The pathogenic fungus Aspergillus fumigatus utilizes a cyclic ferrioxamine E (FOXE) siderophore to acquire iron from the host. Biomimetic FOXE analogues were labeled with gallium-68 for molecular imaging with PET. [68Ga]Ga(III)-FOXE analogues were internalized in A. fumigatus cells via Sit1. Uptake of [68Ga]Ga(III)-FOX 2-5, the most structurally alike analogue to FOXE, was high by both A. fumigatus and bacterial Staphylococcus aureus. However, altering the ring size provoked species-specific uptake between these two microbes: ring size shortening by one methylene unit (FOX 2-4) increased uptake by A. fumigatus compared to that by S. aureus, whereas lengthening the ring (FOX 2-6 and 3-5) had the opposite effect. These results were consistent both in vitro and in vivo, including PET imaging in infection models. Overall, this study provided valuable structural insights into the specificity of siderophore uptake and, for the first time, opened up ways for selective targeting and imaging of microbial pathogens by siderophore derivatization.
- MeSH
- Aspergillus fumigatus * metabolismus chemie MeSH
- aspergilóza * diagnostické zobrazování mikrobiologie MeSH
- biomimetické materiály chemie metabolismus MeSH
- cyklické peptidy MeSH
- deferoxamin chemie MeSH
- druhová specificita MeSH
- myši MeSH
- pozitronová emisní tomografie * metody MeSH
- radioizotopy galia * chemie MeSH
- siderofory * chemie metabolismus MeSH
- Staphylococcus aureus * metabolismus MeSH
- železité sloučeniny chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Iron, as an essential micronutrient, plays a crucial role in host-pathogen interactions. In order to limit the growth of the pathogen, a common strategy of innate immunity includes withdrawing available iron to interfere with the cellular processes of the microorganism. Against that, unicellular parasites have developed powerful strategies to scavenge iron, despite the effort of the host. Iron-sequestering compounds, such as the approved and potent chelator deferoxamine (DFO), are considered a viable option for therapeutic intervention. Since iron is heavily utilized in the mitochondrion, targeting iron chelators in this organelle could constitute an effective therapeutic strategy. This work presents mitochondrially targeted DFO, mitoDFO, as a candidate against a range of unicellular parasites with promising in vitro efficiency. Intracellular Leishmania infection can be cleared by this compound, and experimentation with Trypanosoma brucei 427 elucidates its possible mode of action. The compound not only affects iron homeostasis but also alters the physiochemical properties of the inner mitochondrial membrane, resulting in a loss of function. Furthermore, investigating the virulence factors of pathogenic yeasts confirms that mitoDFO is a viable candidate for therapeutic intervention against a wide spectrum of microbe-associated diseases.
Labile redox-active iron ions have been implicated in various neurodegenerative disorders, including the Parkinson's disease (PD). Iron chelation has been successfully used in clinical practice to manage iron overload in diseases such as thalassemia major; however, the use of conventional iron chelators in pathological states without systemic iron overload remains at the preclinical investigative level and is complicated by the risk of adverse outcomes due to systemic iron depletion. In this study, we examined three clinically-used chelators, namely, desferrioxamine, deferiprone and deferasirox and compared them with experimental agent salicylaldehyde isonicotinoyl hydrazone (SIH) and its boronate-masked prochelator BSIH for protection of differentiated PC12 cells against the toxicity of catecholamines 6-hydroxydopamine and dopamine and their oxidation products. All the assayed chelating agents were able to significantly reduce the catecholamine toxicity in a dose-dependent manner. Whereas hydrophilic chelator desferrioxamine exerted protection only at high and clinically unachievable concentrations, deferiprone and deferasirox significantly reduced the catecholamine neurotoxicity at concentrations that are within their plasma levels following standard dosage. SIH was the most effective iron chelator to protect the cells with the lowest own toxicity of all the assayed conventional chelators. This favorable feature was even more pronounced in prochelator BSIH that does not chelate iron unless its protective group is cleaved in disease-specific oxidative stress conditions. Hence, this study demonstrated that while iron chelation may have general neuroprotective potential against catecholamine auto-oxidation and toxicity, SIH and BSIH represent promising lead molecules and warrant further studies in more complex animal models.
