Pretargeted Imaging with Gallium-68-Improving the Binding Capability by Increasing the Number of Tetrazine Motifs

. 2018 Oct 11 ; 11 (4) : . [epub] 20181011

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30314332

Grantová podpora
P 25899 Austrian Science Fund FWF - Austria
P25899-B23 Austrian Science Fund
LO1304 czech ministry of education, youth and sports

The inverse electron-demand Diels-Alder reaction between 1,2,4,5-tetrazine (Tz) and trans-cyclooct-2-ene (TCO) has gained increasing attraction among extensive studies on click chemistry due to its exceptionally fast reaction kinetics and high selectivity for in vivo pretargeting applications including PET imaging. The facile two-step approach utilizing TCO-modified antibodies as targeting structures has not made it into clinics yet. An increase in the blood volume of humans in comparison to mice seems to be the major limitation. This study aims to show if the design of multimeric Tz-ligands by chelator scaffolding can improve the binding capacity and may lead to enhanced PET imaging with gallium-68. We utilized for this purpose the macrocyclic siderophore Fusarinine C (FSC) which allows conjugation of up to three Tz-residues due to three primary amines available for site specific modification. The resulting mono- di- and trimeric conjugates were radiolabelled with gallium-68 and characterized in vitro (logD, protein binding, stability, binding towards TCO modified rituximab (RTX)) and in vivo (biodistribution- and imaging studies in normal BALB/c mice using a simplified RTX-TCO tumour surrogate). The 68Ga-labelled FSC-based Tz-ligands showed suitable hydrophilicity, high stability and high targeting specificity. The binding capacity to RTX-TCO was increased according to the grade of multimerization. Corresponding in vivo studies showed a multimerization typical profile but generally suitable pharmacokinetics with low accumulation in non-targeted tissue. Imaging studies in RTX-TCO tumour surrogate bearing BALB/c mice confirmed this trend and revealed improved targeting by multimerization as increased accumulation in RTX-TCO positive tissue was observed.

Zobrazit více v PubMed

Henricks L.M., Schellens J.H.M., Huitema A.D.R., Beijnen J.H. The use of combinations of monoclonal antibodies in clinical oncology. Cancer Treat. Rev. 2015;41:859–867. doi: 10.1016/j.ctrv.2015.10.008. PubMed DOI

Zhang H., Chen J. Current status and future directions of cancer immunotherapy. J. Cancer. 2018;9:1773–1781. doi: 10.7150/jca.24577. PubMed DOI PMC

Knowles S.M., Wu A.M. Advances in immuno-positron emission tomography: Antibodies for molecular imaging in oncology. J. Clin. Oncol. 2012;30:3884–3892. doi: 10.1200/JCO.2012.42.4887. PubMed DOI PMC

Van De Watering F.C.J., Rijpkema M., Perk L., Brinkmann U., Oyen W.J.G., Boerman O.C. Zirconium-89 labeled antibodies: A new tool for molecular imaging in cancer patients. Biomed. Res. Int. 2014:1–13. doi: 10.1155/2014/203601. PubMed DOI PMC

Jauw Y.W.S., Menke-van der Houven van Oordt C.W., Hoekstra O.S., Hendrikse N.H., Vugts D.J., Zijlstra J.M., Huisman M.C., van Dongen G.A.M.S. Immuno-positron emission tomography with zirconium-89-labeled monoclonal antibodies in oncology: What can we learn from initial clinical trials? Front. Pharmacol. 2016;7:1–15. doi: 10.3389/fphar.2016.00131. PubMed DOI PMC

Patra M., Zarschler K., Pietzsch H.-J., Stephan H., Gasser G. New insights into the pretargeting approach to image and treat tumours. Chem. Soc. Rev. 2016;45:6415–6431. doi: 10.1039/C5CS00784D. PubMed DOI

Bailly C., Bodet-Milin C., Rousseau C., Faivre-Chauvet A., Kraeber-Bodéré F., Barbet J. Pretargeting for imaging and therapy in oncological nuclear medicine. EJNMMI Radiopharm. Chem. 2017;2:1–14. doi: 10.1186/s41181-017-0026-8. PubMed DOI PMC

