The impact of SF3B1 mutations in CLL on the DNA-damage response
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25371178
DOI
10.1038/leu.2014.318
PII: leu2014318
Knihovny.cz E-resources
- MeSH
- Apoptosis MeSH
- Ataxia Telangiectasia Mutated Proteins metabolism MeSH
- Leukemia, Lymphocytic, Chronic, B-Cell genetics MeSH
- Gene Deletion MeSH
- Doxorubicin pharmacology MeSH
- Phosphoproteins genetics MeSH
- Genome, Human MeSH
- Histones metabolism MeSH
- Imidazoles pharmacology MeSH
- Cohort Studies MeSH
- Humans MeSH
- Ribonucleoprotein, U2 Small Nuclear genetics MeSH
- Mutation * MeSH
- DNA Mutational Analysis MeSH
- Tumor Suppressor Protein p53 genetics MeSH
- Piperazines pharmacology MeSH
- DNA Damage MeSH
- Prognosis MeSH
- Flow Cytometry MeSH
- Receptor, Notch1 genetics MeSH
- Gene Expression Regulation, Leukemic * MeSH
- RNA Splicing Factors MeSH
- Vidarabine analogs & derivatives pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- ATM protein, human MeSH Browser
- Ataxia Telangiectasia Mutated Proteins MeSH
- Doxorubicin MeSH
- fludarabine MeSH Browser
- Phosphoproteins MeSH
- H2AX protein, human MeSH Browser
- Histones MeSH
- Imidazoles MeSH
- Ribonucleoprotein, U2 Small Nuclear MeSH
- Tumor Suppressor Protein p53 MeSH
- NOTCH1 protein, human MeSH Browser
- nutlin 3 MeSH Browser
- Piperazines MeSH
- Receptor, Notch1 MeSH
- RNA Splicing Factors MeSH
- SF3B1 protein, human MeSH Browser
- TP53 protein, human MeSH Browser
- Vidarabine MeSH
Mutations or deletions in TP53 or ATM are well-known determinants of poor prognosis in chronic lymphocytic leukemia (CLL), but only account for approximately 40% of chemo-resistant patients. Genome-wide sequencing has uncovered novel mutations in the splicing factor sf3b1, that were in part associated with ATM aberrations, suggesting functional synergy. We first performed detailed genetic analyses in a CLL cohort (n=110) containing ATM, SF3B1 and TP53 gene defects. Next, we applied a newly developed multiplex assay for p53/ATM target gene induction and measured apoptotic responses to DNA damage. Interestingly, SF3B1 mutated samples without concurrent ATM and TP53 aberrations (sole SF3B1) displayed partially defective ATM/p53 transcriptional and apoptotic responses to various DNA-damaging regimens. In contrast, NOTCH1 or K/N-RAS mutated CLL displayed normal responses in p53/ATM target gene induction and apoptosis. In sole SF3B1 mutated cases, ATM kinase function remained intact, and γH2AX formation, a marker for DNA damage, was increased at baseline and upon irradiation. Our data demonstrate that single mutations in sf3b1 are associated with increased DNA damage and/or an aberrant response to DNA damage. Together, our observations may offer an explanation for the poor prognosis associated with SF3B1 mutations.
Department of Experimental Immunology Academic Medical Center Amsterdam The Netherlands
Department of Hematology Rigshospitalet Copenhagen Denmark
Department of Translational Oncology National Center for Tumor Diseases Heidelberg Germany
MRC Holland Amsterdam The Netherlands
School of Cancer Sciences University of Birmingham Birmingham UK
See more in PubMed
Leuk Res. 2014 Jan;38(1):34-41 PubMed
Science. 2004 Oct 8;306(5694):269-71 PubMed
Blood. 2001 Aug 1;98(3):814-22 PubMed
N Engl J Med. 2011 Dec 29;365(26):2497-506 PubMed
Mol Cell. 2009 Jul 31;35(2):228-39 PubMed
Blood. 2002 Jan 1;99(1):300-9 PubMed
Blood. 2014 May 22;123(21):3255-62 PubMed
Blood. 2012 Oct 18;120(16):3173-86 PubMed
Blood. 2005 Nov 1;106(9):3175-82 PubMed
Mol Cell. 2014 Jan 23;53(2):235-246 PubMed
Mol Cell. 2004 Dec 3;16(5):715-24 PubMed
Cell. 2013 Feb 14;152(4):714-26 PubMed
Blood. 2013 Apr 18;121(16):3284-8 PubMed
Nature. 2012 May 16;486(7403):400-4 PubMed
Leukemia. 2005 Mar;19(3):427-34 PubMed
Lancet Oncol. 2007 Apr;8(4):349-57 PubMed
Mol Cell. 2012 Apr 27;46(2):212-25 PubMed
Leukemia. 2012 Mar;26(3):542-5 PubMed
Leukemia. 2013 Nov;27(11):2264-7 PubMed
Cancer Sci. 2012 Sep;103(9):1611-6 PubMed
Blood. 2012 Jan 12;119(2):521-9 PubMed
Blood. 2006 Aug 1;108(3):993-1000 PubMed
J Exp Med. 2011 Jul 4;208(7):1389-401 PubMed
Mol Cell. 2014 May 8;54(3):445-59 PubMed
Haematologica. 2013 Jul;98(7):1124-31 PubMed
Cancer Res. 2011 Jul 1;71(13):4464-72 PubMed
Leukemia. 2012 Dec;26(12):2447-54 PubMed
Nat Cell Biol. 2006 Aug;8(8):870-6 PubMed
Blood. 2009 Sep 24;114(13):2589-97 PubMed
Br J Haematol. 2004 Nov;127(4):404-15 PubMed
Genome Res. 2014 Feb;24(2):212-26 PubMed
Nat Cell Biol. 2012 Feb 19;14(3):318-28 PubMed
PLoS One. 2012;7(6):e38158 PubMed
Nature. 2011 Sep 11;478(7367):64-9 PubMed
Nat Chem Biol. 2007 Sep;3(9):570-5 PubMed
Nature. 2011 Jun 05;475(7354):101-5 PubMed
Blood. 2012 Apr 5;119(14):3203-10 PubMed
Genes Dev. 1998 May 15;12(10):1409-14 PubMed
Blood. 2011 Dec 8;118(24):6239-46 PubMed
Genes Dev. 2010 Nov 1;24(21):2343-64 PubMed
Sci Transl Med. 2013 Jun 12;5(189):189ra78 PubMed
Blood. 2008 Mar 1;111(5):2816-24 PubMed
Nat Genet. 2011 Dec 11;44(1):47-52 PubMed
J Clin Oncol. 2010 Oct 10;28(29):4473-9 PubMed
Blood. 2011 Dec 22;118(26):6904-8 PubMed
Blood. 2013 Feb 21;121(8):1403-12 PubMed
J Biol Chem. 2014 Mar 7;289(10):6619-6626 PubMed
J Clin Oncol. 2012 Dec 20;30(36):4524-32 PubMed
Br J Haematol. 2013 Nov;163(4):496-500 PubMed
J Cell Biol. 1999 Sep 6;146(5):905-16 PubMed
Leukemia. 2015 Feb;29(2):329-36 PubMed
Blood. 2004 Jan 1;103(1):291-300 PubMed
Nucleic Acids Res. 2012 Jan;40(2):e16 PubMed