Preclinical characterisation of gallium-68 labeled ferrichrome siderophore stereoisomers for PET imaging applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5103
Next generation (EU)
Project ENOCH No. CZ.02.1.01/0.0/0.0/16_019/0000868
the European Regional Development Fund
EATRIS-CZ LM2023053
the Czech Ministry of Education, Youth and Sports through project EATRIS
PubMed
38436776
PubMed Central
PMC10912063
DOI
10.1186/s41181-024-00249-z
PII: 10.1186/s41181-024-00249-z
Knihovny.cz E-zdroje
- Klíčová slova
- Imaging, Infection, Positron emission tomography, Siderophore, Stereoisomers,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Siderophores are small iron-binding molecules produced by microorganisms to facilitate iron acquisition from the environment. Radiolabelled siderophores offer a promising solution for infection imaging, as they can specifically target the pathophysiological mechanisms of pathogens. Gallium-68 can replace the iron in siderophores, enabling molecular imaging with positron emission tomography (PET). Stereospecific interactions play a crucial role in the recognition of receptors, transporters, and iron utilisation. Furthermore, these interactions have an impact on the host environment, affecting pharmacokinetics and biodistribution. This study examines the influence of siderophore stereoisomerism on imaging properties, with a focus on ferrirubin (FR) and ferrirhodin (FRH), two cis-trans isomeric siderophores of the ferrichrome type. RESULTS: Tested siderophores were labelled with gallium-68 with high radiochemical purity. The resulting complexes differed in their in vitro characteristics. [68Ga]Ga-FRH showed less hydrophilic properties and higher protein binding values than [68Ga]Ga-FR. The stability studies confirmed the high radiochemical stability of both [68Ga]Ga-siderophores in all examined media. Both siderophores were found to be taken up by S. aureus, K. pneumoniae and P. aeruginosa with similar efficacy. The biodistribution tested in normal mice showed rapid renal clearance with low blood pool retention and fast clearance from examined organs for [68Ga]Ga-FR, whereas [68Ga]Ga-FRH showed moderate retention in blood, resulting in slower pharmacokinetics. PET/CT imaging of mice injected with [68Ga]Ga-FR and [68Ga]Ga-FRH confirmed findings from ex vivo biodistribution studies. In a mouse model of S. aureus myositis, both radiolabeled siderophores showed radiotracer accumulation at the site of infection. CONCLUSIONS: The 68Ga-complexes of stereoisomers ferrirubin and ferrirhodin revealed different pharmacokinetic profiles. In vitro uptake was not affected by isomerism. Both compounds had uptake with the same bacterial culture with similar efficacy. PET/CT imaging showed that the [68Ga]Ga-complexes accumulate at the site of S. aureus infection, highlighting the potential of [68Ga]Ga-FR as a promising tool for infection imaging. In contrast, retention of the radioactivity in the blood was observed for [68Ga]Ga-FRH. In conclusion, the stereoisomerism of potential radiotracers should be considered, as even minor structural differences can influence their pharmacokinetics and, consequently, the results of PET imaging.
Zobrazit více v PubMed
Aguiar M, Orasch T, Misslinger M, Dietl A, Gsaller F, Haas H. The siderophore transporters Sit1 and Sit2 are essential for utilization of ferrichrome-, ferrioxamine- and coprogen-type siderophores in aspergillus fumigatus. J Fungi. 2021;7(9):768. doi: 10.3390/jof7090768. PubMed DOI PMC
Bendova K, Raclavsky V, Novotny R, Luptakova D, Popper M, Novy Z, Hajduch M, Petrik M. [68 Ga]Ga-ornibactin for Burkholderia cepacia complex infection imaging using positron emission tomography. J Med Chem. 2023;66(11):7584–7593. doi: 10.1021/acs.jmedchem.3c00469. PubMed DOI PMC
