Developing Targeted Hybrid Imaging Probes by Chelator Scaffolding
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
I 1346
Austrian Science Fund FWF - Austria
P 25899
Austrian Science Fund FWF - Austria
PubMed
28462989
PubMed Central
PMC5481817
DOI
10.1021/acs.bioconjchem.7b00182
Knihovny.cz E-zdroje
- MeSH
- chelátory chemie farmakokinetika MeSH
- heterografty MeSH
- integrin alfaVbeta3 metabolismus MeSH
- kyseliny hydroxamové farmakokinetika MeSH
- lidé MeSH
- molekulární sondy chemie farmakokinetika MeSH
- multimodální zobrazování metody MeSH
- myši MeSH
- nádorové buňky kultivované MeSH
- nádory diagnostické zobrazování metabolismus MeSH
- PET/CT MeSH
- radioizotopy galia farmakokinetika MeSH
- receptor cholecystokininu B metabolismus MeSH
- železité sloučeniny farmakokinetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chelátory MeSH
- fusigen MeSH Prohlížeč
- integrin alfaVbeta3 MeSH
- kyseliny hydroxamové MeSH
- molekulární sondy MeSH
- radioizotopy galia MeSH
- receptor cholecystokininu B MeSH
- železité sloučeniny MeSH
Positron emission tomography (PET) as well as optical imaging (OI) with peptide receptor targeting probes have proven their value for oncological applications but also show restrictions depending on the clinical field of interest. Therefore, the combination of both methods, particularly in a single molecule, could improve versatility in clinical routine. This proof of principle study aims to show that a chelator, Fusarinine C (FSC), can be utilized as scaffold for novel dimeric dual-modality imaging agents. Two targeting vectors (a minigastrin analogue (MG11) targeting cholecystokinin-2 receptor overexpression (CCK2R) or integrin αVβ3 targeting cyclic pentapeptides (RGD)) and a near-infrared fluorophore (Sulfo-Cyanine7) were conjugated to FSC. The probes were efficiently labeled with gallium-68 and in vitro experiments including determination of logD, stability, protein binding, cell binding, internalization, and biodistribution studies as well as in vivo micro-PET/CT and optical imaging in U-87MG αVβ3- and A431-CCK2R expressing tumor xenografted mice were carried out. Novel bioconjugates showed high receptor affinity and highly specific targeting properties at both receptors. Ex vivo biodistribution and micro-PET/CT imaging studies revealed specific tumor uptake accompanied by slow blood clearance and retention in nontargeted tissues (spleen, liver, and kidneys) leading to visualization of tumors at early (30 to 120 min p.i.). Excellent contrast in corresponding optical imaging studies was achieved especially at delayed time points (24 to 72 h p.i.). Our findings show the proof of principle of chelator scaffolding for hybrid imaging agents and demonstrate FSC being a suitable bifunctional chelator for this approach. Improvements to fine-tune pharmacokinetics are needed to translate this into a clinical setting.
