68Ga]Ga-DFO-c(RGDyK): Synthesis and Evaluation of Its Potential for Tumor Imaging in Mice

. 2021 Jul 09 ; 22 (14) : . [epub] 20210709

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34299008

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund

Angiogenesis has a pivotal role in tumor growth and the metastatic process. Molecular imaging was shown to be useful for imaging of tumor-induced angiogenesis. A great variety of radiolabeled peptides have been developed to target αvβ3 integrin, a target structure involved in the tumor-induced angiogenic process. The presented study aimed to synthesize deferoxamine (DFO)-based c(RGD) peptide conjugate for radiolabeling with gallium-68 and perform its basic preclinical characterization including testing of its tumor-imaging potential. DFO-c(RGDyK) was labeled with gallium-68 with high radiochemical purity. In vitro characterization including stability, partition coefficient, protein binding determination, tumor cell uptake assays, and ex vivo biodistribution as well as PET/CT imaging was performed. [68Ga]Ga-DFO-c(RGDyK) showed hydrophilic properties, high stability in PBS and human serum, and specific uptake in U-87 MG and M21 tumor cell lines in vitro and in vivo. We have shown here that [68Ga]Ga-DFO-c(RGDyK) can be used for αvβ3 integrin targeting, allowing imaging of tumor-induced angiogenesis by positron emission tomography.

Zobrazit více v PubMed

Fani M., Maecke H.R., Okarvi S.M. Radiolabeled peptides: Valuable tools for the detection and treatment of cancer. Theranostics. 2012;2:481–501. doi: 10.7150/thno.4024. PubMed DOI PMC

Rangger C., Haubner R. Radiolabelled peptides for positron emission tomography and endoradiotherapy in oncology. Pharmaceuticals. 2020;13:22. doi: 10.3390/ph13020022. PubMed DOI PMC

Fani M., Maecke H.R. Radiopharmaceutical development of radiolabelled peptides. Eur. J. Nucl. Med. Mol. Imaging. 2012;39:S11–S30. doi: 10.1007/s00259-011-2001-z. PubMed DOI

Laverman P., Sosabowski J.K., Boerman O.C., Oyen W.J.G. Radiolabelled peptides for oncological diagnosis. Eur. J. Nucl. Med. Mol. Imaging. 2012;39:S78–S92. doi: 10.1007/s00259-011-2014-7. PubMed DOI PMC

Leitha D., Izard T. Roles of membrane domains in integrin-mediated cell adhesion. Int. J. Mol. Sci. 2020;21:5531. doi: 10.3390/ijms21155531. PubMed DOI PMC

Mezu-Ndubuisi O.J., Maheshwari A. The role of integrins in inflammation and angiogenesis. Pediatr. Res. 2020;89:1619–1626. doi: 10.1038/s41390-020-01177-9. PubMed DOI PMC

Nieberler M., Reuning U., Reichart F., Notni J., Wester H.J., Schwaiger M., Weinmüller M., Räder A., Steiger K., Kessler H. Exploring the role of RGD-recognizing integrins in cancer. Cancers. 2017;9:116. doi: 10.3390/cancers9090116. PubMed DOI PMC

Gaertner F.C., Kessler H., Wester H.J., Schwaiger M., Beer A.J. Radiolabelled RGD peptides for imaging and therapy. Eur. J. Nucl. Med. Mol. Imaging. 2012;39:S126–S138. doi: 10.1007/s00259-011-2028-1. PubMed DOI

Jamous M., Haberkorn U., Mier W. Synthesis of peptide radiopharmaceuticals for the therapy and diagnosis of tumor diseases. Molecules. 2013;18:3379–3409. doi: 10.3390/molecules18033379. PubMed DOI PMC

Liu S. Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv. Drug Deliv. Rev. 2008;60:1347–1370. doi: 10.1016/j.addr.2008.04.006. PubMed DOI PMC

Shi J., Wang F., Liu S. Radiolabeled cyclic RGD peptides as radiotracers for tumor imaging. Biophys. Rep. 2016;2:1–20. doi: 10.1007/s41048-016-0021-8. PubMed DOI PMC

Ioppolo J.A., Caldwell D., Beiraghi O., Llano L., Blacker M., Valliant J.F., Berti P.J. 67Ga-labeled deferoxamine derivatives for imaging bacterial infection: Preparation and screening of functionalized siderophore complexes. Nucl. Med. Biol. 2017;52:32–41. doi: 10.1016/j.nucmedbio.2017.05.010. PubMed DOI