- MeSH
- buňky PC12 MeSH
- chelátory železa * farmakologie MeSH
- deferasirox farmakologie MeSH
- deferipron farmakologie MeSH
- deferoxamin farmakologie MeSH
- dopamin farmakologie MeSH
- katecholaminy farmakologie MeSH
- krysa rodu rattus MeSH
- oxidační stres MeSH
- oxidopamin farmakologie MeSH
- přetížení železem * MeSH
- železo farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: With the increase of especially hospital-acquired infections, timely and accurate diagnosis of bacterial infections is crucial for effective patient care. Molecular imaging has the potential for specific and sensitive detection of infections. Siderophores are iron-specific chelators recognized by specific bacterial transporters, representing one of few fundamental differences between bacterial and mammalian cells. Replacing iron by gallium-68 without loss of bioactivity is possible allowing molecular imaging by positron emission tomography (PET). Here, we report on the preclinical evaluation of the clinically used siderophore, desferrioxamine-B (Desferal®, DFO-B), radiolabelled with 68Ga for imaging of bacterial infections. METHODS: In vitro characterization of [68Ga]Ga-DFO-B included partition coefficient, protein binding and stability determination. Specific uptake of [68Ga]Ga-DFO-B was tested in vitro in different microbial cultures. In vivo biodistribution was studied in healthy mice and dosimetric estimation for human setting performed. PET/CT imaging was carried out in animal infection models, representing the most common pathogens. RESULTS: DFO-B was labelled with 68Ga with high radiochemical purity and displayed hydrophilic properties, low protein binding and high stability in human serum and PBS. The high in vitro uptake of [68Ga]Ga-DFO-B in selected strains of Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus agalactiae could be blocked with an excess of iron-DFO-B. [68Ga]Ga-DFO-B showed rapid renal excretion and minimal retention in blood and other organs in healthy mice. Estimated human absorbed dose was 0.02 mSv/MBq. PET/CT images of animal infection models displayed high and specific accumulation of [68Ga]Ga-DFO-B in both P. aeruginosa and S. aureus infections with excellent image contrast. No uptake was found in sterile inflammation, heat-inactivated P. aeruginosa or S. aureus and Escherichia coli lacking DFO-B transporters. CONCLUSION: DFO-B can be easily radiolabelled with 68Ga and displayed suitable in vitro characteristics and excellent pharmacokinetics in mice. The high and specific uptake of [68Ga]Ga-DFO-B by P. aeruginosa and S. aureus was confirmed both in vitro and in vivo, proving the potential of [68Ga]Ga-DFO-B for specific imaging of bacterial infections. As DFO-B is used in clinic for many years and the estimated radiation dose is lower than for other 68Ga-labelled radiopharmaceuticals, we believe that [68Ga]Ga-DFO-B has a great potential for clinical translation.
- MeSH
- deferoxamin * MeSH
- myši MeSH
- PET/CT MeSH
- počítačová rentgenová tomografie MeSH
- pozitronová emisní tomografie MeSH
- radioizotopy galia * MeSH
- Staphylococcus aureus MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Angiogenesis has a pivotal role in tumor growth and the metastatic process. Molecular imaging was shown to be useful for imaging of tumor-induced angiogenesis. A great variety of radiolabeled peptides have been developed to target αvβ3 integrin, a target structure involved in the tumor-induced angiogenic process. The presented study aimed to synthesize deferoxamine (DFO)-based c(RGD) peptide conjugate for radiolabeling with gallium-68 and perform its basic preclinical characterization including testing of its tumor-imaging potential. DFO-c(RGDyK) was labeled with gallium-68 with high radiochemical purity. In vitro characterization including stability, partition coefficient, protein binding determination, tumor cell uptake assays, and ex vivo biodistribution as well as PET/CT imaging was performed. [68Ga]Ga-DFO-c(RGDyK) showed hydrophilic properties, high stability in PBS and human serum, and specific uptake in U-87 MG and M21 tumor cell lines in vitro and in vivo. We have shown here that [68Ga]Ga-DFO-c(RGDyK) can be used for αvβ3 integrin targeting, allowing imaging of tumor-induced angiogenesis by positron emission tomography.
