• This record comes from PubMed

Novel Bifunctional Cyclic Chelator for (89)Zr Labeling-Radiolabeling and Targeting Properties of RGD Conjugates

. 2015 Jun 01 ; 12 (6) : 2142-50. [epub] 20150519

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
P 25899 Austrian Science Fund FWF - Austria

Within the last years (89)Zr has attracted considerable attention as long-lived radionuclide for positron emission tomography (PET) applications. So far desferrioxamine B (DFO) has been mainly used as bifunctional chelating system. Fusarinine C (FSC), having complexing properties comparable to DFO, was expected to be an alternative with potentially higher stability due to its cyclic structure. In this study, as proof of principle, various FSC-RGD conjugates targeting αvß3 integrins were synthesized using different conjugation strategies and labeled with (89)Zr. In vitro stability, biodistribution, and microPET/CT imaging were evaluated using [(89)Zr]FSC-RGD conjugates or [(89)Zr]triacetylfusarinine C (TAFC). Quantitative (89)Zr labeling was achieved within 90 min at room temperature. The distribution coefficients of the different radioligands indicate hydrophilic character. Compared to [(89)Zr]DFO, [(89)Zr]FSC derivatives showed excellent in vitro stability and resistance against transchelation in phosphate buffered saline (PBS), ethylenediaminetetraacetic acid solution (EDTA), and human serum for up to 7 days. Cell binding studies and biodistribution as well as microPET/CT imaging experiments showed efficient receptor-specific targeting of [(89)Zr]FSC-RGD conjugates. No bone uptake was observed analyzing PET images indicating high in vivo stability. These findings indicate that FSC is a highly promising chelator for the development of (89)Zr-based PET imaging agents.

See more in PubMed

Fischer G.; Seibold U.; Schirrmacher R.; Wangler B.; Wangler C. 89Zr, a radiometal nuclide with high potential for molecular imaging with PET: chemistry, applications and remaining challenges. Molecules 2013, 18, 6469–6490. PubMed PMC

Deri M. A.; Zeglis B. M.; Francesconi L. C.; Lewis J. S. PET imaging with 89Zr: From radiochemistry to the clinic. Nucl. Med. Biol. 2013, 40, 3–14. PubMed PMC

Chang A. J.; DeSilva R.; Jain S.; Lears K.; Rogers B.; Lapi S. 89Zr-radiolabeled trastuzumab imaging in orthotopic and metastatic breast tumors. Pharmaceuticals 2012, 5, 79–93. PubMed PMC

Aerts H. J.; Dubois L.; Perk L.; Vermaelen P.; van Dongen G. A.; Wouters B. G.; et al. Disparity between in vivo EGFR expression and 89Zr-labeled cetuximab uptake assessed with PET. J. Nucl. Med. 2009, 50, 123–131. PubMed

Holland J. P.; Divilov V.; Bander N. H.; Smith-Jones P. M.; Larson S. M.; Lewis J. S. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J. Nucl. Med. 2010, 51, 1293–1300. PubMed PMC

Zeglis B. M.; Mohindra P.; Weissmann G. I.; Divilov V.; Hilderbrand S. A.; Weissleder R.; et al. Modular strategy for the construction of radiometalated antibodies for positron emission tomography based on inverse electron demand diels–alder click chemistry. Bioconjugate Chem. 2011, 22, 2048–2059. PubMed PMC

van Rij C. M.; Sharkey R. M.; Goldenberg D. M.; Frielink C.; Molkenboer J. D.; Franssen G. M.; et al. Imaging of prostate cancer with immuno-PET and immuno-SPECT using a radiolabeled anti-EGP-1 monoclonal antibody. J. Nucl. Med. 2011, 52, 1601–1607. PubMed

Heskamp S.; van Laarhoven H. W.; Molkenboer-Kuenen J. D.; Franssen G. M.; Versleijen-Jonkers Y. M.; Oyen W. J.; et al. ImmunoSPECT and immunoPET of IGF-1R expression with the radiolabeled antibody R1507 in a triple-negative breast cancer model. J. Nucl. Med. 2010, 51, 1565–1572. PubMed

Perk L. R.; Vosjan M. J.; Visser G. W.; Budde M.; Jurek P.; Kiefer G. E.; et al. p-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 250–259. PubMed PMC

Tinianow J. N.; Gill H. S.; Ogasawara A.; Flores J. E.; Vanderbilt A. N.; Luis E.; et al. Site-specifically 89Zr-labeled monoclonal antibodies for ImmunoPET. Nucl. Med. Biol. 2010, 37, 289–97. PubMed

Patra M.; Bauman A.; Mari C.; Fischer C. A.; Blacque O.; Häussinger D.; et al. An octadentate bifunctional chelating agent for the development of stable zirconium-89 based molecular imaging probes. Chem. Commun. 2014, 50, 11523–11525. PubMed

Deri M. A.; Ponnala S.; Zeglis B. M.; Pohl G.; Dannenberg J. J.; Lewis J. S.; et al. An alternative chelator for 89Zr radiopharmaceuticals: radiolabeling and evaluation of 3, 4, 3-(LI-1, 2-HOPO). J. Med. Chem. 2014, 57, 4849–4860. PubMed PMC