Oroujeni M., Garousi J., Andersson K.G., Löfblom J., Mitran B., Orlova A., Tolmachev V. Preclinical evaluation of [68Ga]Ga-DFO-ZEGFR:2377: A promising affibody-based probe for noninvasive PET imaging of EGFR expression in tumors. Cells. 2018;7:141. doi: 10.3390/cells7090141. PubMed DOI PMC

Kaeppeli S.A.M., Schibli R., Mindt T.L., Behe M. Comparison of desferrioxamine and NODAGA for the gallium-68 labeling of exendin-4. EJNMMI Radiopharm. Chem. 2019;4:9. doi: 10.1186/s41181-019-0060-9. PubMed DOI PMC

Raavé R., Sandker R., Adumeau P., Jacobsen C.B., Mangin F., Meyer M., Moreau M., Bernhard C., Da Costa L., Dubois A., et al. Direct comparison of the in vitro and in vivo stability of DFO, DFO* and DFOcyclo* for 89 Zr-immunoPET. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:1966–1977. doi: 10.1007/s00259-019-04343-2. PubMed DOI PMC

Petrik M., Umlaufova E., Raclavsky V., Palyzova A., Havlicek V., Pfister J., Mair C., Novy Z., Popper M., Hajduch M., et al. 68Ga-labelled desferrioxamine-B for bacterial infection imaging. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:372–382. doi: 10.1007/s00259-020-04948-y. PubMed DOI PMC

Ye Y., Bloch S., Xu B., Achilefu S. A novel near-infrared fluorescent integrin targeted DFO analog. Bioconjug. Chem. 2008;19:225–234. doi: 10.1021/bc7003022. PubMed DOI PMC

Haubner R., Decristoforo C. Radiolabelled RGD peptides and peptidomimetics for tumour targeting. Front. Biosci. 2009;14:872–886. doi: 10.2741/3283. PubMed DOI

Kapp T.G., Rechenmacher F., Neubauer S., Maltsev O.V., Cavalcanti-Adam E.A., Zarka R., Reuning U., Notni J., Wester H.J., Mas-Moruno C., et al. A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins. Sci. Rep. 2017;7:39805. doi: 10.1038/srep39805. PubMed DOI PMC

Li Z.B., Chen K., Chen X. (68)Ga-labeled multimeric RGD peptides for microPET imaging of integrin alpha(v)beta (3) expression. Eur. J. Nucl. Med. Mol. Imaging. 2008;35:1100–1108. doi: 10.1007/s00259-007-0692-y. PubMed DOI

Jeong J.M., Hong M.K., Chang Y.S., Lee Y.S., Kim Y.J., Cheon G.J., Lee D.S., Chung J.K., Lee M.C. Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J. Nucl. Med. 2008;49:830–836. doi: 10.2967/jnumed.107.047423. PubMed DOI

Oxboel J., Schjoeth-Eskesen C., El-Ali H.H., Madsen J., Kjaer A. 64Cu-NODAGA-c(RGDyK) is a promising new angiogenesis PET tracer: Correlation between tumor uptake and integrin αVβ3 expression in human neuroendocrine tumor xenografts. Int. J. Mol. Imaging. 2012;2012:379807. doi: 10.1155/2012/379807. PubMed DOI PMC

Shin U.C., Jung K.H., Lee J.W., Lee K.C., Lee Y.J., Park J.A., Kim J.Y., Kang J.H., An G.I., Ryu Y.H., et al. Preliminary evaluation of new 68Ga-labeled cyclic RGD peptides by PET imaging. J. Radiopharm. Mol. Probes. 2016;2:118–122.

Novy Z., Stepankova J., Hola M., Flasarova D., Popper M., Petrik M. Preclinical evaluation of radiolabeled peptides for PET imaging of glioblastoma multiforme. Molecules. 2019;24:2496. doi: 10.3390/molecules24132496. PubMed DOI PMC

Van Der Gucht A., Pomoni A., Jreige M., Allemann P., Prior J.O. 68Ga-NODAGA-RGDyK PET/CT imaging in esophageal cancer: First-in-human imaging. Clin. Nucl. Med. 2016;41:491–492. doi: 10.1097/RLU.0000000000001365. PubMed DOI

Durante S., Dunet V., Gorostidi F., Mitsakis P., Schaefer N., Delage J., Prior J.O. Head and neck tumors angiogenesis imaging with 68Ga-NODAGA-RGD in comparison to 18F-FDG PET/CT: A pilot study. EJNMMI Res. 2020;10:47. doi: 10.1186/s13550-020-00638-w. PubMed DOI PMC