- MeSH
- deferoxamin analogy a deriváty chemická syntéza chemie MeSH
- glioblastom diagnostické zobrazování MeSH
- integrin alfaVbeta3 metabolismus MeSH
- lidé MeSH
- myši inbrední BALB C MeSH
- myši nahé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- patologická angiogeneze diagnostické zobrazování MeSH
- počítačová rentgenová tomografie metody MeSH
- pozitronová emisní tomografie metody MeSH
- radioizotopy galia chemie MeSH
- tkáňová distribuce MeSH
- transplantace heterologní MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Deferoxamine (DFO) represents a widely used iron chelator for the treatment of iron overload. Here we describe the use of mitochondrially targeted deferoxamine (mitoDFO) as a novel approach to preferentially target cancer cells. The agent showed marked cytostatic, cytotoxic, and migrastatic properties in vitro, and it significantly suppressed tumor growth and metastasis in vivo. The underlying molecular mechanisms included (i) impairment of iron-sulfur [Fe-S] cluster/heme biogenesis, leading to destabilization and loss of activity of [Fe-S] cluster/heme containing enzymes, (ii) inhibition of mitochondrial respiration leading to mitochondrial reactive oxygen species production, resulting in dysfunctional mitochondria with markedly reduced supercomplexes, and (iii) fragmentation of the mitochondrial network and induction of mitophagy. Mitochondrial targeting of deferoxamine represents a way to deprive cancer cells of biologically active iron, which is incompatible with their proliferation and invasion, without disrupting systemic iron metabolism. Our findings highlight the importance of mitochondrial iron metabolism for cancer cells and demonstrate repurposing deferoxamine into an effective anticancer drug via mitochondrial targeting. SIGNIFICANCE: These findings show that targeting the iron chelator deferoxamine to mitochondria impairs mitochondrial respiration and biogenesis of [Fe-S] clusters/heme in cancer cells, which suppresses proliferation and migration and induces cell death. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2289/F1.large.jpg.
- MeSH
- buněčná smrt účinky léků MeSH
- buňky PC-3 MeSH
- chelátory železa aplikace a dávkování MeSH
- deferoxamin aplikace a dávkování MeSH
- hem metabolismus MeSH
- karcinogeneze účinky léků MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- mitochondrie účinky léků metabolismus MeSH
- mitofagie účinky léků MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- nádory farmakoterapie metabolismus patologie MeSH
- pohyb buněk účinky léků MeSH
- proliferace buněk účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce účinky léků MeSH
- tumor burden účinky léků MeSH
- xenogenní modely - testy protinádorové aktivity MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The patients with mantle cell lymphoma (MCL) have translocation t(11;14) associated with cyclin D1 overexpression. We observed that iron (an essential cofactor of dioxygenases including prolyl hydroxylases [PHDs]) depletion by deferoxamine blocked MCL cells' proliferation, increased expression of DNA damage marker γH2AX, induced cell cycle arrest and decreased cyclin D1 level. Treatment of MCL cell lines with dimethyloxalylglycine, which blocks dioxygenases involving PHDs by competing with their substrate 2-oxoglutarate, leads to their decreased proliferation and the decrease of cyclin D1 level. We then postulated that loss of EGLN2/PHD1 in MCL cells may lead to down-regulation of cyclin D1 by blocking the degradation of FOXO3A, a cyclin D1 suppressor. However, the CRISPR/Cas9-based loss-of-function of EGLN2/PHD1 did not affect cyclin D1 expression and the loss of FOXO3A did not restore cyclin D1 levels after iron chelation. These data suggest that expression of cyclin D1 in MCL is not controlled by ENGL2/PHD1-FOXO3A pathway and that chelation- and 2-oxoglutarate competition-mediated down-regulation of cyclin D1 in MCL cells is driven by yet unknown mechanism involving iron- and 2-oxoglutarate-dependent dioxygenases other than PHD1. These data support further exploration of the use of iron chelation and 2-oxoglutarate-dependent dioxygenase inhibitors as a novel therapy of MCL.