Altai M., Membreno R., Cook B., Tolmachev V., Zeglis B.M. Pretargeted Imaging and Therapy. J. Nucl. Med. 2017;58:1553–1559. doi: 10.2967/jnumed.117.189944. PubMed DOI PMC

Karver M.R., Weissleder R., Hilderbrand S.A. Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation. Bioconjug. Chem. 2011;22:2263–2270. doi: 10.1021/bc200295y. PubMed DOI PMC

Oliveira B.L., Guo Z., Bernardes G.J.L. Inverse electron demand Diels–Alder reactions in chemical biology. Chem. Soc. Rev. 2017;46:4895–4950. doi: 10.1039/C7CS00184C. PubMed DOI

Zeglis B.M., Sevak K.K., Reiner T., Mohindra P., Carlin S.D., Zanzonico P., Weissleder R., Lewis J.S. A Pretargeted PET Imaging Strategy Based on Bioorthogonal Diels–Alder Click Chemistry. J. Nucl. Med. 2013;54:1389–1396. doi: 10.2967/jnumed.112.115840. PubMed DOI PMC

Cook B.E., Adumeau P., Membreno R., Carnazza K.E., Brand C., Reiner T., Agnew B.J., Lewis J.S., Zeglis B.M. Pretargeted PET Imaging Using a Site-Specifically Labeled Immunoconjugate. Bioconjug. Chem. 2016;27:1789–1795. doi: 10.1021/acs.bioconjchem.6b00235. PubMed DOI PMC

Meyer J.P., Houghton J.L., Kozlowski P., Abdel-Atti D., Reiner T., Pillarsetty N.V.K., Scholz W.W., Zeglis B.M., Lewis J.S. 18F-Based Pretargeted PET Imaging Based on Bioorthogonal Diels-Alder Click Chemistry. Bioconjug. Chem. 2016;27:298–301. doi: 10.1021/acs.bioconjchem.5b00504. PubMed DOI PMC

Denk C., Svatunek D., Mairinger S., Stanek J., Filip T., Matscheko D., Kuntner C., Wanek T., Mikula H. Design, Synthesis, and Evaluation of a Low-Molecular-Weight 11C-Labeled Tetrazine for Pretargeted PET Imaging Applying Bioorthogonal in Vivo Click Chemistry. Bioconjug. Chem. 2016;27:1707–1712. doi: 10.1021/acs.bioconjchem.6b00234. PubMed DOI

Zlitni A., Yin M., Janzen N., Chatterjee S., Lisok A., Gabrielson K.L., Nimmagadda S., Pomper M.G., Foster F.S., Valliant J.F. Development of prostate specific membrane antigen targeted ultrasound microbubbles using bioorthogonal chemistry. PLoS ONE. 2017;12:e0176958. doi: 10.1371/journal.pone.0176958. PubMed DOI PMC

Knight J.C., Cornelissen B. Bioorthogonal chemistry: Implications for pretargeted nuclear (PET/SPECT) imaging and therapy. Am. J. Nucl. Med. Mol. Imaging. 2014;4:96–113. PubMed PMC

Rossin R., Verkerk P.R., Van Den Bosch S.M., Vulders R.C.M., Verel I., Lub J., Robillard M.S. In vivo chemistry for pretargeted tumor imaging in live mice. Angew. Chem. Int. Ed. 2010;49:3375–3378. doi: 10.1002/anie.200906294. PubMed DOI

Billaud E.M.F., Belderbos S., Cleeren F., Maes W., Van De Wouwer M., Koole M., Verbruggen A., Himmelreich U., Geukens N., Bormans G. Pretargeted PET Imaging Using a Bioorthogonal 18F-Labeled trans-Cyclooctene in an Ovarian Carcinoma Model. Bioconjug. Chem. 2017;28:2915–2920. doi: 10.1021/acs.bioconjchem.7b00635. PubMed DOI

Keinänen O., Fung K., Pourat J., Jallinoja V., Vivier D., Pillarsetty N.V.K., Airaksinen A.J., Lewis J.S., Zeglis B.M., Sarparanta M. Pretargeting of internalizing trastuzumab and cetuximab with a 18F-tetrazine tracer in xenograft models. EJNMMI Res. 2017;7:1–12. doi: 10.1186/s13550-017-0344-6. PubMed DOI PMC

Houghton J.L., Membreno R., Abdel-Atti D., Cunanan K.M., Carlin S., Scholz W.W., Zanzonico P.B., Lewis J.S., Zeglis B.M. Establishment of the in vivo efficacy of pretargeted radioimmunotherapy utilizing inverse electron demand Diels- Alder click chemistry. Mol. Cancer Ther. 2017;16:124–133. doi: 10.1158/1535-7163.MCT-16-0503. PubMed DOI PMC

Membreno R., Cook B.E., Fung K., Lewis J.S., Zeglis B.M. Click-Mediated Pretargeted Radioimmunotherapy of Colorectal Carcinoma. Mol. Pharm. 2018;15:1729–1734. doi: 10.1021/acs.molpharmaceut.8b00093. PubMed DOI PMC

Läppchen T., Rossin R., van Mourik T.R., Gruntz G., Hoeben F.J.M., Versteegen R.M., Janssen H.M., Lub J., Robillard M.S. DOTA-tetrazine probes with modified linkers for tumor pretargeting. Nucl. Med. Biol. 2017;55:19–26. doi: 10.1016/j.nucmedbio.2017.09.001. PubMed DOI

Meyer J.P., Kozlowski P., Jackson J., Cunanan K.M., Adumeau P., Dilling T.R., Zeglis B.M., Lewis J.S. Exploring Structural Parameters for Pretargeting Radioligand Optimization. J. Med. Chem. 2017;60:8201–8217. doi: 10.1021/acs.jmedchem.7b01108. PubMed DOI PMC

Cook B.E., Membreno R., Zeglis B.M. A Dendrimer Scaffold for the Amplification of in Vivo Pretargeting Ligations. Bioconjug. Chem. 2018;29:2734–2740. doi: 10.1021/acs.bioconjchem.8b00385. PubMed DOI PMC

Devaraj N.K., Thurber G.M., Keliher E.J., Marinelli B., Weissleder R. Reactive polymer enables efficient in vivo bioorthogonal chemistry. Proc. Natl. Acad. Sci. USA. 2012;109:4762–4767. doi: 10.1073/pnas.1113466109. PubMed DOI PMC

Nichols B., Qin Z., Yang J., Vera D.R., Devaraj N.K. 68Ga chelating bioorthogonal tetrazine polymers for the multistep labeling of cancer biomarkers. Chem. Commun. 2014;50:5215–5217. doi: 10.1039/C3CC49530B. PubMed DOI PMC

Zhai C., Summer D., Rangger C., Haas H., Haubner R., Decristoforo C. Fusarinine C, a novel siderophore-based bifunctional chelator for radiolabeling with Gallium-68. J. Label. Compd. Radiopharm. 2015;58:209–214. doi: 10.1002/jlcr.3286. PubMed DOI PMC

Summer D., Garousi J., Oroujeni M., Mitran B., Andersson K.G., Vorobyeva A., Löfblom J., Orlova A., Tolmachev V., Decristoforo C. Cyclic versus Noncyclic Chelating Scaffold for 89Zr-Labeled ZEGFR:2377 Affibody Bioconjugates Targeting Epidermal Growth Factor Receptor Overexpression. Mol. Pharm. 2018;15:175–185. doi: 10.1021/acs.molpharmaceut.7b00787. PubMed DOI PMC

Knetsch P.A., Zhai C., Rangger C., Blatzer M., Haas H., Kaeopookum P., Haubner R., Decristoforo C. [68Ga]FSC-(RGD)3 a trimeric RGD peptide for imaging αvβ3 integrin expression based on a novel siderophore derived chelating scaffold-synthesis and evaluation. Nucl. Med. Biol. 2015;42:115–122. doi: 10.1016/j.nucmedbio.2014.10.001. PubMed DOI PMC