Belotti D., Remelli M. Deferoxamine B: A natural, excellent and versatile metal chelator. Molecules. 2021;26:3255. doi: 10.3390/molecules26113255. PubMed DOI PMC

Díaz-Mochón J.J., Bialy L., Bradley M. Full Orthogonality between Dde and Fmoc: The direct yynthesis of PNA-peptide conjugates. Org. Lett. 2004;6:1127–1129. doi: 10.1021/ol049905y. PubMed DOI

Fani M., Andre J.P., Maecke H.R. 68Ga-PET: A powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol. Imaging. 2008;3:67–77. doi: 10.1002/cmmi.232. PubMed DOI

Decristoforo C. Gallium-68—A new opportunity for PET available from a long shelf-life generator—Automation and applications. Curr. Radiopharm. 2012;5:212–220. doi: 10.2174/1874471011205030212. PubMed DOI

Velikyan I. 68Ga-Based radiopharmaceuticals: Production and application relationship. Molecules. 2015;20:12913–12943. doi: 10.3390/molecules200712913. PubMed DOI PMC

Knetsch P., Petrik M., Griessinger C.M., Rangger C., Fani M., Kesenheimer C., von Guggenberg E., Pichler B.J., Virgolini I., Decristoforo C., et al. [68Ga]NODAGA-RGD for imaging αvβ3 integrin expression. Eur. J. Nucl. Med. Mol. Imaging. 2011;38:1303–1312. doi: 10.1007/s00259-011-1778-0. PubMed DOI

Kaeopookum P., Petrik M., Summer D., Klingler M., Zhai C., Rangger C., Haubner R., Haas H., Hajduch M., Decristoforo C. Comparison of 68Ga-labeled RGD mono- and multimers based on a clickable siderophore-based scaffold. Nucl. Med. Biol. 2019;78–79:1–10. doi: 10.1016/j.nucmedbio.2019.09.002. PubMed DOI

Summer D., Grossrubatscher L., Petrik M., Michalcikova T., Novy Z., Rangger C., Klingler M., Haas H., Kaeopookum P., von Guggenberg E., et al. Developing targeted hybrid imaging probes by chelator scaffolding. Bioconjug. Chem. 2017;28:1722–1733. doi: 10.1021/acs.bioconjchem.7b00182. PubMed DOI PMC

Carlucci G., Ananias H.J.K., Yu Z., Van de Wiele C., Dierckx R.A., de Jong I.J., Elsinga P.H. Multimerization improves targeting of peptide radio-pharmaceuticals. Curr. Pharm. Des. 2012;18:2501–2516. doi: 10.2174/13816128112092501. PubMed DOI

Notni J., Pohle C., Wester H.J. Be spoilt for choice with radiolabelled RGD peptides: Preclinical evaluation of 68Ga-TRAP(RGD)3. Nucl. Med. Biol. 2013;40:33–41. doi: 10.1016/j.nucmedbio.2012.08.006. PubMed DOI

Liu S. Radiolabeled cyclic RGD peptide bioconjugates as radiotracers targeting multiple integrins. Bioconjug. Chem. 2015;26:1413–1438. doi: 10.1021/acs.bioconjchem.5b00327. PubMed DOI PMC

Chandra R., Pierno C., Braunstein P. 111In Desferal: A new radiopharmaceutical for abscess detection. Radiology. 1978;128:697–699. doi: 10.1148/128.3.697. PubMed DOI

Govindan S.V., Michel R.B., Griffiths G.L., Goldenberg D.M., Mattes M.J. Deferoxamine as a chelator for 67Ga in the preparation of antibody conjugates. Nucl. Med. Biol. 2005;32:513–519. doi: 10.1016/j.nucmedbio.2005.04.009. PubMed DOI

Asati S., Pandey V., Soni V. RGD peptide as a targeting moiety for theranostic purpose: An update study. Int. J. Pept. Res. Ther. 2019;25:49–65. doi: 10.1007/s10989-018-9728-3. DOI

Müller S.A., Holzapfel K., Seidl C., Treiber U., Krause B.J., Senekowitsch-Schmidtke R. Characterization of choline uptake in prostate cancer cells following bicalutamide and docetaxel treatment. Eur. J. Nucl. Med. Mol. Imaging. 2009;36:1434–1442. doi: 10.1007/s00259-009-1117-x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...