Hybrid Imaging Agents for Pretargeting Applications Based on Fusarinine C-Proof of Concept
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
P 25899
Austrian Science Fund FWF - Austria
PubMed
32370017
PubMed Central
PMC7249120
DOI
10.3390/molecules25092123
PII: molecules25092123
Knihovny.cz E-resources
- Keywords
- PET, click chemistry, fluorescence, fusarinine C, gallium-68, optical imaging,
- MeSH
- Click Chemistry MeSH
- Fluorescent Antibody Technique MeSH
- Hydroxamic Acids * chemistry MeSH
- Multimodal Imaging * methods MeSH
- Optical Imaging methods MeSH
- Proof of Concept Study MeSH
- Positron-Emission Tomography MeSH
- Radiopharmaceuticals * chemistry MeSH
- Gallium Radioisotopes MeSH
- Radioisotopes MeSH
- Tissue Distribution MeSH
- Ferric Compounds * chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- fusigen MeSH Browser
- Gallium-68 MeSH Browser
- Hydroxamic Acids * MeSH
- Radiopharmaceuticals * MeSH
- Gallium Radioisotopes MeSH
- Radioisotopes MeSH
- Ferric Compounds * MeSH
Hybrid imaging combining the beneficial properties of radioactivity and optical imaging within one imaging probe has gained increasing interest in radiopharmaceutical research. In this study, we modified the macrocyclic gallium-68 chelator fusarinine C (FSC) by conjugating a fluorescent moiety and tetrazine (Tz) moieties. The resulting hybrid imaging agents were used for pretargeting applications utilizing click reactions with a trans-cyclooctene (TCO) tagged targeting vector for a proof of principle both in vitro and in vivo. Starting from FSC, the fluorophores Sulfocyanine-5, Sulfocyanine-7, or IRDye800CW were conjugated, followed by introduction of one or two Tz motifs, resulting in mono and dimeric Tz conjugates. Evaluation included fluorescence microscopy, binding studies, logD, protein binding, in vivo biodistribution, µPET (micro-positron emission tomography), and optical imaging (OI) studies. 68Ga-labeled conjugates showed suitable hydrophilicity, high stability, and specific targeting properties towards Rituximab-TCO pre-treated CD20 expressing Raji cells. Biodistribution studies showed fast clearance and low accumulation in non-targeted organs for both SulfoCy5- and IRDye800CW-conjugates. In an alendronate-TCO based bone targeting model the dimeric IRDye800CW-conjugate resulted in specific targeting using PET and OI, superior to the monomer. This proof of concept study showed that the preparation of FSC-Tz hybrid imaging agents for pretargeting applications is feasible, making such compounds suitable for hybrid imaging applications.
Department of Anaesthesia and Intensive Care Medical University Innsbruck A 6020 Innsbruck Austria
Department of Nuclear Medicine Medical University Innsbruck A 6020 Innsbruck Austria
Institute of Molecular Biology Medical University Innsbruck A 6020 Innsbruck Austria
See more in PubMed
Youn H., Chung J.K. Reporter gene imaging. Am. J. Roentgenol. 2013;201:206–214. doi: 10.2214/AJR.13.10555. PubMed DOI
Grootendorst M.R., Cariati M., Kothari A., Tuch D.S., Purushotham A. Cerenkov luminescence imaging (CLI) for image-guided cancer surgery. Clin. Transl. Imaging. 2016;4:353–366. doi: 10.1007/s40336-016-0183-x. PubMed DOI PMC
Massari R., Ucci A., D’Elia A., Campisi C., Bertani E., Soluri A. Directional probe for radio-guided surgery: A pilot study: A. Med. Phys. 2018;45:622–628. doi: 10.1002/mp.12726. PubMed DOI
Gibbs S.L. Near infrared fluorescence for image-guided surgery. Quant. Imaging Med. Surg. 2012;2:177–187. doi: 10.3978/j.issn.2223-4292.2012.09.04. PubMed DOI PMC
Te Velde E.A., Veerman T., Subramaniam V., Ruers T. The use of fluorescent dyes and probes in surgical oncology. Eur. J. Surg. Oncol. 2010;36:6–15. doi: 10.1016/j.ejso.2009.10.014. PubMed DOI
Nagaya T., Nakamura Y.A., Choyke P.L., Kobayashi H. Fluorescence-Guided Surgery. Front. Oncol. 2017;7 doi: 10.3389/fonc.2017.00314. PubMed DOI PMC
