Schwaiger M. [18F]Galacto-RGD: Synthesis, Radiolabeling, Metabolic Stability, and Radiation Dose Estimates. Bioconjugate Chem. 2004;15:61–69. doi: 10.1021/bc034170n. PubMed DOI
Rangger C., Helbok A., Sosabowski J., Kremser C., Koehler G., Prassl R., Andreae F., Virgolini I.J., Von Guggenberg E., Decristoforo C., et al. Tumor targeting and imaging with dual-peptide conjugated multifunctional liposomal nanoparticles. Int. J. Nanomed. 2013;8:4659–4671. doi: 10.2147/IJN.S51927. PubMed DOI PMC
Brahm C.G., Hollander M.W.D., Enting R.H., De Groot J.C., Solouki A.M., Dunnen W.F.A.D., Heesters M.A.A.M., Wagemakers M., Verheul H.M.W., De Vries E.G.E., et al. Serial FLT PET imaging to discriminate between true progression and pseudoprogression in patients with newly diagnosed glioblastoma: a long-term follow-up study. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:2404–2412. doi: 10.1007/s00259-018-4090-4. PubMed DOI PMC
Muñoz M., Coveñas R., Esteban F., Redondo M. The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs. J. Biosci. 2015;40:441–463. doi: 10.1007/s12038-015-9530-8. PubMed DOI
Isal S., Pierson J., Imbert L., Clement A., Collet C., Pinel S., Veran N., Reinhard A., Poussier S., Gauchotte G., et al. PET imaging of 68Ga-NODAGA-RGD, as compared with 18F-fluorodeoxyglucose, in experimental rodent models of engrafted glioblastoma. EJNMMI Res. 2018;8:51. doi: 10.1186/s13550-018-0405-5. PubMed DOI PMC
Delgado-López P.D., Riñones-Mena E., Corrales-García E.M. Treatment-related changes in glioblastoma: A review on the controversies in response assessment criteria and the concepts of true progression, pseudoprogression, pseudoresponse and radionecrosis. Clin. Transl. Oncol. 2018;20:939–953. doi: 10.1007/s12094-017-1816-x. PubMed DOI
Lohmann P., Stavrinou P., Lipke K., Bauer E., Ceccon G., Werner J., Neumaier B., Fink G., Shah N., Langen K., et al. FET PET reveals considerable spatial differences in tumour burden compared to conventional MRI in newly diagnosed glioblastoma. 57. Jahrestag. der Dtsch. Ges. für Nukl. 2019;58:V54. PubMed
Van Der Gucht A., Pomoni A., Jreige M., Allemann P., Prior J.O. 68Ga-NODAGA-RGDyK PET/CT Imaging in Esophageal Cancer: First-in-Human Imaging. Clin. Nucl. Med. 2016;41:e491–e492. doi: 10.1097/RLU.0000000000001365. PubMed DOI
Zhai C., Franssen G.M., Petrik M., Laverman P., Summer D., Rangger C., Haubner R., Haas H., Decristoforo C. Comparison of Ga-68-Labeled Fusarinine C-Based Multivalent RGD Conjugates and [68Ga]NODAGA-RGD—In Vivo Imaging Studies in Human Xenograft Tumors. Mol. Imaging Boil. 2016;18:758–767. doi: 10.1007/s11307-016-0931-3. PubMed DOI PMC
Shi X., Shen L. Integrin αvβ3 receptor targeting PET/MRI dual-modal imaging probe based on the 64Cu labeled manganese ferrite nanoparticles. J. Inorg. Biochem. 2018;186:257–263. doi: 10.1016/j.jinorgbio.2018.06.004. PubMed DOI
Provost C., Rozenblum-Beddok L., Nataf V., Merabtene F., Prignon A., Talbot J.N. [68Ga]RGD Versus [18F]FDG PET Imaging in Monitoring Treatment Response of a Mouse Model of Human Glioblastoma Tumor with Bevacizumab and/or Temozolomide. Mol. Imaging Biol. 2019;21:297–305. doi: 10.1007/s11307-018-1224-9. PubMed DOI