Department of Nuclear Medicine Medical University Innsbruck Anichstrasse 35 A 6020 Innsbruck Austria
Zobrazit více v PubMed
Mankoff D. A.; Link J. M.; Linden H. M.; Sundararajan L.; Krohn K. A. (2008) Tumor Receptor Imaging. J. Nucl. Med. 49, 149S–163S. 10.2967/jnumed.107.045963. PubMed DOI
Laverman P.; Sosabowski J. K.; Boerman O. C.; Oyen W. J. G. (2012) Radiolabelled peptides for oncological diagnosis. Eur. J. Nucl. Med. Mol. Imaging 39, S78–S92. 10.1007/s00259-011-2014-7. PubMed DOI PMC
Ambrosini V.; Fani M.; Fanti S.; Forrer F.; Maecke H. R. (2011) Radiopeptide Imaging and Therapy in Europe. J. Nucl. Med. 52, 42S–55S. 10.2967/jnumed.110.085753. PubMed DOI
Velikyan I. (2014) Prospective of 68Ga-Radiopharmaceutical development. Theranostics 4, 47–80. 10.7150/thno.7447. PubMed DOI PMC
van Leeuwen F. W. B.; de Jong M.; Evangelista L.; Barbet J.; del Vecchio S.; Schibli R. (2014) Molecular imaging: the emerging role of optical imaging in nuclear medicine. Eur. J. Nucl. Med. Mol. Imaging 41, 2150–2153. 10.1007/s00259-014-2845-0. PubMed DOI
Owens E. A.; Henary M.; El Fakhri G.; Choi H. S. (2016) Tissue-Specific Near-Infrared Fluorescence Imaging. Acc. Chem. Res. 49, 1731–1740. 10.1021/acs.accounts.6b00239. PubMed DOI PMC
Zhu B.; Godavarty A. (2016) Near-Infrared Fluorescence-Enhanced Optical Tomography. BioMed Res. Int. 10, 1.10.1155/2016/5040814. PubMed DOI PMC
Lütje S.; Rijpkema M.; Helfrich W.; Oyen W. J. G.; Boerman O. C. (2014) Targeted Radionuclide and Fluorescence Dual-modality Imaging of Cancer: Preclinical Advances and Clinical Translation. Mol. Imaging Biol. 16, 747–755. 10.1007/s11307-014-0747-y. PubMed DOI
Zhang H.; Desai P.; Koike Y.; Houghton J.; Carlin S. D.; Tandon N.; Touijer K.; Weber W. A. (2017) Dual modality imaging of prostate cancer with a fluorescent and radiogallium-labeled GRP receptor antagonist. J. Nucl. Med. 58, 29–35. 10.2967/jnumed.116.176099. PubMed DOI PMC
Louie A. (2010) Multimodality imaging probes: Design and challenges. Chem. Rev. 110, 3146–3195. 10.1021/cr9003538. PubMed DOI PMC
Ha Y.; Choi H. K. (2016) Recent conjugation strategies of small organic fluorophores and ligands for cancer-specific bioimaging. Chem.-Biol. Interact. 248, 36–51. 10.1016/j.cbi.2016.02.006. PubMed DOI
Sun Y.; Ma X.; Cheng K.; Wu B.; Duan J.; Chen H.; Bu L.; Zhang R.; Hu X.; Deng Z.; Xing L.; Hong X. (2015) Strained cyclooctyne as a molecular platform for construction of multimodal imaging probes. Angew. Chem., Int. Ed. 54, 5981–5984. 10.1002/anie.201500941. PubMed DOI
Carlucci G.; Ananias H. J. K.; Yu Z.; Van de Wiele C.; Dierckx R. A.; de Jong I. J.; Elsinga P. H. (2012) Multimerization improves targeting of peptide radio-pharmaceuticals. Curr. Pharm. Des. 18, 2501–2516. 10.2174/13816128112092501. PubMed DOI
Knetsch P. A.; Zhai C.; Rangger C.; Blatzer M.; Haas H.; Kaeopookum P.; Haubner R.; Decristoforo C. (2015) [68Ga]FSC-(RGD)3 a trimeric RGD peptide for imaging αvβ3 integrin expression based on a novel siderophore derived chelating scaffold-synthesis and evaluation. Nucl. Med. Biol. 42, 115–122. 10.1016/j.nucmedbio.2014.10.001. PubMed DOI PMC
Zhai C.; Summer D.; Rangger C.; Franssen G. M.; Laverman P.; Haas H.; Petrik M.; Haubner R.; Decristoforo C. (2015) Novel Bifunctional Cyclic Chelator for 89Zr Labeling-Radiolabeling and Targeting Properties of RGD Conjugates. Mol. Pharmaceutics 12, 2142–50. 10.1021/acs.molpharmaceut.5b00128. PubMed DOI PMC