Zhai C., Summer D., Rangger C., Franssen G.M., Laverman P., Haas H., Petrik M., Haubner R., Decristoforo C. Novel Bifunctional Cyclic Chelator for 89Zr Labeling-Radiolabeling and Targeting Properties of RGD Conjugates. Mol. Pharm. 2015;12:2142–2150. doi: 10.1021/acs.molpharmaceut.5b00128. PubMed DOI PMC

Summer D., Rangger C., Klingler M., Laverman P., Franssen G.M., Lechner B.E., Orasch T., Haas H., von Guggenberg E., Decristoforo C. Exploiting the concept of multivalency with 68Ga- and 89Zr-labelled Fusarinine C-minigastrin bioconjugates for targeting CCK2R expression. Contrast Media Mol. Imaging. 2018:1–12. doi: 10.1155/2018/3171794. PubMed DOI PMC

Summer D., Kroess A., Woerndle R., Rangger C., Klingler M., Haas H., Kremser L., Lindner H.H., Von Guggenberg E., Decristoforo C. Multimerization results in formation of re- bindable metabolites: A proof of concept study with FSC-based minigastrin imaging probes targeting CCK2R expression. PLoS ONE. 2018;13:e0201224. doi: 10.1371/journal.pone.0201224. PubMed DOI PMC

Rossin R., Lappchen T., van den Bosch S.M., Laforest R., Robillard M.S. Diels-Alder Reaction for Tumor Pretargeting: In Vivo Chemistry Can Boost Tumor Radiation Dose Compared with Directly Labeled Antibody. J. Nucl. Med. 2013;54:1989–1995. doi: 10.2967/jnumed.113.123745. PubMed DOI

Meyer J.P., Tully K.M., Jackson J., Dilling T.R., Reiner T., Lewis J.S. Bioorthogonal Masking of Circulating Antibody-TCO Groups Using Tetrazine-Functionalized Dextran Polymers. Bioconjug. Chem. 2018;29:538–545. doi: 10.1021/acs.bioconjchem.8b00028. PubMed DOI PMC

Rossin R., Van Duijnhoven S.M.J., Ten Hoeve W., Janssen H.M., Kleijn L.H.J., Hoeben F.J.M., Versteegen R.M., Robillard M.S. Triggered Drug Release from an Antibody-Drug Conjugate Using Fast “click-to-Release” Chemistry in Mice. Bioconjug. Chem. 2016;27:1697–1706. doi: 10.1021/acs.bioconjchem.6b00231. PubMed DOI

Rossin R., Versteegen R.M., Wu J., Khasanov A., Wessels H.J., Steenbergen E.J., ten Hoeve W., Janssen H.M., van Onzen A.H.A.M., Hudson P.J., et al. Chemically triggered drug release from an antibody-drug conjugate leads to potent antitumour activity in mice. Nat. Commun. 2018;9:1484. doi: 10.1038/s41467-018-03880-y. PubMed DOI PMC

Versteegen R.M., Wolter T., Rossin R., De Geus M.A., Janssen H.M., Robillard M.S. Click-to-Release from trans-cyclooctenes: Mechanistic insights and expansion of scope from established carbamate to remarkable ether cleavage. Angew. Chem. Int. Ed. 2018;57:10494–10499. doi: 10.1002/anie.201800402. PubMed DOI

Summer D., Grossrubatscher L., Petrik M., Michalcikova T., Novy Z., Rangger C., Klingler M., Haas H., Kaeopookum P., von Guggenberg E., et al. Developing Targeted Hybrid Imaging Probes by Chelator Scaffolding. Bioconjug. Chem. 2017;28:1722–1733. doi: 10.1021/acs.bioconjchem.7b00182. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Hybrid Imaging Agents for Pretargeting Applications Based on Fusarinine C-Proof of Concept

. 2020 May 01 ; 25 (9) : . [epub] 20200501

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...