Eo J.S., Jeong J.M. Angiogenesis Imaging Using 68Ga-RGD PET/CT: Therapeutic Implications. Semin. Nucl. Med. 2016;46:419–427. doi: 10.1053/j.semnuclmed.2016.04.001. PubMed DOI
Chen X., Liu S., Hou Y., Tohme M., Park R., Bading J.R. MicroPET imaging of breast cancer alphav-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol. Imaging Biol. 2004;6:350–359. doi: 10.1016/j.mibio.2004.06.004. PubMed DOI
Burmeister A.R., Johnson M.B., Chauhan V.S., Moerdyk-Schauwecker M.J., Young A.D., Cooley I.D., Martinez A.N., Ramesh G., Philipp M.T., Marriott I. Human microglia and astrocytes constitutively express the neurokinin-1 receptor and functionally respond to substance P. J. Neuroinflammation. 2017;14:245. doi: 10.1186/s12974-017-1012-5. PubMed DOI PMC
Liu S., Liu Z., Chen K., Yan Y., Watzlowik P., Wester H.J., Chin F.T., Chen X. 18F-abeled galacto and PEGylated RGD dimers for PET imaging of αvβ3 integrin expression. Mol. Imaging Biol. 2010;12:530–538. doi: 10.1007/s11307-009-0284-2. PubMed DOI PMC
Mozaffari S., Erfani M., Beiki D., Daha F.J., Kobarfard F., Balalaie S., Fallahi B. Synthesis and preliminary evaluation of a new (99m)tc labeled substance p analogue as a potential tumor imaging agent. Iran. J. Pharm. Res. 2015;14:97–110. PubMed PMC
Rinne P., Silvola J.M.U., Hellberg S., Ståhle M., Liljenbäck H., Salomäki H., Koskinen E., Nuutinen S., Saukko P., Knuuti J., et al. Pharmacological Activation of the Melanocortin System Limits Plaque Inflammation and Ameliorates Vascular Dysfunction in Atherosclerotic Mice. Arter. Thromb. Vasc. Boil. 2014;34:1346–1354. doi: 10.1161/ATVBAHA.113.302963. PubMed DOI
Chan S.R., Salem K., Jeffery J., Powers G.L., Yan Y., Shoghi K.I., Mahajan A.M., Fowler A.M. Sex as a Biologic Variable in Preclinical Imaging Research: Initial Observations with 18F-FLT. J. Nucl. Med. 2018;59:833–838. doi: 10.2967/jnumed.117.199406. PubMed DOI PMC
Monaco A., Zoete V., Alghisi G.C., Rüegg C., Michelin O., Prior J., Scapozza L., Seimbille Y. Synthesis and in vitro evaluation of a novel radioligand for αvβ3 integrin receptor imaging: [18F]FPPA-c(RGDfK) Bioorg. Med. Chem. Lett. 2013;23:6068–6072. doi: 10.1016/j.bmcl.2013.09.031. PubMed DOI
Xu H.-L., Li M., Zhang R.-J., Jiang H.-J., Zhang M.-Y., Li X., Wang Y.-Q., Pan W.-B. Prediction of tumor biological characteristics in different colorectal cancer liver metastasis animal models using 18 F-FDG and 18 F-FLT. Hepatobiliary Pancreat. Dis. Int. 2018;17:140–148. doi: 10.1016/j.hbpd.2018.03.006. PubMed DOI
Liu J., Yuan S., Wang L., Sun X., Hu X., Meng X., Yu J. Diagnostic and Predictive Value of Using RGD PET/CT in Patients with Cancer: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2019;2019:1–15. doi: 10.1155/2019/8534761. PubMed DOI PMC
Müller S.A., Holzapfel K., Seidl C., Treiber U., Krause B.J., Senekowitsch-Schmidtke R. Characterization of choline uptake in prostate cancer cells following bicalutamide and docetaxel treatment. Eur. J. Nucl. Med. Mol. Imaging. 2009;36:1434–1442. doi: 10.1007/s00259-009-1117-x. PubMed DOI
Yardeni T., Eckhaus M., Morris H.D. Retro-orbital injections in mice. Lab Anim. 2011;40:155–160. doi: 10.1038/laban0511-155. PubMed DOI PMC
68Ga]Ga-DFO-c(RGDyK): Synthesis and Evaluation of Its Potential for Tumor Imaging in Mice