- MeSH
- aminokyseliny dikarboxylové farmakologie MeSH
- chelátory železa farmakologie MeSH
- cyklin D1 metabolismus MeSH
- deferoxamin farmakologie MeSH
- deficit železa MeSH
- dioxygenasy antagonisté a inhibitory metabolismus MeSH
- down regulace účinky léků MeSH
- hydroxylace MeSH
- hypoxie buňky účinky léků MeSH
- inhibitory enzymů farmakologie MeSH
- kyseliny ketoglutarové farmakologie MeSH
- lidé MeSH
- lymfom z plášťových buněk enzymologie MeSH
- messenger RNA genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- poškození DNA MeSH
- prolyl-4-hydroxylasy HIF metabolismus MeSH
- protein FOXO3 genetika metabolismus MeSH
- železo MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Iron and copper release participates in the myocardial injury under ischemic conditions and hence protection might be achieved by iron chelators. Data on copper chelation are, however, sparse. The effect of the clinically used copper chelator D-penicillamine in the catecholamine model of acute myocardial injury was tested in cardiomyoblast cell line H9c2 and in Wistar Han rats. D-Penicillamine had a protective effect against catecholamine-induced injury both in vitro and in vivo. It protected H9c2 cells against the catecholamine-induced viability loss in a dose-dependent manner. In animals, both intravenous D-penicillamine doses of 11 (low) and 44 mg/kg (high) decreased the mortality caused by s.c. isoprenaline (100 mg/kg) from 36% to 14% and 22%, respectively. However, whereas the low D-penicillamine dose decreased the release of cardiac troponin T (specific marker of myocardial injury), the high dose resulted in an increase. Interestingly, the high dose led to a marked elevation in plasma vitamin C. This might be related to potentiation of oxidative stress, as suggested by additional in vitro experiments with D-penicillamine (iron reduction and the Fenton reaction). In conclusion, D-penicillamine has protective potential against catecholamine-induced cardiotoxicity; however the optimal dose selection seems to be crucial for further application.
- MeSH
- buněčné linie MeSH
- chelátory železa farmakologie MeSH
- deferoxamin farmakologie MeSH
- ionty MeSH
- kardiotonika chemie farmakologie MeSH
- katecholaminy MeSH
- koncentrace vodíkových iontů MeSH
- myokard patologie MeSH
- penicilamin chemie farmakologie MeSH
- potkani Wistar MeSH
- troponin T metabolismus MeSH
- viabilita buněk účinky léků MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
There is scarce evidence regarding the use of iron chelators in patients with hereditary hemochromatosis who are intolerant of phlebotomy or erythrocytapheresis. A 52-year-old man with genetically confirmed HFE hemochromatosis presented with liver disease and heart failure with severe left ventricular systolic dysfunction. Because of anemia after initial treatment, we added intravenous deferoxamine followed by oral deferiprone to less frequent erythrocytapheresis, which normalized systolic function within 1 year. Repeated cardiac magnetic resonance imaging revealed improvement of the T2* relaxation time. This report illustrates the beneficial effect of iron chelators in individuals with HFE hemochromatosis and poor tolerance of erythrocytapheresis.
- MeSH
- chelátory železa aplikace a dávkování MeSH
- deferoxamin aplikace a dávkování MeSH
- dysfunkce levé srdeční komory diagnóza etiologie MeSH
- ferritiny analýza MeSH
- hemochromatóza * krev diagnóza farmakoterapie patofyziologie MeSH
- kardiomyopatie * diagnóza etiologie patofyziologie terapie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonance kinematografická metody MeSH
- nemoci jater diagnóza etiologie MeSH
- přetížení železem krev komplikace MeSH
- protein hemochromatózy genetika MeSH
- pyridony aplikace a dávkování MeSH
- srdeční selhání * diagnóza farmakoterapie etiologie MeSH
- stupeň závažnosti nemoci MeSH
- tepový objem MeSH
- transferin analýza MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- MeSH
- deferoxamin aplikace a dávkování MeSH
- lidé MeSH
- přetížení železem * diagnóza etiologie patologie terapie MeSH
- transplantace hematopoetických kmenových buněk * škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH