Siderophores for molecular imaging applications

. 2017 ; 5 (1) : 15-27. [epub] 20161011

Status PubMed-not-MEDLINE Jazyk angličtina Země Itálie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28138436

Grantová podpora
L 676 Austrian Science Fund FWF - Austria
P 25899 Austrian Science Fund FWF - Austria

This review covers publications on siderophores applied for molecular imaging applications, mainly for radionuclide-based imaging. Siderophores are low molecular weight chelators produced by bacteria and fungi to scavenge essential iron. Research on these molecules has a continuing history over the past 50 years. Many biomedical applications have been developed, most prominently the use of the siderophore desferrioxamine (DFO) to tackle iron overload related diseases. Recent research described the upregulation of siderophore production and transport systems during infection. Replacing iron in siderophores by radionuclides, the most prominent Ga-68 for PET, opens approaches for targeted imaging of infection; the proof of principle has been reported for fungal infections using 68Ga-triacetylfusarinine C (TAFC). Additionally, fluorescent siderophores and therapeutic conjugates have been described and may be translated to optical imaging and theranostic applications. Siderophores have also been applied as bifunctional chelators, initially DFO as chelator for Ga-67 and more recently for Zr-89 where it has become the standard chelator in Immuno-PET. Improved DFO constructs and bifunctional chelators based on cyclic siderophores have recently been developed for Ga-68 and Zr-89 and show promising properties for radiopharmaceutical development in PET. A huge potential from basic biomedical research on siderophores still awaits to be utilized for clinical and translational imaging.

Zobrazit více v PubMed

Francis J, Macturk HM, Madinaveitia J, Snow GA. Mycobactin, a growth factor for Mycobacterium johnei. I. Isolation from Mycobacterium phlei. Biochem J. 1953;55:596–607. doi: 10.1042/bj0550596. PubMed DOI PMC

Ganz T. Iron in innate immunity: starve the invaders. Curr Opin Immunol. 2009;21:63–67. doi: 10.1016/j.coi.2009.01.011. PubMed DOI PMC

Weinberg ED. Iron availability and infection. Biochim Biophys Acta. 2009;1790:600–605. doi: 10.1016/j.bbagen.2008.07.002. PubMed DOI

Hider RC, Kong X. Chemistry and biology of siderophores. Nat Prod Rep. 2010;27:637–657. doi: 10.1039/b906679a. PubMed DOI

Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat Prod Rep. 2014;31:1266–1276. doi: 10.1039/C4NP00071D. PubMed DOI PMC

Winkelmann G. Microbial siderophore-mediated transport. Biochem Soc Trans. 2002;30:691–696. doi: 10.1042/bst0300691. PubMed DOI

Krewulak KD, Vogel HJ. TonB or not TonB: is that the question? Biochem Cell Biol. 2011;89:87–97. doi: 10.1139/O10-141. PubMed DOI

Philpott CC, Protchenko O. Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot Cell. 2008;7:20–27. doi: 10.1128/EC.00354-07. PubMed DOI PMC

Haas H, Eisendle M, Turgeon BG. Siderophores in fungal physiology and virulence. Annu Rev Phytopathol. 2008;46:149–187. doi: 10.1146/annurev.phyto.45.062806.094338. PubMed DOI

McDonagh A, Fedorova ND, Crabtree J, Yu Y, Kim S, Chen D, Loss O, Cairns T, Goldman G, Armstrong-James D, Haynes K, Haas H, Schrettl M, May G, Nierman WC, Bignell E. Sub-telomere directed gene expression during initiation of invasive aspergillosis. PLoS Pathog. 2008;4:e1000154. doi: 10.1371/journal.ppat.1000154. PubMed DOI PMC

Schrettl M, Kim HS, Eisendle M, Kragl C, Nierman WC, Heinekamp T, Werner ER, Jacobsen I, Illmer P, Yi H, Brakhage AA, Haas H. SreA-mediated iron regulation in Aspergillus fumigatus. Mol Microbiol. 2008;70:27–43. doi: 10.1111/j.1365-2958.2008.06376.x. PubMed DOI PMC

Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T, Arst HN, Jr, Haynes K, Haas H. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med. 2004;200:1213–1219. doi: 10.1084/jem.20041242. PubMed DOI PMC