Dufresne M.; Seva C.; Fourmy D. (2006) Cholecystokinin and gastrin receptors. Physiol. Rev. 86, 805–847. 10.1152/physrev.00014.2005. PubMed DOI
Haubner R.; Wester H. J.; Reuning U.; Senekowitsch-Schmidtke R.; Diefenbach B.; Kessler H.; Stöcklin G.; Schwaiger M. (1999) Radiolabeled αvβ3 integrin antagonists: A new class of tracers for tumor targeting. J. Nucl. Med. 40, 1061–1071. PubMed
Haubner R.; Gratias R.; Diefenbach B.; Goodman S. L.; Jonczyk A.; Kessler H. (1996) Structural and functional aspects of RGD-containing cyclic pentapeptides as highly potent and selective integrin αvβ3 antagonists. J. Am. Chem. Soc. 118, 7461–7472. 10.1021/ja9603721. DOI
Gibbs S. L. (2012) Near infrared fluorescence for image-guided surgery. Quant. Imaging Med. Surg. 2, 177–87. PubMed PMC
Frangioni J. V. (2003) In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634. 10.1016/j.cbpa.2003.08.007. PubMed DOI
Li C.; Wang W.; Wu Q.; Ke S.; Houston J.; Sevick-Muraca E.; Dong L.; Chow D.; Charnsangavej C.; Gelovani J. G. (2006) Dual optical and nuclear imaging in human melanoma xenografts using a single targeted imaging probe. Nucl. Med. Biol. 33, 349–358. 10.1016/j.nucmedbio.2006.01.001. PubMed DOI
Ye Y.; Bloch S.; Xu B.; Achilefu S. (2008) A Novel Near-Infrared Fluorescent Integrin Targeted DFO Analog. Bioconjugate Chem. 19, 225–234. 10.1021/bc7003022. PubMed DOI PMC
Edwards W. B.; Akers W. J.; Ye Y.; Cheney P. P.; Bloch S.; Laforesta R.; Achilefu S. (2009) Multimodal Imaging of Integrin Receptor-Positive Tumors by Bioluminescence, Fluorescence, Gamma Scintigraphy and SPECT Methods Using a Cyclic RGD Peptide Labeled with a Near Infrared Fluorescent Dye and a Radionuclide. Mol. Imaging 8, 101–110. PubMed PMC
Kang C. M., Koo H.-J., An G. I., Choe Y. S., Choi J. Y., Lee K.-H., and Kim B.-T. (2015) Hybrid PET/optical imaging of integrin αVβ3 receptor expression using a 64Cu-labeled streptavidin/biotin-based dimeric RGD peptide. EJNMMI Res. 10.1186/s13550-015-0140-0 PubMed DOI PMC
Breeman W. A. P.; Fröberg A. C.; de Blois E.; van Gameren A.; Melis M.; de Jong M.; Maina T.; Nock B. A.; Erion J. L.; Mäcke H. R. (2008) Optimised labeling, preclinical and initial clinical aspects of CCK-2 receptor-targeting with 3 radiolabeled peptides. Nucl. Med. Biol. 35, 839–849. 10.1016/j.nucmedbio.2008.09.006. PubMed DOI
Dijkgraaf I.; Yim C.-B.; Franssen G. M.; Schuit R. C.; Luurtsema G.; Liu S.; Oyen W. J. G.; Boerman O. C. (2011) PET imaging of αvβ3 integrin expression in tumours with 68Ga-labelled mono-, di- and tetrameric RGD peptides. Eur. J. Nucl. Med. Mol. Imaging 38, 128–137. 10.1007/s00259-010-1615-x. PubMed DOI PMC
Rauf M. A.; Ashraf S. S. (2009) Radiation induced degradation of dyes-An overview. J. Hazard. Mater. 166, 6–16. 10.1016/j.jhazmat.2008.11.043. PubMed DOI
Hernandez R.; Heskamp S.; Rijpkema M.; Bos D. L.; Goldenberg D. M.; McBride W. J.; Morgenstern A.; Bruchertseifer F.; Cai W.; Boerman O. C. (2017) Preventing Radiobleaching of Cyanine Fluorophores Enhances Stability of Nuclear/NIRF Multimodality Imaging Agents. Theranostics 7, 1–8. 10.7150/thno.15124. PubMed DOI PMC
