68Ga]Ga-DFO-c(RGDyK): Synthesis and Evaluation of Its Potential for Tumor Imaging in Mice
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund
PubMed
34299008
PubMed Central
PMC8306578
DOI
10.3390/ijms22147391
PII: ijms22147391
Knihovny.cz E-zdroje
- Klíčová slova
- PET imaging, RGD peptides, deferoxamine, integrins, radiodiagnostics,
- MeSH
- deferoxamin analogy a deriváty chemická syntéza chemie MeSH
- glioblastom diagnostické zobrazování MeSH
- integrin alfaVbeta3 metabolismus MeSH
- lidé MeSH
- myši inbrední BALB C MeSH
- myši nahé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- patologická angiogeneze diagnostické zobrazování MeSH
- počítačová rentgenová tomografie metody MeSH
- pozitronová emisní tomografie metody MeSH
- radioizotopy galia chemie MeSH
- tkáňová distribuce MeSH
- transplantace heterologní MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- deferoxamin MeSH
- Gallium-68 MeSH Prohlížeč
- integrin alfaVbeta3 MeSH
- radioizotopy galia MeSH
Angiogenesis has a pivotal role in tumor growth and the metastatic process. Molecular imaging was shown to be useful for imaging of tumor-induced angiogenesis. A great variety of radiolabeled peptides have been developed to target αvβ3 integrin, a target structure involved in the tumor-induced angiogenic process. The presented study aimed to synthesize deferoxamine (DFO)-based c(RGD) peptide conjugate for radiolabeling with gallium-68 and perform its basic preclinical characterization including testing of its tumor-imaging potential. DFO-c(RGDyK) was labeled with gallium-68 with high radiochemical purity. In vitro characterization including stability, partition coefficient, protein binding determination, tumor cell uptake assays, and ex vivo biodistribution as well as PET/CT imaging was performed. [68Ga]Ga-DFO-c(RGDyK) showed hydrophilic properties, high stability in PBS and human serum, and specific uptake in U-87 MG and M21 tumor cell lines in vitro and in vivo. We have shown here that [68Ga]Ga-DFO-c(RGDyK) can be used for αvβ3 integrin targeting, allowing imaging of tumor-induced angiogenesis by positron emission tomography.
Zobrazit více v PubMed
Fani M., Maecke H.R., Okarvi S.M. Radiolabeled peptides: Valuable tools for the detection and treatment of cancer. Theranostics. 2012;2:481–501. doi: 10.7150/thno.4024. PubMed DOI PMC
Rangger C., Haubner R. Radiolabelled peptides for positron emission tomography and endoradiotherapy in oncology. Pharmaceuticals. 2020;13:22. doi: 10.3390/ph13020022. PubMed DOI PMC
Fani M., Maecke H.R. Radiopharmaceutical development of radiolabelled peptides. Eur. J. Nucl. Med. Mol. Imaging. 2012;39:S11–S30. doi: 10.1007/s00259-011-2001-z. PubMed DOI
Laverman P., Sosabowski J.K., Boerman O.C., Oyen W.J.G. Radiolabelled peptides for oncological diagnosis. Eur. J. Nucl. Med. Mol. Imaging. 2012;39:S78–S92. doi: 10.1007/s00259-011-2014-7. PubMed DOI PMC
Leitha D., Izard T. Roles of membrane domains in integrin-mediated cell adhesion. Int. J. Mol. Sci. 2020;21:5531. doi: 10.3390/ijms21155531. PubMed DOI PMC
Mezu-Ndubuisi O.J., Maheshwari A. The role of integrins in inflammation and angiogenesis. Pediatr. Res. 2020;89:1619–1626. doi: 10.1038/s41390-020-01177-9. PubMed DOI PMC
Nieberler M., Reuning U., Reichart F., Notni J., Wester H.J., Schwaiger M., Weinmüller M., Räder A., Steiger K., Kessler H. Exploring the role of RGD-recognizing integrins in cancer. Cancers. 2017;9:116. doi: 10.3390/cancers9090116. PubMed DOI PMC
Gaertner F.C., Kessler H., Wester H.J., Schwaiger M., Beer A.J. Radiolabelled RGD peptides for imaging and therapy. Eur. J. Nucl. Med. Mol. Imaging. 2012;39:S126–S138. doi: 10.1007/s00259-011-2028-1. PubMed DOI
