Novel Bifunctional Cyclic Chelator for (89)Zr Labeling-Radiolabeling and Targeting Properties of RGD Conjugates
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
P 25899
Austrian Science Fund FWF - Austria
PubMed
25941834
PubMed Central
PMC4453016
DOI
10.1021/acs.molpharmaceut.5b00128
Knihovny.cz E-resources
- Keywords
- 89Zr, RGD peptide, fusarinine C, positron emission tomography (PET), triacetylfusarinine C,
- MeSH
- Chelating Agents chemistry MeSH
- Hydroxamic Acids chemistry MeSH
- Humans MeSH
- Oligopeptides chemistry MeSH
- Positron-Emission Tomography MeSH
- Radioisotopes chemistry MeSH
- Ferric Compounds chemistry MeSH
- Zirconium chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- arginyl-glycyl-aspartic acid MeSH Browser
- Chelating Agents MeSH
- fusigen MeSH Browser
- Hydroxamic Acids MeSH
- N,N',N''-triacetylfusarinine C MeSH Browser
- Oligopeptides MeSH
- Radioisotopes MeSH
- Ferric Compounds MeSH
- Zirconium MeSH
Within the last years (89)Zr has attracted considerable attention as long-lived radionuclide for positron emission tomography (PET) applications. So far desferrioxamine B (DFO) has been mainly used as bifunctional chelating system. Fusarinine C (FSC), having complexing properties comparable to DFO, was expected to be an alternative with potentially higher stability due to its cyclic structure. In this study, as proof of principle, various FSC-RGD conjugates targeting αvß3 integrins were synthesized using different conjugation strategies and labeled with (89)Zr. In vitro stability, biodistribution, and microPET/CT imaging were evaluated using [(89)Zr]FSC-RGD conjugates or [(89)Zr]triacetylfusarinine C (TAFC). Quantitative (89)Zr labeling was achieved within 90 min at room temperature. The distribution coefficients of the different radioligands indicate hydrophilic character. Compared to [(89)Zr]DFO, [(89)Zr]FSC derivatives showed excellent in vitro stability and resistance against transchelation in phosphate buffered saline (PBS), ethylenediaminetetraacetic acid solution (EDTA), and human serum for up to 7 days. Cell binding studies and biodistribution as well as microPET/CT imaging experiments showed efficient receptor-specific targeting of [(89)Zr]FSC-RGD conjugates. No bone uptake was observed analyzing PET images indicating high in vivo stability. These findings indicate that FSC is a highly promising chelator for the development of (89)Zr-based PET imaging agents.
§Division of Molecular Biology Medical University Innsbruck Innsbruck Austria
†Department of Nuclear Medicine Medical University Innsbruck Innsbruck Austria
See more in PubMed
Fischer G.; Seibold U.; Schirrmacher R.; Wangler B.; Wangler C. 89Zr, a radiometal nuclide with high potential for molecular imaging with PET: chemistry, applications and remaining challenges. Molecules 2013, 18, 6469–6490. PubMed PMC
Deri M. A.; Zeglis B. M.; Francesconi L. C.; Lewis J. S. PET imaging with 89Zr: From radiochemistry to the clinic. Nucl. Med. Biol. 2013, 40, 3–14. PubMed PMC
Chang A. J.; DeSilva R.; Jain S.; Lears K.; Rogers B.; Lapi S. 89Zr-radiolabeled trastuzumab imaging in orthotopic and metastatic breast tumors. Pharmaceuticals 2012, 5, 79–93. PubMed PMC
Aerts H. J.; Dubois L.; Perk L.; Vermaelen P.; van Dongen G. A.; Wouters B. G.; et al. Disparity between in vivo EGFR expression and 89Zr-labeled cetuximab uptake assessed with PET. J. Nucl. Med. 2009, 50, 123–131. PubMed
Holland J. P.; Divilov V.; Bander N. H.; Smith-Jones P. M.; Larson S. M.; Lewis J. S. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J. Nucl. Med. 2010, 51, 1293–1300. PubMed PMC
Zeglis B. M.; Mohindra P.; Weissmann G. I.; Divilov V.; Hilderbrand S. A.; Weissleder R.; et al. Modular strategy for the construction of radiometalated antibodies for positron emission tomography based on inverse electron demand diels–alder click chemistry. Bioconjugate Chem. 2011, 22, 2048–2059. PubMed PMC
van Rij C. M.; Sharkey R. M.; Goldenberg D. M.; Frielink C.; Molkenboer J. D.; Franssen G. M.; et al. Imaging of prostate cancer with immuno-PET and immuno-SPECT using a radiolabeled anti-EGP-1 monoclonal antibody. J. Nucl. Med. 2011, 52, 1601–1607. PubMed
Heskamp S.; van Laarhoven H. W.; Molkenboer-Kuenen J. D.; Franssen G. M.; Versleijen-Jonkers Y. M.; Oyen W. J.; et al. ImmunoSPECT and immunoPET of IGF-1R expression with the radiolabeled antibody R1507 in a triple-negative breast cancer model. J. Nucl. Med. 2010, 51, 1565–1572. PubMed
Perk L. R.; Vosjan M. J.; Visser G. W.; Budde M.; Jurek P.; Kiefer G. E.; et al. p-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 250–259. PubMed PMC
Tinianow J. N.; Gill H. S.; Ogasawara A.; Flores J. E.; Vanderbilt A. N.; Luis E.; et al. Site-specifically 89Zr-labeled monoclonal antibodies for ImmunoPET. Nucl. Med. Biol. 2010, 37, 289–97. PubMed