Brillet K, Reimmann C, Mislin G, Noël S, Rognan D, Schalk I, Cobessi D. Pyochelin enantiomers and their outer-membrane siderophore transporters in fluorescent pseudomonads: structural bases for unique enantiospecific recognition. J Am Chem Soc. 2011;133(41):16503–16509. doi: 10.1021/ja205504z. PubMed DOI
Carroll C, Amankwa L, Pinto L, Fuller J, Moore M, Chotirmall S. Detection of a serum siderophore by LC-MS/MS as a potential biomarker of invasive aspergillosis. PLoS ONE. 2016;11(3):e0151260. doi: 10.1371/journal.pone.0151260. PubMed DOI PMC
Coelho M, Fernandes C, Remião F, Tiritan M. Enantioselectivity in drug pharmacokinetics and toxicity: pharmacological relevance and analytical methods. Molecules. 2021;26(11):3113. doi: 10.3390/molecules26113113. PubMed DOI PMC
Conroy B, Grigg J, Kolesnikov M, Morales L, Murphy M. Staphylococcus aureus heme and siderophore-iron acquisition pathways. Biometals. 2019;32(3):409–424. doi: 10.1007/s10534-019-00188-2. PubMed DOI
Dale S, Doherty-Kirby A, Lajoie G, Heinrichs D. Role of siderophore biosynthesis in virulence of staphylococcus aureus: identification and characterization of genes involved in production of a siderophore. Infect Immun. 2004;72(1):29–37. doi: 10.1128/IAI.72.1.29-37.2004. PubMed DOI PMC
Ding Y, Fowler J. Highlights of PET studies on chiral radiotracers and drugs at Brookhaven. Drug Dev Res. 2003;59(2):227–239. doi: 10.1002/ddr.10221. DOI
Dobiáš R, Škríba A, Pluháček T, Petřík M, Palyzová A, Káňová M, Čubová E, Houšť J, Novák J, Stevens DA, Mitulovič G, Krejčí E, Hubáček P, Havlíček V. Noninvasive combined diagnosis and monitoring of aspergillus and pseudomonas infections: proof of concept. J Fungi. 2021;7(9):730. doi: 10.3390/jof7090730. PubMed DOI PMC
Elhaki T, Gheysarzadeh A, Sadeghifard N, Pakzad I, Behrouzi A, Taherikalani M, Jalilian F, Tabasi M, Azizian R. Frequency of iron uptake proteins related genes among Klebsiella pneumoniae isolates. Open Microbiol J. 2020;14(1):107–112. doi: 10.2174/1874285802014010107. DOI
Fidelis K, Hossain M, Jalal M, van der Helm D. Structure and molecular mechanics of ferrirhodin. Acta Crystallogr Sect C Cryst Struct Commun. 1990;46(9):1612–1617. doi: 10.1107/S0108270189013624. PubMed DOI
Brooks HW, Guida WC, Daniel GK. The significance of chirality in drug design and development. Curr Topics Med Chem. 2011;11(7):760–770. doi: 10.2174/156802611795165098. PubMed DOI PMC
Hannauer M, Barda Y, Mislin G, Shanzer A, Schalk I. The ferrichrome uptake pathway in Pseudomonas aeruginosa involves an iron release mechanism with acylation of the siderophore and recycling of the modified desferrichrome. J Bacteriol. 2010;192(5):1212–1220. doi: 10.1128/JB.01539-09. PubMed DOI PMC
Hider R, Kong X. Chemistry and biology of siderophores. Nat Prod Rep. 2010;27(5):637–657. doi: 10.1039/b906679a. PubMed DOI
Hoenigl M, Orasch T, Faserl K, Prattes J, Loeffler J, Springer J, Gsaller F, Reischies F, Duettmann W, Raggam R, Lindner H, Haas H. Triacetylfusarinine C: a urine biomarker for diagnosis of invasive aspergillosis. J Infect. 2019;78(2):150–157. doi: 10.1016/j.jinf.2018.09.006. PubMed DOI PMC
Huschka H, Jalal M, van der Helm D, Winkelmann G. Molecular recognition of siderophores in fungi: role of iron-surrounding N-acyl residues and the peptide backbone during membrane transport in Neurospora crassa. J Bacteriol. 1986;167(3):1020–1024. doi: 10.1128/jb.167.3.1020-1024.1986. PubMed DOI PMC
Jalal M, Mocharla R, Barnes C, Hossain M, Powell D, Eng-Wilmot D, Grayson S, Benson B, van der Helm D. Extracellular siderophores from Aspergillus ochraceous. J Bacteriol. 1984;158(2):683–688. doi: 10.1128/jb.158.2.683-688.1984. PubMed DOI PMC
Kleynhans J, Sathekge M, Ebenhan T. Preclinical research highlighting contemporary targeting mechanisms of radiolabelled compounds for PET based infection imaging. Semin Nucl Med. 2023;53(5):630–643. doi: 10.1053/j.semnuclmed.2023.03.001. PubMed DOI