Schrettl M, Bignell E, Kragl C, Sabiha Y, Loss O, Eisendle M, Wallner A, Arst HN, Jr, Haynes K, Haas H. Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog. 2007;3:1195–1207. doi: 10.1371/journal.ppat.0030128. PubMed DOI PMC

Hissen AH, Wan AN, Warwas ML, Pinto LJ, Moore MM. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding l-ornithine N5-oxygenase, is required for virulence. Infect Immun. 2005;73:5493–5503. doi: 10.1128/IAI.73.9.5493-5503.2005. PubMed DOI PMC

Cornelis P, Dingemans J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol. 2013;3:75. doi: 10.3389/fcimb.2013.00075. PubMed DOI PMC

Carroll CS, Amankwa LN, Pinto LJ, Fuller JD, Moore MM. Detection of a serum siderophore by LC–MS/MS as a potential biomarker of invasive aspergillosis. PLoS One. 2016;11:e0151260. doi: 10.1371/journal.pone.0151260. PubMed DOI PMC

Pan SJ, Tapley A, Adamson J, Little T, Urbanowski M, Cohen K, Pym A, Almeida D, Dorasamy A, Layre E, Young DC, Singh R, Patel VB, Wallengren K, Ndung’u T, Wilson D, Moody DB, Bishai W. Biomarkers for tuberculosis based on secreted, species-specific, bacterial small molecules. J Infect Dis. 2015;212:1827–1834. doi: 10.1093/infdis/jiv312. PubMed DOI PMC

Sia AK, Allred BE, Raymond KN. Siderocalins: siderophore binding proteins evolved for primary pathogen host defense. Curr Opin Chem Biol. 2013;17:150–157. doi: 10.1016/j.cbpa.2012.11.014. PubMed DOI PMC

Koh EI, Henderson JP. Microbial copper-binding siderophores at the host-pathogen interface. J Biol Chem. 2015;290:18967–18974. doi: 10.1074/jbc.R115.644328. PubMed DOI PMC

Perry RD, Bobrov AG, Fetherston JD. The role of transition metal transporters for iron, zinc, manganese, and copperin the pathogenesis of Yersinia pestis. Metallomics. 2015;7:965–978. doi: 10.1039/C4MT00332B. PubMed DOI PMC

Johnstone TC, Nolan EM. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans. 2015;44:6320–6339. doi: 10.1039/C4DT03559C. PubMed DOI PMC

Braun V. FhuA (TonA), the career of a protein. J Bacteriol. 2009;191:3431–3436. doi: 10.1128/JB.00106-09. PubMed DOI PMC

Ji C, Juárez-Hernández RE, Miller MJ. Exploiting bacterial iron acquisition: siderophore conjugates. Future Med Chem. 2012;4:297–313. doi: 10.4155/fmc.11.191. PubMed DOI PMC

Kelson AB, Carnevali M, Truong-Le V. Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms. Curr Opin Pharmacol. 2013;13:707–716. doi: 10.1016/j.coph.2013.07.001. PubMed DOI

Kontoghiorghe CN, Kontoghiorghes GJ. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes. Drug Des Dev Ther. 2016;10:465–481. doi: 10.2147/DDDT.S79458. PubMed DOI PMC

Signore A, Glaudemans AWJM. The molecular imaging approach to image infections and inflammation by nuclear medicine techniques. Ann Nucl Med. 2011;25:681–700. doi: 10.1007/s12149-011-0521-z. PubMed DOI

Enggelston H, Panizzi P. Molecular imaging of bacterial infections in vivo: the discrimination between infection and inflammation. Informatics. 2014;1:72–99. doi: 10.3390/informatics1010072. PubMed DOI PMC

Mills B, Bradley M, Dhaliwal K. Optical imaging of bacterial infections. Clin Transl Imaging. 2016;4:163–174. doi: 10.1007/s40336-016-0180-0. PubMed DOI PMC

Lupetti A, de Boer MGJ, Erba P, Campa M, Nibbering PH. Radiotracers for fungal infection imaging. Med Mycol. 2011;49:62–69. doi: 10.3109/13693786.2010.508188. PubMed DOI

Auletta S, Galli F, Lauri C, Martinelli D, Santino I, Signore A. Imaging bacteria with radiolabelled quinolones, cephalosporins and siderophores for imaging infection: a systematic review. Clin Transl Imaging. 2016;4:229–252. doi: 10.1007/s40336-016-0185-8. PubMed DOI PMC

Weizman H, Ardon O, Mester B, Libman J, Dwir O, Hadar Y, Chen Y, Shanzer A. Fluorescently-labeled ferrichrome analogs as probes for receptor-mediated, microbial iron uptake. J Am Chem Soc. 1996;118:12368–12375. doi: 10.1021/ja9610646. DOI

Nudelman R, Ardon O, Hadar Y, Chen Y, Libman J, Shanzer A. Modular fluorescent-labeled siderophore analogues. J Med Chem. 1998;41:1671–1678. doi: 10.1021/jm970581b. PubMed DOI

Ouchetto H, Dias M, Mornet R, Lesuisse E, Camadro JM. A new route to trihydroxamate-containing artificial siderophores and synthesis of a new fluorescent probe. Bioorg Med Chem. 2005;13:1799–1803. doi: 10.1016/j.bmc.2004.11.053. PubMed DOI

Szebesczyk A, Olshvang E, Shanzer A, Carver PL, Gumienna-Kontecka E. Harnessing the power of fungal siderophores for the imaging and treatment of human diseases. Coord Chem Rev. 2016

Hoffer PB, Samuel A, Bushberg JT, Thakur M. Desferoxamine mesylate (Desferal): a contrast-enhancing agent for gallium-67 imaging. Radiology. 1979;131:775–779. doi: 10.1148/131.3.775. PubMed DOI

Oberhaensli RD, Mueller RM, Fridrich R. Different actions of deferoxamine and iron on Ga-67 abscess detection in rats. J Nucl Med. 1984;25:668–672. PubMed

Moerlein SM, Welch MJ, Raymond KN, et al. Tricatecholamide analogs of enterobactin as gallium- and indium-binding radiopharmaceuticals. J Nucl Med. 1981;22:710–719. PubMed

Chandra R, Pierno C, Braunstein P. 111In Desferal: a new radiopharmaceutical for abscess detection. Radiology. 1978;128:697–699. doi: 10.1148/128.3.697. PubMed DOI

Llinas M, Klein MP, Neilands JB. Solution conformation of ferrichromes a microbial iron transport cyclohexapeptide, as deduced by high resolution proton magnetic resonance. J Mol Biol. 1970;52:399–414. doi: 10.1016/0022-2836(70)90409-2. PubMed DOI

Emery T. Exchange of iron by gallium in siderophores. Biochemistry. 1986;25:4629–4633. doi: 10.1021/bi00364a026. PubMed DOI

Emery T, Hoffer PB. Siderophore-mediated mechanism of gallium uptake demonstrated in the microorganism Ustilago sphaerogena. J Nucl Med. 1980;21:935–939. PubMed

Schalk IJ, Kyslik P, Prome D, van Dorseelaer A, Poole K, Abdallah MA, Pattus F. Copurification of the FpvA ferric pyoverdin receptor of Pseudomonas aeruginosa with its iron-free ligand: implications for siderophore-mediated iron transport. Biochemistry. 1999;38:9357–9365. doi: 10.1021/bi990421x. PubMed DOI

Hantke C, Nicholson G, Rabsch W, Winkelman G. Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc Natl Acad Sci. 2003;107:3677–3682. doi: 10.1073/pnas.0737682100. PubMed DOI PMC

Crowley ED, Reid CPP, Szaniszlo PJ. Utilization of microbial siderophores in iron acquisition by oat. Plant Physiol. 1988;87:680–685. doi: 10.1104/pp.87.3.680. PubMed DOI PMC

Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Physics. 2016;3:1–17. doi: 10.1186/s40658-016-0144-5. PubMed DOI PMC

Velikyan I. Prospective of 68Ga-radiopharmaceutical development. Theranostics. 2014;4:47–80. doi: 10.7150/thno.7447. PubMed DOI PMC

Haas H, Petrik M, Decristoforo C. An iron-mimicking, trojan horse-entering fungi-has the time come for molecular imaging of fungal infections? PLoS Pathog. 2015;11:e1004568. doi: 10.1371/journal.ppat.1004568. PubMed DOI PMC

Petrik M, Haas H, Dobrozemsky G, et al. 68Ga-Siderophores for PET imaging of invasive pulmonary aspergillosis: proof of principle. J Nucl Med. 2010;51:639–645. doi: 10.2967/jnumed.109.072462. PubMed DOI PMC

Petrik M, Haas H, Schrettl M, Helbok A, Blatzer M, Decristoforo C. In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging. Nucl Med Biol. 2012;39:361–369. doi: 10.1016/j.nucmedbio.2011.09.012. PubMed DOI PMC

Petrik M, Franssen GM, Haas H, et al. Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur J Nucl Med Mol Imaging. 2012;39:1175–1183. doi: 10.1007/s00259-012-2110-3. PubMed DOI PMC

Petrik M, Vlckova A, Novy Z, Urbanek L, Haas H, Decristoforo C. Selected 68Ga-siderophores versus 68Ga-colloid and 68Ga-citrate: biodistribution and small animal imaging in mice. Biomed Pap Med Fac Univ Palacky Olomouc. 2015;159:60–66. PubMed PMC

Pluhacek T, Petrik M, Luptakova D, Benada O, Palyzova A, Lemr K, Havlicek V. Aspergillus infection monitored by multimodal imaging in a rat model. Proteomics. 2016;16:1785–1792. doi: 10.1002/pmic.201500487. PubMed DOI

Petrik M, Haas H, Laverman P, Schrettl M, Franssen GM, Blatzer M, Decristoforo C. 68Ga-Triacetylfusarinine C and 68Ga-Ferrioxamine E for Aspergillus infection imaging: uptake specificity in various microorganisms. Mol Imaging Biol. 2014;16:102–108. doi: 10.1007/s11307-013-0654-7. PubMed DOI PMC

Petrik M, Zhai C, Novy Z, Urbanek L, Haas H, Decristoforo C. In vitro and in vivo comparison of selected Ga-68 and Zr-89 labelled siderophores. Mol Imaging Biol. 2016;18:344–352. doi: 10.1007/s11307-015-0897-6. PubMed DOI PMC

Ardon O, Nudelman R, Caris C, Libman J, Schanzer A, Chen Y, Hadar Y. Iron uptake in Ustilago maydis: tracking the iron path. J Bacteriol. 1998;180:2021–2026. PubMed PMC

Lytton SD, Cabantchik ZI, Libman J, Shanzer A. Reversed siderophores as antimalarial agents. II. Selective scavenging of Fe(III) from parasitized erythrocytes by a fluorescent derivative of desferal. Mol Pharmacol. 1991;40:584–590. PubMed

Larcher G, Dias M, Razafimandimby B, Bomal D, Bouchara JP. Siderophore production by pathogenic Mucorales and uptake of deferoxamine B. Mycopathologia. 2013;176:319–328. doi: 10.1007/s11046-013-9693-5. PubMed DOI

Noel S, Guillon L, Schalk IJ, Mislin GLA. Synthesis of fluorescent probes based on the pyochelin siderophore scaffold. Org Lett. 2011;13:844–847. doi: 10.1021/ol1028173. PubMed DOI

de Carvalho CC, Fernandes P. Siderophores as “Trojan Horses”: tackling multidrug resistance? Front Microbiol. 2014;5:290. doi: 10.3389/fmicb.2014.00290. PubMed DOI PMC

Banin E, Lozinski A, Brady KM, Berenshtein E, Butterfield PW, Moshe M, Chevion M, Greenberg EP, Banin E. The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent. Proc Natl Acad Sci. 2008;105:16761–16766. doi: 10.1073/pnas.0808608105. PubMed DOI PMC

Roosenberg JM, Lin YM, Lu Y, Miller MJ. Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr Med Chem. 2000;7:159–197. doi: 10.2174/0929867003375353. PubMed DOI

Page MGP. Siderophore conjugates. NY Acad Sci. 2013;1277:115–126. doi: 10.1111/nyas.12024. PubMed DOI

