Developing Targeted Hybrid Imaging Probes by Chelator Scaffolding

. 2017 Jun 21 ; 28 (6) : 1722-1733. [epub] 20170510

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28462989

Grantová podpora
I 1346 Austrian Science Fund FWF - Austria
P 25899 Austrian Science Fund FWF - Austria

Positron emission tomography (PET) as well as optical imaging (OI) with peptide receptor targeting probes have proven their value for oncological applications but also show restrictions depending on the clinical field of interest. Therefore, the combination of both methods, particularly in a single molecule, could improve versatility in clinical routine. This proof of principle study aims to show that a chelator, Fusarinine C (FSC), can be utilized as scaffold for novel dimeric dual-modality imaging agents. Two targeting vectors (a minigastrin analogue (MG11) targeting cholecystokinin-2 receptor overexpression (CCK2R) or integrin αVβ3 targeting cyclic pentapeptides (RGD)) and a near-infrared fluorophore (Sulfo-Cyanine7) were conjugated to FSC. The probes were efficiently labeled with gallium-68 and in vitro experiments including determination of logD, stability, protein binding, cell binding, internalization, and biodistribution studies as well as in vivo micro-PET/CT and optical imaging in U-87MG αVβ3- and A431-CCK2R expressing tumor xenografted mice were carried out. Novel bioconjugates showed high receptor affinity and highly specific targeting properties at both receptors. Ex vivo biodistribution and micro-PET/CT imaging studies revealed specific tumor uptake accompanied by slow blood clearance and retention in nontargeted tissues (spleen, liver, and kidneys) leading to visualization of tumors at early (30 to 120 min p.i.). Excellent contrast in corresponding optical imaging studies was achieved especially at delayed time points (24 to 72 h p.i.). Our findings show the proof of principle of chelator scaffolding for hybrid imaging agents and demonstrate FSC being a suitable bifunctional chelator for this approach. Improvements to fine-tune pharmacokinetics are needed to translate this into a clinical setting.

Zobrazit více v PubMed

Mankoff D. A.; Link J. M.; Linden H. M.; Sundararajan L.; Krohn K. A. (2008) Tumor Receptor Imaging. J. Nucl. Med. 49, 149S–163S. 10.2967/jnumed.107.045963. PubMed DOI

Laverman P.; Sosabowski J. K.; Boerman O. C.; Oyen W. J. G. (2012) Radiolabelled peptides for oncological diagnosis. Eur. J. Nucl. Med. Mol. Imaging 39, S78–S92. 10.1007/s00259-011-2014-7. PubMed DOI PMC

Ambrosini V.; Fani M.; Fanti S.; Forrer F.; Maecke H. R. (2011) Radiopeptide Imaging and Therapy in Europe. J. Nucl. Med. 52, 42S–55S. 10.2967/jnumed.110.085753. PubMed DOI

Velikyan I. (2014) Prospective of 68Ga-Radiopharmaceutical development. Theranostics 4, 47–80. 10.7150/thno.7447. PubMed DOI PMC

van Leeuwen F. W. B.; de Jong M.; Evangelista L.; Barbet J.; del Vecchio S.; Schibli R. (2014) Molecular imaging: the emerging role of optical imaging in nuclear medicine. Eur. J. Nucl. Med. Mol. Imaging 41, 2150–2153. 10.1007/s00259-014-2845-0. PubMed DOI

Owens E. A.; Henary M.; El Fakhri G.; Choi H. S. (2016) Tissue-Specific Near-Infrared Fluorescence Imaging. Acc. Chem. Res. 49, 1731–1740. 10.1021/acs.accounts.6b00239. PubMed DOI PMC

Zhu B.; Godavarty A. (2016) Near-Infrared Fluorescence-Enhanced Optical Tomography. BioMed Res. Int. 10, 1.10.1155/2016/5040814. PubMed DOI PMC

Lütje S.; Rijpkema M.; Helfrich W.; Oyen W. J. G.; Boerman O. C. (2014) Targeted Radionuclide and Fluorescence Dual-modality Imaging of Cancer: Preclinical Advances and Clinical Translation. Mol. Imaging Biol. 16, 747–755. 10.1007/s11307-014-0747-y. PubMed DOI

Zhang H.; Desai P.; Koike Y.; Houghton J.; Carlin S. D.; Tandon N.; Touijer K.; Weber W. A. (2017) Dual modality imaging of prostate cancer with a fluorescent and radiogallium-labeled GRP receptor antagonist. J. Nucl. Med. 58, 29–35. 10.2967/jnumed.116.176099. PubMed DOI PMC

Louie A. (2010) Multimodality imaging probes: Design and challenges. Chem. Rev. 110, 3146–3195. 10.1021/cr9003538. PubMed DOI PMC

Ha Y.; Choi H. K. (2016) Recent conjugation strategies of small organic fluorophores and ligands for cancer-specific bioimaging. Chem.-Biol. Interact. 248, 36–51. 10.1016/j.cbi.2016.02.006. PubMed DOI