Kossatz S.; Mansi R.; Béhé M.; Czerney P.; Hilger I. (2013) Influence of d-glutamine and d-glutamic acid sequences in optical peptide probes targeted against the cholecystokinin-2/gastrin-receptor on binding affinity, specificity and pharmacokinetic properties. EJNMMI Res. 3, 75.10.1186/2191-219X-3-75. PubMed DOI PMC
Zhai C.; Franssen G. M.; Petrik M.; Laverman P.; Summer D.; Rangger C.; Haubner R.; Haas H.; Decristoforo C. (2016) Comparison of Ga-68-Labeled Fusarinine C-Based Multivalent RGD Conjugates and [68Ga]NODAGA-RGD—In Vivo Imaging Studies in Human Xenograft Tumors. Mol. Imaging Biol. 18, 758–767. 10.1007/s11307-016-0931-3. PubMed DOI PMC
Wu Y.; Cai W.; Chen X. (2006) Near-infrared fluorescence imaging of tumor integrin αvβ3 expression with Cy7-labeled RGD multimers. Mol. Imaging Biol. 8, 226–236. 10.1007/s11307-006-0041-8. PubMed DOI PMC
Shi J.; Kim Y.-S.; Zhai S.; Liu Z.; Chen X.; Liu S. (2009) Bioconjugate Chem. 20, 750–759. 10.1021/bc800455p. PubMed DOI PMC
Kossatz S.; Béhé M.; Mansi R.; Saur D.; Czerney P.; Kaiser W. A.; Hilger I. (2013) Multifactorial diagnostic NIR imaging of CCK2R expressing tumors. Biomaterials 34, 5172–5180. 10.1016/j.biomaterials.2013.03.073. PubMed DOI
Shi J.; Kim Y.-S.; Chakraborty S.; Jia B.; Wang F. (2009) 2-Mercaptoacetylglycylglycyl (MAG2) as a Bifunctional Chelator for 99mTc-Labeling of Cyclic RGD Dimers: Effect of Technetium Chelate on Tumor Uptake and Pharmacokinetics. Bioconjugate Chem. 20, 1559–1568. 10.1021/bc9001739. PubMed DOI PMC
Notni J.; Pohle K.; Wester H. J. (2013) Be spoilt for choice with radiolabelled RGD peptides: Preclinical evaluation of 68Ga-TRAP(RGD)3. Nucl. Med. Biol. 40, 33–41. 10.1016/j.nucmedbio.2012.08.006. PubMed DOI
Liu L.; Lin G.; Yin F.; Law W.-C.; Yong K.-T. (2016) Near-infrared fluorescent peptide probes for imaging of tumor in vivo and their biotoxicity evaluation. J. Biomed. Mater. Res., Part A 104A, 910–916. 10.1002/jbm.a.35628. PubMed DOI
Brechbiel M. W. (2008) Bifunctional chelates for metal nuclides. Q. J. Nucl. Med. Mol. Imaging 52, 166–173. PubMed PMC
Pfister J., Summer D., Rangger C., Petrik M., von Guggenberg E., Minazzi P., Giovenzana G. B., Aloj L., and Decristoforo C. (2015) Influence of a novel, versatile bifunctional chelator on theranostic properties of a minigastrin analogue. EJNMMI Res. 10.1186/s13550-015-0154-7 PubMed DOI PMC
Haubner R.; Kuhnast B.; Mang C.; Weber W. a.; Kessler H.; Wester H.-J.; Schwaiger M. (2004) [18F]Galacto-RGD: Synthesis, Radiolabeling, Metabolic Stability, and Radiation Dose Estimates. Bioconjugate Chem. 15, 61–69. 10.1021/bc034170n. PubMed DOI
Schrettl M.; Bignell E.; Kragl C.; Sabiha Y.; Loss O.; Eisendle M.; Wallner A.; Arst H. N.; Haynes K.; Haas H. (2007) Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog. 3, e128.10.1371/journal.ppat.0030128. PubMed DOI PMC
Aloj L.; Caracò C.; Panico M.; Zannetti A.; Del Vecchio S.; Tesauro D.; De Luca S.; Arra C.; Pedone C.; Morelli G.; Salvatore M. (2004) In vitro and in vivo evaluation of 111In-DTPAGlu-G-CCK8 for cholecystokinin-b receptor imaging. J. Nucl. Med. 45, 485–494. PubMed
68Ga]Ga-DFO-c(RGDyK): Synthesis and Evaluation of Its Potential for Tumor Imaging in Mice
Hybrid Imaging Agents for Pretargeting Applications Based on Fusarinine C-Proof of Concept
Modifying the Siderophore Triacetylfusarinine C for Molecular Imaging of Fungal Infection