• This record comes from PubMed

The impact of SF3B1 mutations in CLL on the DNA-damage response

. 2015 May ; 29 (5) : 1133-42. [epub] 20141105

Language English Country England, Great Britain Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Mutations or deletions in TP53 or ATM are well-known determinants of poor prognosis in chronic lymphocytic leukemia (CLL), but only account for approximately 40% of chemo-resistant patients. Genome-wide sequencing has uncovered novel mutations in the splicing factor sf3b1, that were in part associated with ATM aberrations, suggesting functional synergy. We first performed detailed genetic analyses in a CLL cohort (n=110) containing ATM, SF3B1 and TP53 gene defects. Next, we applied a newly developed multiplex assay for p53/ATM target gene induction and measured apoptotic responses to DNA damage. Interestingly, SF3B1 mutated samples without concurrent ATM and TP53 aberrations (sole SF3B1) displayed partially defective ATM/p53 transcriptional and apoptotic responses to various DNA-damaging regimens. In contrast, NOTCH1 or K/N-RAS mutated CLL displayed normal responses in p53/ATM target gene induction and apoptosis. In sole SF3B1 mutated cases, ATM kinase function remained intact, and γH2AX formation, a marker for DNA damage, was increased at baseline and upon irradiation. Our data demonstrate that single mutations in sf3b1 are associated with increased DNA damage and/or an aberrant response to DNA damage. Together, our observations may offer an explanation for the poor prognosis associated with SF3B1 mutations.

See more in PubMed

Leuk Res. 2014 Jan;38(1):34-41 PubMed

Science. 2004 Oct 8;306(5694):269-71 PubMed

Blood. 2001 Aug 1;98(3):814-22 PubMed

N Engl J Med. 2011 Dec 29;365(26):2497-506 PubMed

Mol Cell. 2009 Jul 31;35(2):228-39 PubMed

Blood. 2002 Jan 1;99(1):300-9 PubMed

Blood. 2014 May 22;123(21):3255-62 PubMed

Blood. 2012 Oct 18;120(16):3173-86 PubMed

Blood. 2005 Nov 1;106(9):3175-82 PubMed

Mol Cell. 2014 Jan 23;53(2):235-246 PubMed

Mol Cell. 2004 Dec 3;16(5):715-24 PubMed

Cell. 2013 Feb 14;152(4):714-26 PubMed

Blood. 2013 Apr 18;121(16):3284-8 PubMed

Nature. 2012 May 16;486(7403):400-4 PubMed

Leukemia. 2005 Mar;19(3):427-34 PubMed

Lancet Oncol. 2007 Apr;8(4):349-57 PubMed

Mol Cell. 2012 Apr 27;46(2):212-25 PubMed

Leukemia. 2012 Mar;26(3):542-5 PubMed

Leukemia. 2013 Nov;27(11):2264-7 PubMed

Cancer Sci. 2012 Sep;103(9):1611-6 PubMed

Blood. 2012 Jan 12;119(2):521-9 PubMed

Blood. 2006 Aug 1;108(3):993-1000 PubMed

J Exp Med. 2011 Jul 4;208(7):1389-401 PubMed

Mol Cell. 2014 May 8;54(3):445-59 PubMed

Haematologica. 2013 Jul;98(7):1124-31 PubMed

Cancer Res. 2011 Jul 1;71(13):4464-72 PubMed

Leukemia. 2012 Dec;26(12):2447-54 PubMed

Nat Cell Biol. 2006 Aug;8(8):870-6 PubMed

Blood. 2009 Sep 24;114(13):2589-97 PubMed

Br J Haematol. 2004 Nov;127(4):404-15 PubMed

Genome Res. 2014 Feb;24(2):212-26 PubMed

Nat Cell Biol. 2012 Feb 19;14(3):318-28 PubMed

PLoS One. 2012;7(6):e38158 PubMed

Nature. 2011 Sep 11;478(7367):64-9 PubMed

Nat Chem Biol. 2007 Sep;3(9):570-5 PubMed

Nature. 2011 Jun 05;475(7354):101-5 PubMed

Blood. 2012 Apr 5;119(14):3203-10 PubMed

Genes Dev. 1998 May 15;12(10):1409-14 PubMed

Blood. 2011 Dec 8;118(24):6239-46 PubMed

Genes Dev. 2010 Nov 1;24(21):2343-64 PubMed

Sci Transl Med. 2013 Jun 12;5(189):189ra78 PubMed

Blood. 2008 Mar 1;111(5):2816-24 PubMed

Nat Genet. 2011 Dec 11;44(1):47-52 PubMed

J Clin Oncol. 2010 Oct 10;28(29):4473-9 PubMed

Blood. 2011 Dec 22;118(26):6904-8 PubMed

Blood. 2013 Feb 21;121(8):1403-12 PubMed

J Biol Chem. 2014 Mar 7;289(10):6619-6626 PubMed

J Clin Oncol. 2012 Dec 20;30(36):4524-32 PubMed

Br J Haematol. 2013 Nov;163(4):496-500 PubMed

J Cell Biol. 1999 Sep 6;146(5):905-16 PubMed

Leukemia. 2015 Feb;29(2):329-36 PubMed

Blood. 2004 Jan 1;103(1):291-300 PubMed

Nucleic Acids Res. 2012 Jan;40(2):e16 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...