Sun Y.; Ma X.; Cheng K.; Wu B.; Duan J.; Chen H.; Bu L.; Zhang R.; Hu X.; Deng Z.; Xing L.; Hong X. (2015) Strained cyclooctyne as a molecular platform for construction of multimodal imaging probes. Angew. Chem., Int. Ed. 54, 5981–5984. 10.1002/anie.201500941. PubMed DOI

Carlucci G.; Ananias H. J. K.; Yu Z.; Van de Wiele C.; Dierckx R. A.; de Jong I. J.; Elsinga P. H. (2012) Multimerization improves targeting of peptide radio-pharmaceuticals. Curr. Pharm. Des. 18, 2501–2516. 10.2174/13816128112092501. PubMed DOI

Knetsch P. A.; Zhai C.; Rangger C.; Blatzer M.; Haas H.; Kaeopookum P.; Haubner R.; Decristoforo C. (2015) [68Ga]FSC-(RGD)3 a trimeric RGD peptide for imaging αvβ3 integrin expression based on a novel siderophore derived chelating scaffold-synthesis and evaluation. Nucl. Med. Biol. 42, 115–122. 10.1016/j.nucmedbio.2014.10.001. PubMed DOI PMC

Zhai C.; Summer D.; Rangger C.; Franssen G. M.; Laverman P.; Haas H.; Petrik M.; Haubner R.; Decristoforo C. (2015) Novel Bifunctional Cyclic Chelator for 89Zr Labeling-Radiolabeling and Targeting Properties of RGD Conjugates. Mol. Pharmaceutics 12, 2142–50. 10.1021/acs.molpharmaceut.5b00128. PubMed DOI PMC

Dufresne M.; Seva C.; Fourmy D. (2006) Cholecystokinin and gastrin receptors. Physiol. Rev. 86, 805–847. 10.1152/physrev.00014.2005. PubMed DOI

Haubner R.; Wester H. J.; Reuning U.; Senekowitsch-Schmidtke R.; Diefenbach B.; Kessler H.; Stöcklin G.; Schwaiger M. (1999) Radiolabeled αvβ3 integrin antagonists: A new class of tracers for tumor targeting. J. Nucl. Med. 40, 1061–1071. PubMed

Haubner R.; Gratias R.; Diefenbach B.; Goodman S. L.; Jonczyk A.; Kessler H. (1996) Structural and functional aspects of RGD-containing cyclic pentapeptides as highly potent and selective integrin αvβ3 antagonists. J. Am. Chem. Soc. 118, 7461–7472. 10.1021/ja9603721. DOI

Gibbs S. L. (2012) Near infrared fluorescence for image-guided surgery. Quant. Imaging Med. Surg. 2, 177–87. PubMed PMC

Frangioni J. V. (2003) In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634. 10.1016/j.cbpa.2003.08.007. PubMed DOI

Li C.; Wang W.; Wu Q.; Ke S.; Houston J.; Sevick-Muraca E.; Dong L.; Chow D.; Charnsangavej C.; Gelovani J. G. (2006) Dual optical and nuclear imaging in human melanoma xenografts using a single targeted imaging probe. Nucl. Med. Biol. 33, 349–358. 10.1016/j.nucmedbio.2006.01.001. PubMed DOI

Ye Y.; Bloch S.; Xu B.; Achilefu S. (2008) A Novel Near-Infrared Fluorescent Integrin Targeted DFO Analog. Bioconjugate Chem. 19, 225–234. 10.1021/bc7003022. PubMed DOI PMC

Edwards W. B.; Akers W. J.; Ye Y.; Cheney P. P.; Bloch S.; Laforesta R.; Achilefu S. (2009) Multimodal Imaging of Integrin Receptor-Positive Tumors by Bioluminescence, Fluorescence, Gamma Scintigraphy and SPECT Methods Using a Cyclic RGD Peptide Labeled with a Near Infrared Fluorescent Dye and a Radionuclide. Mol. Imaging 8, 101–110. PubMed PMC

Kang C. M., Koo H.-J., An G. I., Choe Y. S., Choi J. Y., Lee K.-H., and Kim B.-T. (2015) Hybrid PET/optical imaging of integrin αVβ3 receptor expression using a 64Cu-labeled streptavidin/biotin-based dimeric RGD peptide. EJNMMI Res. 10.1186/s13550-015-0140-0 PubMed DOI PMC

Breeman W. A. P.; Fröberg A. C.; de Blois E.; van Gameren A.; Melis M.; de Jong M.; Maina T.; Nock B. A.; Erion J. L.; Mäcke H. R. (2008) Optimised labeling, preclinical and initial clinical aspects of CCK-2 receptor-targeting with 3 radiolabeled peptides. Nucl. Med. Biol. 35, 839–849. 10.1016/j.nucmedbio.2008.09.006. PubMed DOI

Dijkgraaf I.; Yim C.-B.; Franssen G. M.; Schuit R. C.; Luurtsema G.; Liu S.; Oyen W. J. G.; Boerman O. C. (2011) PET imaging of αvβ3 integrin expression in tumours with 68Ga-labelled mono-, di- and tetrameric RGD peptides. Eur. J. Nucl. Med. Mol. Imaging 38, 128–137. 10.1007/s00259-010-1615-x. PubMed DOI PMC