Guérard F.; Lee Y. S.; Brechbiel M. W. Rational design, synthesis, and evaluation of tetrahydroxamic acid chelators for stable complexation of zirconium (IV). Chemistry 2014, 20, 5584–5591. PubMed PMC

Pandya D. N.; Pailloux S.; Tatum D.; Magda D.; Wadas T. J. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89. Chem. Commun. 2015, 51, 2301–2303. PubMed PMC

Ma M. T.; Meszaros L. K.; Paterson B. M.; Berry D. J.; Cooper M. S.; Ma Y. Tripodal tris (hydroxypyridinone) ligands for immunoconjugate PET imaging with 89Zr4+: comparison with desferrioxamine-B. Dalton Trans. 2015, 44, 4884–4900. PubMed PMC

Liu S.; Edwards D. S. Bifunctional chelators for therapeutic lanthanide radiopharmaceuticals. Bioconjugate Chem. 2001, 12, 7–34. PubMed

Knetsch P. A.; Zhai C.; Rangger C.; Blatzer M.; Haas H.; Kaeopookum P.; et al. [68Ga]FSC-(RGD)3, a trimeric RGD peptide for imaging αvβ3 integrin expression based on a novel siderophore derived chelating scaffold– synthesis and evaluation. Nucl. Med. Biol. 2015, 42, 115–122. PubMed PMC

Zhai C.; Summer D.; Rangger C.; Haas H.; Decristoforo C.; Fusarinine C. a fast, high specific activity, wide pH range, and stable multivalent bifunctional siderophore chelator for radiolabeling with gallium-68. J. Labelled Comp. Radiopharm. 2015, 58, 209–214. PubMed PMC

Petrik M., Zhai C., Novy Z., Urbanek L., Haas H., Decristoforo C.. In vitro and in vivo comparison of selected 68Ga and 89Zr labelled siderophores. Nucl. Med. Biol. Under review.

Petrik M.; Haas H.; Schrettl M.; Helbok A.; Blatzer M.; Decristoforo C. In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging. Nucl. Med. Biol. 2012, 39, 361–369. PubMed PMC

Knetsch P. A.; Petrik M.; Griessinger C. M.; Rangger C.; Fani M.; Kesenheimer C.; et al. [68Ga]NODAGA-RGD for imaging αvβ3 integrin expression. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1303–1312. PubMed

Vosjan M. J.; Perk L. R.; Visser G. W.; Budde M.; Jurek P.; Kiefer G. E.; et al. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat. Protoc. 2010, 5, 739–743. PubMed

Petrik M.; Haas H.; Dobrozemsky G.; Lass-Flörl C.; Helbok A.; Blatzer M.; et al. 68Ga-siderophores for PET imaging of invasive pulmonary aspergillosis: proof of principle. J. Nucl. Med. 2010, 51, 639–645. PubMed PMC

Haubner R.; Gratias R.; Diefenbach B.; Goodman S. L.; Jonczyk A.; Kessler H. Structural and functional aspects of RGD-containing cyclic pentapeptides as highly potent and selective integrin αvβ3 antagonists. J. Am. Chem. Soc. 1996, 118, 7461–7472.

Haubner R.; Maschauer S.; Prante O. PET radiopharmaceuticals for imaging integrin expression: tracers in clinical studies and recent developments. Biomed. Res. Int. 2014, 871609. PubMed PMC

Haubner R.; Decristoforo C.; Radiolabelled R. G. D. peptides and peptidomimetics for tumour targeting. Front. Biosci. 2009, 14, 872–86. PubMed

Gaertner F. C.; Kessler H.; Wester H. J.; Schwaiger M.; Beer A. J. Radiolabelled RGD peptides for imaging and therapy. Eur. J. Nucl. Med. 2012, 39Suppl 1S126–S138. PubMed

Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin αvβ3 targeted radiotracers for tumor imaging. Mol. Pharmaceutics 2006, 3, 472–487. PubMed

Dumont R. A.; Deininger F.; Haubner R.; Maecke H. R.; Weber W. A.; Fani M. Novel 64Cu-and 68Ga-labeled RGD conjugates show improved PET imaging of ανβ3 integrin expression and facile radiosynthesis. J. Nucl. Med. 2011, 52, 1276–1284. PubMed

Chen X.; Park R.; Tohme M.; Shahinian A. H.; Bading J. R.; Conti P. S. MicroPET and autoradiographic imaging of breast cancer αv-integrin expression using 18F-and 64Cu-labeled RGD peptide. Bioconjugate Chem. 2004, 15, 41–49. PubMed

Guérard F.; Lee Y.-S.; Tripier R.; Szajek L. P.; Deschamps J. R.; Brechbiel M. W. Investigation of Zr (IV) and 89Zr (IV) complexation with hydroxamates: progress towards designing a better chelator than desferrioxamine B for immuno-PET imaging. Chem. Commun. 2013, 49, 1002–1004. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...