Wang C., Wang Z., Zhao T., Li Y., Huang G., Sumer B.D., Gao J. Optical molecular imaging for tumor detection and image-guided surgery. Biomaterials. 2018;157:62–75. doi: 10.1016/j.biomaterials.2017.12.002. PubMed DOI PMC
Nahrendorf M., Keliher E., Marinelli B., Waterman P., Feruglio P.F., Fexon L., Pivovarov M., Swirski F.K., Pittet M.J., Vinegoni C., et al. Hybrid PET-optical imaging using targeted probes. Proc. Natl. Acad. Sci. USA. 2010;107:7910–7915. doi: 10.1073/pnas.0915163107. PubMed DOI PMC
Azhdarinia A., Ghosh P., Ghosh S., Wilganowski N., Sevick-Muraca E.M. Dual-labeling strategies for nuclear and fluorescence molecular imaging: A review and analysis. Mol. Imaging Biol. 2012;14:261–276. doi: 10.1007/s11307-011-0528-9. PubMed DOI PMC
Lütje S., Rijpkema M., Helfrich W., Oyen W.J.G., Boerman O.C. Targeted Radionuclide and Fluorescence Dual-modality Imaging of Cancer: Preclinical Advances and Clinical Translation. Mol. Imaging Biol. 2014;16:747–755. doi: 10.1007/s11307-014-0747-y. PubMed DOI
Welling M.M., Bunschoten A., Kuil J., Nelissen R.G.H.H., Beekman F.J., Buckle T., Van Leeuwen F.W.B. Development of a Hybrid Tracer for SPECT and Optical Imaging of Bacterial Infections. Bioconjug. Chem. 2015;26:839–849. doi: 10.1021/acs.bioconjchem.5b00062. PubMed DOI
Kang C.M., Koo H.-J., An G.I., Choe Y.S., Choi J.Y., Lee K.-H., Kim B.-T. Hybrid PET/optical imaging of integrin αVβ3 receptor expression using a 64Cu-labeled streptavidin/biotin-based dimeric RGD peptide. EJNMMI Res. 2015;5:60. doi: 10.1186/s13550-015-0140-0. PubMed DOI PMC
Baranski A., Schäfer M., Bauder-Wüst U., Roscher M., Schmidt J., Stenau E., Simpfendörfer T., Teber D., Maier-Hein L., Hadaschik B., et al. PSMA-11 Derived Dual-labeled PSMA-Inhibitors for Preoperative PET Imaging and Precise Fluorescence-Guided Surgery of Prostate Cancer. J. Nucl. Med. 2018;59:639–645. doi: 10.2967/jnumed.117.201293. PubMed DOI
Knall A.-C., Slugovc C. Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: A (high) potential click chemistry scheme. Chem. Soc. Rev. 2013;42:5131–5142. doi: 10.1039/c3cs60049a. PubMed DOI
Karver M.R., Weissleder R., Hilderbrand S.A. Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation. Bioconjug. Chem. 2011;22:2263–2270. doi: 10.1021/bc200295y. PubMed DOI PMC
Zeglis B.M., Davis C.B., Abdel-Atti D., Carlin S.D., Chen A., Aggeler R., Agnew B.J., Lewis J.S. Chemoenzymatic strategy for the synthesis of site-specifically labeled immunoconjugates for multimodal PET and optical imaging. Bioconjug. Chem. 2014;25:2123–2128. doi: 10.1021/bc500499h. PubMed DOI PMC
Adumeau P., Carnazza K.E., Brand C., Carlin S.D., Reiner T., Agnew B.J., Lewis J.S., Zeglis B.M. A pretargeted approach for the multimodal PET/NIRF imaging of colorectal cancer. Theranostics. 2016;6:2267–2277. doi: 10.7150/thno.16744. PubMed DOI PMC
Summer D., Grossrubatscher L., Petrik M., Michalcikova T., Novy Z., Rangger C., Klingler M., Haas H., Kaeopookum P., Von Guggenberg E., et al. Developing Targeted Hybrid Imaging Probes by Chelator Scaffolding. Bioconjug. Chem. 2017;28:1722–1733. doi: 10.1021/acs.bioconjchem.7b00182. PubMed DOI PMC
Summer D., Mayr S., Petrik M., Rangger C., Schoeler K., Vieider L., Matuszczak B., Decristoforo C. Pretargeted Imaging with Gallium-68 — Improving the Binding Capability by Increasing the Number of Tetrazine Motifs. Pharmaceuticals. 2018;11:102. doi: 10.3390/ph11040102. PubMed DOI PMC
Yazdani A., Bilton H., Vito A., Genady A.R., Rathmann S.M., Ahmad Z., Janzen N., Czorny S., Zeglis B.M., Francesconi L.C., et al. A Bone-Seeking trans-Cyclooctene for Pretargeting and Bioorthogonal Chemistry: A Proof of Concept Study Using 99mTc- and 177Lu-Labeled Tetrazines. J. Med. Chem. 2016;59:9381–9389. doi: 10.1021/acs.jmedchem.6b00938. PubMed DOI PMC