Mislin GLA, Schalk IJ. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Metallomics. 2014;6:408–420. doi: 10.1039/c3mt00359k. PubMed DOI

Koizumi K, Tonami N, Hisada K. Deferoxamine mesylate enhancement of 67Ga tumor-to-blood ratios and tumor imaging. Eur J Nucl Med. 1982;7:229–233. doi: 10.1007/BF00256470. PubMed DOI

Yokoyama A, Ohmomo Y, Horiuchi K, Saji H, Tanaka H, Yamamoto K, Ishii Y, Torizuka K. Deferoxamine, a promising bifunctional chelating agent for labeling proteins with gallium: Ga-67 DF-HSA: concise communication. J Nucl Med. 1982;23:909–914. PubMed

Ohmomo Y, Yokoyama A, Suzuki J, Tanaka H, Yamamoto K, Horiuchi K, Ishii Y, Torizuka K. 67Ga-labeled human fibrinogen: a new promising thrombus imaging agent. Eur J Nucl Med. 1982;7:458–461. doi: 10.1007/BF00253082. PubMed DOI

Yamamoto K, Senda M, Fujita T, Kumada K, Fukui K, Yonekura Y, Yokoyama A, Torizuka K. Positive imaging of venous thrombi and thromboemboli with Ga-67 DFO-DAS-fibrinogen. Eur J Nucl Med. 1988;14:60–64. doi: 10.1007/BF00253442. PubMed DOI

Kojima S, Jay M. Comparisons of labeling efficiency, biological activity and biodistribution among 125I-, 67Ga-DTPA-and 67Ga-DFO-lectins. Eur J Nucl Med. 1987;13:366–370. PubMed

Motta-Hennessy C, Eccles SA, Dean C, Coghlan G. Preparation of 67Ga-labelled human IgG and its Fab fragments using desferoxamine as chelating agent. Eur J Nucl Med. 1985;11:240–245. doi: 10.1007/BF00279077. PubMed DOI

Koizumi M, Endo K, Kunimatsu M, Sakahara H, Nakashima T, Kawamura Y, Watanabe Y, Saga T, Konishi J, Yamamuro T, et al. 67Ga-labeled antibodies for immunoscintigraphy and evaluation of tumor targeting of drug–antibody conjugates in mice. Cancer Res. 1988;48:1189–1194. PubMed

Bartal AH, Lavie E, Boazi M, Weininger J, Bitton M, Iosilevsky G, Front D, Hirshaut Y, Robinson E. Human sarcoma-associated murine monoclonal antibody labeled with indium-111, gallium-67, and iodine-125. NCI Monogr. 1987;3:153–155. PubMed

Wang TS, Fawwaz RA, Van Heertum RL. Amino-dextran-deferoxamine: a potential polymeric heterobifunctional agent for high-level 111In-labeling of anti-melanoma monoclonal antibody TP41.2. J Nucl Biol Med. 1993;37:97–103. PubMed

Govindan SV, Michel RB, Griffiths GL, Goldenberg DM, Mattes MJ. Deferoxamine as a chelator for 67Ga in the preparation of antibody conjugates. Nucl Med Biol. 2005;32:513–519. doi: 10.1016/j.nucmedbio.2005.04.009. PubMed DOI

Vosjan MJ, Perk LR, Roovers RC, Visser GW, Stigter-van Walsum M, van Bergen En Henegouwen PM, van Dongen GA. Facile labelling of an anti-epidermal growth factor receptor Nanobody with 68Ga via a novel bifunctional desferal chelate for immuno-PET. Eur J Nucl Med Mol Imaging. 2011;38:753–763. doi: 10.1007/s00259-010-1700-1. PubMed DOI PMC

Wang S, Lee RJ, Mathias CJ, Green MA, Low PS. Synthesis, purification and tumor cell uptake of 67Ga–deferoxamine–folate, a potential radiopharmaceutical for tumor imaging. Bioconjug Chem. 1996;7:56–62. doi: 10.1021/bc9500709. PubMed DOI

Smith-Jones PM, Stolz B, Bruns C, et al. Gallium-67/gallium-68-[DFO]-octreotide—a potential radiopharmaceutical for PET imaging of somatostatin receptor-positive tumors: synthesis and radiolabeling in vitro and preliminary in vivo studies. J Nucl Med. 1994;35:317–325. PubMed