Patra M.; Bauman A.; Mari C.; Fischer C. A.; Blacque O.; Häussinger D.; et al. An octadentate bifunctional chelating agent for the development of stable zirconium-89 based molecular imaging probes. Chem. Commun. 2014, 50, 11523–11525. PubMed
Deri M. A.; Ponnala S.; Zeglis B. M.; Pohl G.; Dannenberg J. J.; Lewis J. S.; et al. An alternative chelator for 89Zr radiopharmaceuticals: radiolabeling and evaluation of 3, 4, 3-(LI-1, 2-HOPO). J. Med. Chem. 2014, 57, 4849–4860. PubMed PMC
Guérard F.; Lee Y. S.; Brechbiel M. W. Rational design, synthesis, and evaluation of tetrahydroxamic acid chelators for stable complexation of zirconium (IV). Chemistry 2014, 20, 5584–5591. PubMed PMC
Pandya D. N.; Pailloux S.; Tatum D.; Magda D.; Wadas T. J. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89. Chem. Commun. 2015, 51, 2301–2303. PubMed PMC
Ma M. T.; Meszaros L. K.; Paterson B. M.; Berry D. J.; Cooper M. S.; Ma Y. Tripodal tris (hydroxypyridinone) ligands for immunoconjugate PET imaging with 89Zr4+: comparison with desferrioxamine-B. Dalton Trans. 2015, 44, 4884–4900. PubMed PMC
Liu S.; Edwards D. S. Bifunctional chelators for therapeutic lanthanide radiopharmaceuticals. Bioconjugate Chem. 2001, 12, 7–34. PubMed
Knetsch P. A.; Zhai C.; Rangger C.; Blatzer M.; Haas H.; Kaeopookum P.; et al. [68Ga]FSC-(RGD)3, a trimeric RGD peptide for imaging αvβ3 integrin expression based on a novel siderophore derived chelating scaffold– synthesis and evaluation. Nucl. Med. Biol. 2015, 42, 115–122. PubMed PMC
Zhai C.; Summer D.; Rangger C.; Haas H.; Decristoforo C.; Fusarinine C. a fast, high specific activity, wide pH range, and stable multivalent bifunctional siderophore chelator for radiolabeling with gallium-68. J. Labelled Comp. Radiopharm. 2015, 58, 209–214. PubMed PMC
Petrik M., Zhai C., Novy Z., Urbanek L., Haas H., Decristoforo C.. In vitro and in vivo comparison of selected 68Ga and 89Zr labelled siderophores. Nucl. Med. Biol. Under review.
Petrik M.; Haas H.; Schrettl M.; Helbok A.; Blatzer M.; Decristoforo C. In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging. Nucl. Med. Biol. 2012, 39, 361–369. PubMed PMC
Knetsch P. A.; Petrik M.; Griessinger C. M.; Rangger C.; Fani M.; Kesenheimer C.; et al. [68Ga]NODAGA-RGD for imaging αvβ3 integrin expression. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1303–1312. PubMed
Vosjan M. J.; Perk L. R.; Visser G. W.; Budde M.; Jurek P.; Kiefer G. E.; et al. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat. Protoc. 2010, 5, 739–743. PubMed
Petrik M.; Haas H.; Dobrozemsky G.; Lass-Flörl C.; Helbok A.; Blatzer M.; et al. 68Ga-siderophores for PET imaging of invasive pulmonary aspergillosis: proof of principle. J. Nucl. Med. 2010, 51, 639–645. PubMed PMC
Haubner R.; Gratias R.; Diefenbach B.; Goodman S. L.; Jonczyk A.; Kessler H. Structural and functional aspects of RGD-containing cyclic pentapeptides as highly potent and selective integrin αvβ3 antagonists. J. Am. Chem. Soc. 1996, 118, 7461–7472.
Haubner R.; Maschauer S.; Prante O. PET radiopharmaceuticals for imaging integrin expression: tracers in clinical studies and recent developments. Biomed. Res. Int. 2014, 871609. PubMed PMC
Haubner R.; Decristoforo C.; Radiolabelled R. G. D. peptides and peptidomimetics for tumour targeting. Front. Biosci. 2009, 14, 872–86. PubMed
Gaertner F. C.; Kessler H.; Wester H. J.; Schwaiger M.; Beer A. J. Radiolabelled RGD peptides for imaging and therapy. Eur. J. Nucl. Med. 2012, 39Suppl 1S126–S138. PubMed
Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin αvβ3 targeted radiotracers for tumor imaging. Mol. Pharmaceutics 2006, 3, 472–487. PubMed
Dumont R. A.; Deininger F.; Haubner R.; Maecke H. R.; Weber W. A.; Fani M. Novel 64Cu-and 68Ga-labeled RGD conjugates show improved PET imaging of ανβ3 integrin expression and facile radiosynthesis. J. Nucl. Med. 2011, 52, 1276–1284. PubMed
Chen X.; Park R.; Tohme M.; Shahinian A. H.; Bading J. R.; Conti P. S. MicroPET and autoradiographic imaging of breast cancer αv-integrin expression using 18F-and 64Cu-labeled RGD peptide. Bioconjugate Chem. 2004, 15, 41–49. PubMed
Guérard F.; Lee Y.-S.; Tripier R.; Szajek L. P.; Deschamps J. R.; Brechbiel M. W. Investigation of Zr (IV) and 89Zr (IV) complexation with hydroxamates: progress towards designing a better chelator than desferrioxamine B for immuno-PET imaging. Chem. Commun. 2013, 49, 1002–1004. PubMed PMC
Modifying the Siderophore Triacetylfusarinine C for Molecular Imaging of Fungal Infection
Siderophores for molecular imaging applications
Developing Targeted Hybrid Imaging Probes by Chelator Scaffolding
In Vitro and In Vivo Comparison of Selected Ga-68 and Zr-89 Labelled Siderophores