Jamous M., Haberkorn U., Mier W. Synthesis of peptide radiopharmaceuticals for the therapy and diagnosis of tumor diseases. Molecules. 2013;18:3379–3409. doi: 10.3390/molecules18033379. PubMed DOI PMC
Liu S. Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv. Drug Deliv. Rev. 2008;60:1347–1370. doi: 10.1016/j.addr.2008.04.006. PubMed DOI PMC
Shi J., Wang F., Liu S. Radiolabeled cyclic RGD peptides as radiotracers for tumor imaging. Biophys. Rep. 2016;2:1–20. doi: 10.1007/s41048-016-0021-8. PubMed DOI PMC
Ioppolo J.A., Caldwell D., Beiraghi O., Llano L., Blacker M., Valliant J.F., Berti P.J. 67Ga-labeled deferoxamine derivatives for imaging bacterial infection: Preparation and screening of functionalized siderophore complexes. Nucl. Med. Biol. 2017;52:32–41. doi: 10.1016/j.nucmedbio.2017.05.010. PubMed DOI
Oroujeni M., Garousi J., Andersson K.G., Löfblom J., Mitran B., Orlova A., Tolmachev V. Preclinical evaluation of [68Ga]Ga-DFO-ZEGFR:2377: A promising affibody-based probe for noninvasive PET imaging of EGFR expression in tumors. Cells. 2018;7:141. doi: 10.3390/cells7090141. PubMed DOI PMC
Kaeppeli S.A.M., Schibli R., Mindt T.L., Behe M. Comparison of desferrioxamine and NODAGA for the gallium-68 labeling of exendin-4. EJNMMI Radiopharm. Chem. 2019;4:9. doi: 10.1186/s41181-019-0060-9. PubMed DOI PMC
Raavé R., Sandker R., Adumeau P., Jacobsen C.B., Mangin F., Meyer M., Moreau M., Bernhard C., Da Costa L., Dubois A., et al. Direct comparison of the in vitro and in vivo stability of DFO, DFO* and DFOcyclo* for 89 Zr-immunoPET. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:1966–1977. doi: 10.1007/s00259-019-04343-2. PubMed DOI PMC
Petrik M., Umlaufova E., Raclavsky V., Palyzova A., Havlicek V., Pfister J., Mair C., Novy Z., Popper M., Hajduch M., et al. 68Ga-labelled desferrioxamine-B for bacterial infection imaging. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:372–382. doi: 10.1007/s00259-020-04948-y. PubMed DOI PMC
Ye Y., Bloch S., Xu B., Achilefu S. A novel near-infrared fluorescent integrin targeted DFO analog. Bioconjug. Chem. 2008;19:225–234. doi: 10.1021/bc7003022. PubMed DOI PMC
Haubner R., Decristoforo C. Radiolabelled RGD peptides and peptidomimetics for tumour targeting. Front. Biosci. 2009;14:872–886. doi: 10.2741/3283. PubMed DOI
Kapp T.G., Rechenmacher F., Neubauer S., Maltsev O.V., Cavalcanti-Adam E.A., Zarka R., Reuning U., Notni J., Wester H.J., Mas-Moruno C., et al. A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins. Sci. Rep. 2017;7:39805. doi: 10.1038/srep39805. PubMed DOI PMC
Li Z.B., Chen K., Chen X. (68)Ga-labeled multimeric RGD peptides for microPET imaging of integrin alpha(v)beta (3) expression. Eur. J. Nucl. Med. Mol. Imaging. 2008;35:1100–1108. doi: 10.1007/s00259-007-0692-y. PubMed DOI
Jeong J.M., Hong M.K., Chang Y.S., Lee Y.S., Kim Y.J., Cheon G.J., Lee D.S., Chung J.K., Lee M.C. Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J. Nucl. Med. 2008;49:830–836. doi: 10.2967/jnumed.107.047423. PubMed DOI
Oxboel J., Schjoeth-Eskesen C., El-Ali H.H., Madsen J., Kjaer A. 64Cu-NODAGA-c(RGDyK) is a promising new angiogenesis PET tracer: Correlation between tumor uptake and integrin αVβ3 expression in human neuroendocrine tumor xenografts. Int. J. Mol. Imaging. 2012;2012:379807. doi: 10.1155/2012/379807. PubMed DOI PMC
Shin U.C., Jung K.H., Lee J.W., Lee K.C., Lee Y.J., Park J.A., Kim J.Y., Kang J.H., An G.I., Ryu Y.H., et al. Preliminary evaluation of new 68Ga-labeled cyclic RGD peptides by PET imaging. J. Radiopharm. Mol. Probes. 2016;2:118–122.