Stolz B, Smith-Jones P, Albert R, Reist H, Maecke H, Bruns C. Biological characterisation of [67Ga] or [68Ga] labelled DFO-octreotide (SDZ 216-927) for PET studies of somatostatin receptor positive tumors. Horm Metab Res. 1994;26:453–459. doi: 10.1055/s-2007-1001732. PubMed DOI

Heppeler A, Froidevaux S, Eberle AN, Maecke HR. Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem. 2000;7:971–994. doi: 10.2174/0929867003374516. PubMed DOI

Caraco C, Aloj L, Eckelman W. The gallium–deferoxamine complex: stability with different deferoxamine concentrations and incubation conditions. Appl Radiat Isot. 1998;49:1477–1479. doi: 10.1016/S0969-8043(97)10107-5. PubMed DOI

Zhang Y, Hong H, Cai W. PET tracers based on Zirconium-89. Curr Radiopharm. 2011;4:131–139. doi: 10.2174/1874471011104020131. PubMed DOI PMC

Severin GW, Engle JW, Barnhart TE, Nickles RJ. Zr-89 radiochemistry for positron emission tomography. Med Chem. 2011;7:389–394. doi: 10.2174/157340611796799186. PubMed DOI PMC

Nayak TK, Brechbiel MW. Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges. Bioconjug Chem. 2009;20:825–841. doi: 10.1021/bc800299f. PubMed DOI PMC

Fischer G, Seibold U, Schirrmacher R, Wangler B, Wangler C. 89Zr, a radiometal nuclide with high potential for molecular imaging with PET: chemistry, applications and remaining challenges. Molecules. 2013;18:6469–6490. doi: 10.3390/molecules18066469. PubMed DOI PMC

Deri MA, Zeglis BM, Francesconi LC, Lewis JS. PET imaging with 89Zr: from radiochemistry to the clinic. Nucl Med Biol. 2013;40:3–14. doi: 10.1016/j.nucmedbio.2012.08.004. PubMed DOI PMC

Meijs WE, Herscheid JD, Haisma HJ, Pinedo HM. Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-89. Int J Rad Appl Instrum A. 1992;43:1443–1447. doi: 10.1016/0883-2889(92)90170-J. PubMed DOI

Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med. 2010;51:1293–1300. doi: 10.2967/jnumed.110.076174. PubMed DOI PMC

Börjesson PK, Jauw YW, Boellaard R, de Bree R, Comans EF, Roos JC, Castelijns JA, Vosjan MJ, Kummer JA, Leemans CR, Lammertsma AA, van Dongen GA. Performance of immuno-positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clin Cancer Res. 2006;12:2133–2140. doi: 10.1158/1078-0432.CCR-05-2137. PubMed DOI

Verel I, Visser GW, Boellaard R, Stigter-van Walsum M, Snow GB, van Dongen GA. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med. 2003;44:1271–1281. PubMed

Perk LR, Vosjan MJ, Visser GW, Budde M, Jurek P, Kiefer GE, van Dongen GA. p-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging. Eur J Nucl Med Mol Imaging. 2010;37:250–259. doi: 10.1007/s00259-009-1263-1. PubMed DOI PMC

Vosjan MJ, Perk LR, Visser GW, Budde M, Jurek P, Kiefer GE, van Dongen GA. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat Protoc. 2010;5:739–743. doi: 10.1038/nprot.2010.13. PubMed DOI

Jacobson O, Zhu L, Niu G, Weiss ID, Szajek LP, Ma Y, Sun X, Yan Y, Kiesewetter DO, Liu S, Chen X. MicroPET imaging of integrin alphavbeta3 expressing tumors using 89Zr-RGD peptides. Mol Imaging Biol. 2011;13:1224–1233. doi: 10.1007/s11307-010-0458-y. PubMed DOI PMC

Keliher EJ, Yoo J, Nahrendorf M, Lewis JS, Marinelli B, Newton A, Pittet MJ, Weissleder R. 89Zr-labeled dextran nanoparticles allow in vivo macrophage imaging. Bioconjug Chem. 2011;22:2383–2389. doi: 10.1021/bc200405d. PubMed DOI PMC