Liu R, Miller P, Vakulenko S, Stewart N, Boggess W, Miller M. A synthetic dual drug sideromycin induces gram-negative bacteria to commit suicide with a gram-positive antibiotic. J Med Chem. 2018;61(9):3845–3854. doi: 10.1021/acs.jmedchem.8b00218. PubMed DOI
Namikawa H, Niki M, Niki M, Oinuma K, Yamada K, Nakaie K, Tsubouchi T, Tochino Y, Takemoto Y, Kaneko Y, Kakeya H, Shuto T. Siderophore production as a biomarker for Klebsiella pneumoniae strains that cause sepsis: a pilot study. J Formos Med Assoc. 2022;121(4):848–855. doi: 10.1016/j.jfma.2021.06.027. PubMed DOI
Ordonez A, Jain S. Pathogen-specific bacterial imaging in nuclear medicine. Semin Nucl Med. 2018;48(2):182–194. doi: 10.1053/j.semnuclmed.2017.11.003. PubMed DOI PMC
Petrik M, Haas H, Dobrozemsky G, Lass-Flörl C, Helbok A, Blatzer M, Dietrich H, Decristoforo C. 68 Ga-siderophores for PET imaging of invasive Pulmonary aspergillosis: proof of principle. J Nucl Med. 2010;51(4):639–645. doi: 10.2967/jnumed.109.072462. PubMed DOI PMC
Petrik M, Haas H, Schrettl M, Helbok A, Blatzer M, Decristoforo C. In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging. Nucl Med Biol. 2012;39(3):361–369. doi: 10.1016/j.nucmedbio.2011.09.012. PubMed DOI PMC
Petrik M, Knetsch P, Knopp R, Imperato G, Ocak M, von Guggenberg E, Haubner R, Silbernagl R, Decristoforo C. Radiolabelling of peptides for PET, SPECT and therapeutic applications using a fully automated disposable cassette system. Nucl Med Commun. 2011;32(10):887–895. doi: 10.1097/MNM.0b013e3283497188. PubMed DOI
Petrik M, Pfister J, Misslinger M, Decristoforo C, Haas H. Siderophore-based molecular imaging of fungal and bacterial infections—current status and future perspectives. J Fungi. 2020;6(2):73. doi: 10.3390/jof6020073. PubMed DOI PMC
Petrik M, Umlaufova E, Raclavsky V, Palyzova A, Havlicek V, Haas H, Novy Z, Dolezal D, Hajduch M, Decristoforo C. Imaging of Pseudomonas aeruginosa infection with Ga-68 labelled pyoverdine for positron emission tomography. Sci Rep. 2018;8(1):15698. doi: 10.1038/s41598-018-33895-w. PubMed DOI PMC
Petrik M, Umlaufova E, Raclavsky V, Palyzova A, Havlicek V, Pfister J, Mair C, Novy Z, Popper M, Hajduch M, Decristoforo C. 68Ga-labelled desferrioxamine-B for bacterial infection imaging. Eur J Nucl Med Mol Imaging. 2021;48(2):372–382. doi: 10.1007/s00259-020-04948-y. PubMed DOI PMC
Petrik M, Zhai C, Haas H, Decristoforo C. Siderophores for molecular imaging applications. Clin Transl Imaging. 2017;5(1):15–27. doi: 10.1007/s40336-016-0211-x. PubMed DOI PMC
Peukert C, Gasser V, Orth T, Fritsch S, Normant V, Cunrath O, Schalk I, Brönstrup M. Trojan horse siderophore conjugates induce Pseudomonas aeruginosa suicide and qualify the TonB protein as a novel antibiotic target. J Med Chem. 2023;66(1):553–576. doi: 10.1021/acs.jmedchem.2c01489. PubMed DOI PMC
Raymond K, Allred B, Sia A. Coordination chemistry of microbial iron transport. Acc Chem Res. 2015;48(9):2496–2505. doi: 10.1021/acs.accounts.5b00301. PubMed DOI PMC
Sebulsky M, Shilton B, Speziali C, Heinrichs D. The role of FhuD2 in iron(III)-hydroxamate transport in Staphylococcus aureus. J Biol Chem. 2003;278(50):49890–49900. doi: 10.1074/jbc.M305073200. PubMed DOI
Skriba A, Pluhacek T, Palyzova A, Novy Z, Lemr K, Hajduch M, Petrik M, Havlicek V. Early and non-invasive diagnosis of aspergillosis revealed by infection kinetics monitored in a rat model. Front Microbiol. 2018;9:2356. doi: 10.3389/fmicb.2018.02356. PubMed DOI PMC
Stow P, Reitz Z, Johnstone T, Butler A. Genomics-driven discovery of chiral triscatechol siderophores with enantiomeric Fe( iii ) coordination. Chem Sci. 2021;12(37):12485–12493. doi: 10.1039/D1SC03541J. PubMed DOI PMC
Winkelmann G. Microbial siderophore-mediated transport. Biochem Soc Trans. 2002;30(4):691–696. doi: 10.1042/bst0300691. PubMed DOI