Rauf M. A.; Ashraf S. S. (2009) Radiation induced degradation of dyes-An overview. J. Hazard. Mater. 166, 6–16. 10.1016/j.jhazmat.2008.11.043. PubMed DOI

Hernandez R.; Heskamp S.; Rijpkema M.; Bos D. L.; Goldenberg D. M.; McBride W. J.; Morgenstern A.; Bruchertseifer F.; Cai W.; Boerman O. C. (2017) Preventing Radiobleaching of Cyanine Fluorophores Enhances Stability of Nuclear/NIRF Multimodality Imaging Agents. Theranostics 7, 1–8. 10.7150/thno.15124. PubMed DOI PMC

Kossatz S.; Mansi R.; Béhé M.; Czerney P.; Hilger I. (2013) Influence of d-glutamine and d-glutamic acid sequences in optical peptide probes targeted against the cholecystokinin-2/gastrin-receptor on binding affinity, specificity and pharmacokinetic properties. EJNMMI Res. 3, 75.10.1186/2191-219X-3-75. PubMed DOI PMC

Zhai C.; Franssen G. M.; Petrik M.; Laverman P.; Summer D.; Rangger C.; Haubner R.; Haas H.; Decristoforo C. (2016) Comparison of Ga-68-Labeled Fusarinine C-Based Multivalent RGD Conjugates and [68Ga]NODAGA-RGD—In Vivo Imaging Studies in Human Xenograft Tumors. Mol. Imaging Biol. 18, 758–767. 10.1007/s11307-016-0931-3. PubMed DOI PMC

Wu Y.; Cai W.; Chen X. (2006) Near-infrared fluorescence imaging of tumor integrin αvβ3 expression with Cy7-labeled RGD multimers. Mol. Imaging Biol. 8, 226–236. 10.1007/s11307-006-0041-8. PubMed DOI PMC

Shi J.; Kim Y.-S.; Zhai S.; Liu Z.; Chen X.; Liu S. (2009) Bioconjugate Chem. 20, 750–759. 10.1021/bc800455p. PubMed DOI PMC

Kossatz S.; Béhé M.; Mansi R.; Saur D.; Czerney P.; Kaiser W. A.; Hilger I. (2013) Multifactorial diagnostic NIR imaging of CCK2R expressing tumors. Biomaterials 34, 5172–5180. 10.1016/j.biomaterials.2013.03.073. PubMed DOI

Shi J.; Kim Y.-S.; Chakraborty S.; Jia B.; Wang F. (2009) 2-Mercaptoacetylglycylglycyl (MAG2) as a Bifunctional Chelator for 99mTc-Labeling of Cyclic RGD Dimers: Effect of Technetium Chelate on Tumor Uptake and Pharmacokinetics. Bioconjugate Chem. 20, 1559–1568. 10.1021/bc9001739. PubMed DOI PMC

Notni J.; Pohle K.; Wester H. J. (2013) Be spoilt for choice with radiolabelled RGD peptides: Preclinical evaluation of 68Ga-TRAP(RGD)3. Nucl. Med. Biol. 40, 33–41. 10.1016/j.nucmedbio.2012.08.006. PubMed DOI

Liu L.; Lin G.; Yin F.; Law W.-C.; Yong K.-T. (2016) Near-infrared fluorescent peptide probes for imaging of tumor in vivo and their biotoxicity evaluation. J. Biomed. Mater. Res., Part A 104A, 910–916. 10.1002/jbm.a.35628. PubMed DOI

Brechbiel M. W. (2008) Bifunctional chelates for metal nuclides. Q. J. Nucl. Med. Mol. Imaging 52, 166–173. PubMed PMC

Pfister J., Summer D., Rangger C., Petrik M., von Guggenberg E., Minazzi P., Giovenzana G. B., Aloj L., and Decristoforo C. (2015) Influence of a novel, versatile bifunctional chelator on theranostic properties of a minigastrin analogue. EJNMMI Res. 10.1186/s13550-015-0154-7 PubMed DOI PMC

Haubner R.; Kuhnast B.; Mang C.; Weber W. a.; Kessler H.; Wester H.-J.; Schwaiger M. (2004) [18F]Galacto-RGD: Synthesis, Radiolabeling, Metabolic Stability, and Radiation Dose Estimates. Bioconjugate Chem. 15, 61–69. 10.1021/bc034170n. PubMed DOI

Schrettl M.; Bignell E.; Kragl C.; Sabiha Y.; Loss O.; Eisendle M.; Wallner A.; Arst H. N.; Haynes K.; Haas H. (2007) Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog. 3, e128.10.1371/journal.ppat.0030128. PubMed DOI PMC

Aloj L.; Caracò C.; Panico M.; Zannetti A.; Del Vecchio S.; Tesauro D.; De Luca S.; Arra C.; Pedone C.; Morelli G.; Salvatore M. (2004) In vitro and in vivo evaluation of 111In-DTPAGlu-G-CCK8 for cholecystokinin-b receptor imaging. J. Nucl. Med. 45, 485–494. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...