Miller L, Winter G, Baur B, Witulla B, Solbach C, Reske S, Lindén M. Synthesis, characterization, and biodistribution of multiple 89Zr-labeled pore-expanded mesoporous silica nanoparticles for PET. Nanoscale. 2014;6:4928–4935. doi: 10.1039/c3nr06800e. PubMed DOI

Ruggiero A, Villa CH, Holland JP, Sprinkle SR, May C, Lewis JS, Scheinberg DA, McDevitt MR. Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int J Nanomed. 2010;5:783–802. PubMed PMC

Heuveling DA, Visser GWM, Baclayon M, Roos WH, Wuite GJL, Hoekstra OS, Leemans CR, de Bree R, van Dongen GAMS. Zr-89-Nanocolloidal albumin-based PET/CT lymphoscintigraphy for sentinel node detection in head and neck cancer: preclinical results. J Nucl Med. 2011;52:1580–1584. doi: 10.2967/jnumed.111.089557. PubMed DOI

Evans MJ, Holland JP, Rice SL, Doran MG, Cheal SM, CamposC Carlin SD, Mellinghoff IK, Sawyers CL, Lewis JS. Imaging Tumor Burden in the Brain with Zr-89-Transferrin. J Nucl Med. 2013;54:90–95. doi: 10.2967/jnumed.112.109777. PubMed DOI PMC

Holland JP, Evans MJ, Rice SL, Wongvipat J, Sawyers CL, Lewis JS. Annotating MYC status with Zr-89-transferrin imaging. Nat Med. 2012;18:1586–1597. doi: 10.1038/nm.2935. PubMed DOI PMC

Chang AJ, DeSilva R, Jain S, Lears K, Rogers B, Lapi S. 89Zr-radiolabeled trastuzumab imaging in orthotopic and metastatic breast tumors. Pharmaceuticals. 2012;5:79–93. doi: 10.3390/ph5010079. PubMed DOI PMC

Perk LR, Visser GW, Vosjan MJ, Stigter-van Walsum M, Tijink BM, Leemans CR, van Dongen GA. 89Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals 90Y and 177Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med. 2005;46:1898–1906. PubMed

Patra M, Bauman A, Mari C, Fischer CA, Blacque O, Häussinger D, Gasser G, Mindt TL. An octadentate bifunctional chelating agent for the development of stable zirconium-89 based molecular imaging probes. Chem Commun (Camb) 2014;50:11523–11525. doi: 10.1039/C4CC05558F. PubMed DOI

Knetsch PA, Zhai C, Rangger C, Blatzer M, Haas H, Kaeopookum P, Haubner R, Decristoforo C. [68Ga] FSC-(RGD)3 a trimeric RGD peptide for imaging αvβ3 integrin expression based on a novel siderophore derived chelating scaffold—synthesis and evaluation. Nucl Med Biol. 2015;42:115–122. doi: 10.1016/j.nucmedbio.2014.10.001. PubMed DOI PMC

Zhai C, Summer D, Rangger C, Haas H, Haubner R, Decristoforo C. Fusarinine C, a novel siderophore-based bifunctional chelator for radiolabeling with Gallium-68. J Label Comp Radiopharm. 2015;58:209–214. doi: 10.1002/jlcr.3286. PubMed DOI PMC

Zhai C, Summer D, Rangger C, Franssen GM, Laverman P, Haas H, Petrik M, Haubner R, Decristoforo C. Novel bifunctional cyclic chelator for (89)Zr labeling-radiolabeling and targeting properties of RGD conjugates. Mol Pharm. 2015;12:2142–2150. doi: 10.1021/acs.molpharmaceut.5b00128. PubMed DOI PMC

Zhai C, Franssen GM, Petrik M, Laverman P, Summer D, Rangger C, Haubner R, Haas H, Decristoforo C (2016) Comparison of Ga-68-Labeled Fusarinine C-Based Multivalent RGD Conjugates and [68Ga]NODAGA-RGD-In Vivo Imaging Studies in Human Xenograft Tumors. Mol Imaging Biol. doi: 10.1007/s11307-016-0931-3. [Epub ahead of print] PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...