Novy Z., Stepankova J., Hola M., Flasarova D., Popper M., Petrik M. Preclinical evaluation of radiolabeled peptides for PET imaging of glioblastoma multiforme. Molecules. 2019;24:2496. doi: 10.3390/molecules24132496. PubMed DOI PMC
Van Der Gucht A., Pomoni A., Jreige M., Allemann P., Prior J.O. 68Ga-NODAGA-RGDyK PET/CT imaging in esophageal cancer: First-in-human imaging. Clin. Nucl. Med. 2016;41:491–492. doi: 10.1097/RLU.0000000000001365. PubMed DOI
Durante S., Dunet V., Gorostidi F., Mitsakis P., Schaefer N., Delage J., Prior J.O. Head and neck tumors angiogenesis imaging with 68Ga-NODAGA-RGD in comparison to 18F-FDG PET/CT: A pilot study. EJNMMI Res. 2020;10:47. doi: 10.1186/s13550-020-00638-w. PubMed DOI PMC
Belotti D., Remelli M. Deferoxamine B: A natural, excellent and versatile metal chelator. Molecules. 2021;26:3255. doi: 10.3390/molecules26113255. PubMed DOI PMC
Díaz-Mochón J.J., Bialy L., Bradley M. Full Orthogonality between Dde and Fmoc: The direct yynthesis of PNA-peptide conjugates. Org. Lett. 2004;6:1127–1129. doi: 10.1021/ol049905y. PubMed DOI
Fani M., Andre J.P., Maecke H.R. 68Ga-PET: A powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol. Imaging. 2008;3:67–77. doi: 10.1002/cmmi.232. PubMed DOI
Decristoforo C. Gallium-68—A new opportunity for PET available from a long shelf-life generator—Automation and applications. Curr. Radiopharm. 2012;5:212–220. doi: 10.2174/1874471011205030212. PubMed DOI
Velikyan I. 68Ga-Based radiopharmaceuticals: Production and application relationship. Molecules. 2015;20:12913–12943. doi: 10.3390/molecules200712913. PubMed DOI PMC
Knetsch P., Petrik M., Griessinger C.M., Rangger C., Fani M., Kesenheimer C., von Guggenberg E., Pichler B.J., Virgolini I., Decristoforo C., et al. [68Ga]NODAGA-RGD for imaging αvβ3 integrin expression. Eur. J. Nucl. Med. Mol. Imaging. 2011;38:1303–1312. doi: 10.1007/s00259-011-1778-0. PubMed DOI
Kaeopookum P., Petrik M., Summer D., Klingler M., Zhai C., Rangger C., Haubner R., Haas H., Hajduch M., Decristoforo C. Comparison of 68Ga-labeled RGD mono- and multimers based on a clickable siderophore-based scaffold. Nucl. Med. Biol. 2019;78–79:1–10. doi: 10.1016/j.nucmedbio.2019.09.002. PubMed DOI
Summer D., Grossrubatscher L., Petrik M., Michalcikova T., Novy Z., Rangger C., Klingler M., Haas H., Kaeopookum P., von Guggenberg E., et al. Developing targeted hybrid imaging probes by chelator scaffolding. Bioconjug. Chem. 2017;28:1722–1733. doi: 10.1021/acs.bioconjchem.7b00182. PubMed DOI PMC
Carlucci G., Ananias H.J.K., Yu Z., Van de Wiele C., Dierckx R.A., de Jong I.J., Elsinga P.H. Multimerization improves targeting of peptide radio-pharmaceuticals. Curr. Pharm. Des. 2012;18:2501–2516. doi: 10.2174/13816128112092501. PubMed DOI
Notni J., Pohle C., Wester H.J. Be spoilt for choice with radiolabelled RGD peptides: Preclinical evaluation of 68Ga-TRAP(RGD)3. Nucl. Med. Biol. 2013;40:33–41. doi: 10.1016/j.nucmedbio.2012.08.006. PubMed DOI
Liu S. Radiolabeled cyclic RGD peptide bioconjugates as radiotracers targeting multiple integrins. Bioconjug. Chem. 2015;26:1413–1438. doi: 10.1021/acs.bioconjchem.5b00327. PubMed DOI PMC
Chandra R., Pierno C., Braunstein P. 111In Desferal: A new radiopharmaceutical for abscess detection. Radiology. 1978;128:697–699. doi: 10.1148/128.3.697. PubMed DOI
Govindan S.V., Michel R.B., Griffiths G.L., Goldenberg D.M., Mattes M.J. Deferoxamine as a chelator for 67Ga in the preparation of antibody conjugates. Nucl. Med. Biol. 2005;32:513–519. doi: 10.1016/j.nucmedbio.2005.04.009. PubMed DOI
Asati S., Pandey V., Soni V. RGD peptide as a targeting moiety for theranostic purpose: An update study. Int. J. Pept. Res. Ther. 2019;25:49–65. doi: 10.1007/s10989-018-9728-3. DOI
Müller S.A., Holzapfel K., Seidl C., Treiber U., Krause B.J., Senekowitsch-Schmidtke R. Characterization of choline uptake in prostate cancer cells following bicalutamide and docetaxel treatment. Eur. J. Nucl. Med. Mol. Imaging. 2009;36:1434–1442. doi: 10.1007/s00259-009-1117-x. PubMed DOI