Preclinical characterisation of gallium-68 labeled ferrichrome siderophore stereoisomers for PET imaging applications

. 2024 Mar 04 ; 9 (1) : 20. [epub] 20240304

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38436776

Grantová podpora
LX22NPO5103 Next generation (EU)
Project ENOCH No. CZ.02.1.01/0.0/0.0/16_019/0000868 the European Regional Development Fund
EATRIS-CZ LM2023053 the Czech Ministry of Education, Youth and Sports through project EATRIS

Odkazy

PubMed 38436776
PubMed Central PMC10912063
DOI 10.1186/s41181-024-00249-z
PII: 10.1186/s41181-024-00249-z
Knihovny.cz E-zdroje

BACKGROUND: Siderophores are small iron-binding molecules produced by microorganisms to facilitate iron acquisition from the environment. Radiolabelled siderophores offer a promising solution for infection imaging, as they can specifically target the pathophysiological mechanisms of pathogens. Gallium-68 can replace the iron in siderophores, enabling molecular imaging with positron emission tomography (PET). Stereospecific interactions play a crucial role in the recognition of receptors, transporters, and iron utilisation. Furthermore, these interactions have an impact on the host environment, affecting pharmacokinetics and biodistribution. This study examines the influence of siderophore stereoisomerism on imaging properties, with a focus on ferrirubin (FR) and ferrirhodin (FRH), two cis-trans isomeric siderophores of the ferrichrome type. RESULTS: Tested siderophores were labelled with gallium-68 with high radiochemical purity. The resulting complexes differed in their in vitro characteristics. [68Ga]Ga-FRH showed less hydrophilic properties and higher protein binding values than [68Ga]Ga-FR. The stability studies confirmed the high radiochemical stability of both [68Ga]Ga-siderophores in all examined media. Both siderophores were found to be taken up by S. aureus, K. pneumoniae and P. aeruginosa with similar efficacy. The biodistribution tested in normal mice showed rapid renal clearance with low blood pool retention and fast clearance from examined organs for [68Ga]Ga-FR, whereas [68Ga]Ga-FRH showed moderate retention in blood, resulting in slower pharmacokinetics. PET/CT imaging of mice injected with [68Ga]Ga-FR and [68Ga]Ga-FRH confirmed findings from ex vivo biodistribution studies. In a mouse model of S. aureus myositis, both radiolabeled siderophores showed radiotracer accumulation at the site of infection. CONCLUSIONS: The 68Ga-complexes of stereoisomers ferrirubin and ferrirhodin revealed different pharmacokinetic profiles. In vitro uptake was not affected by isomerism. Both compounds had uptake with the same bacterial culture with similar efficacy. PET/CT imaging showed that the [68Ga]Ga-complexes accumulate at the site of S. aureus infection, highlighting the potential of [68Ga]Ga-FR as a promising tool for infection imaging. In contrast, retention of the radioactivity in the blood was observed for [68Ga]Ga-FRH. In conclusion, the stereoisomerism of potential radiotracers should be considered, as even minor structural differences can influence their pharmacokinetics and, consequently, the results of PET imaging.

Zobrazit více v PubMed

Aguiar M, Orasch T, Misslinger M, Dietl A, Gsaller F, Haas H. The siderophore transporters Sit1 and Sit2 are essential for utilization of ferrichrome-, ferrioxamine- and coprogen-type siderophores in aspergillus fumigatus. J Fungi. 2021;7(9):768. doi: 10.3390/jof7090768. PubMed DOI PMC

Bendova K, Raclavsky V, Novotny R, Luptakova D, Popper M, Novy Z, Hajduch M, Petrik M. [68 Ga]Ga-ornibactin for Burkholderia cepacia complex infection imaging using positron emission tomography. J Med Chem. 2023;66(11):7584–7593. doi: 10.1021/acs.jmedchem.3c00469. PubMed DOI PMC

Brillet K, Reimmann C, Mislin G, Noël S, Rognan D, Schalk I, Cobessi D. Pyochelin enantiomers and their outer-membrane siderophore transporters in fluorescent pseudomonads: structural bases for unique enantiospecific recognition. J Am Chem Soc. 2011;133(41):16503–16509. doi: 10.1021/ja205504z. PubMed DOI

Carroll C, Amankwa L, Pinto L, Fuller J, Moore M, Chotirmall S. Detection of a serum siderophore by LC-MS/MS as a potential biomarker of invasive aspergillosis. PLoS ONE. 2016;11(3):e0151260. doi: 10.1371/journal.pone.0151260. PubMed DOI PMC

Coelho M, Fernandes C, Remião F, Tiritan M. Enantioselectivity in drug pharmacokinetics and toxicity: pharmacological relevance and analytical methods. Molecules. 2021;26(11):3113. doi: 10.3390/molecules26113113. PubMed DOI PMC

Conroy B, Grigg J, Kolesnikov M, Morales L, Murphy M. Staphylococcus aureus heme and siderophore-iron acquisition pathways. Biometals. 2019;32(3):409–424. doi: 10.1007/s10534-019-00188-2. PubMed DOI

Dale S, Doherty-Kirby A, Lajoie G, Heinrichs D. Role of siderophore biosynthesis in virulence of staphylococcus aureus: identification and characterization of genes involved in production of a siderophore. Infect Immun. 2004;72(1):29–37. doi: 10.1128/IAI.72.1.29-37.2004. PubMed DOI PMC

Ding Y, Fowler J. Highlights of PET studies on chiral radiotracers and drugs at Brookhaven. Drug Dev Res. 2003;59(2):227–239. doi: 10.1002/ddr.10221. DOI

Dobiáš R, Škríba A, Pluháček T, Petřík M, Palyzová A, Káňová M, Čubová E, Houšť J, Novák J, Stevens DA, Mitulovič G, Krejčí E, Hubáček P, Havlíček V. Noninvasive combined diagnosis and monitoring of aspergillus and pseudomonas infections: proof of concept. J Fungi. 2021;7(9):730. doi: 10.3390/jof7090730. PubMed DOI PMC

Elhaki T, Gheysarzadeh A, Sadeghifard N, Pakzad I, Behrouzi A, Taherikalani M, Jalilian F, Tabasi M, Azizian R. Frequency of iron uptake proteins related genes among Klebsiella pneumoniae isolates. Open Microbiol J. 2020;14(1):107–112. doi: 10.2174/1874285802014010107. DOI

Fidelis K, Hossain M, Jalal M, van der Helm D. Structure and molecular mechanics of ferrirhodin. Acta Crystallogr Sect C Cryst Struct Commun. 1990;46(9):1612–1617. doi: 10.1107/S0108270189013624. PubMed DOI

Brooks HW, Guida WC, Daniel GK. The significance of chirality in drug design and development. Curr Topics Med Chem. 2011;11(7):760–770. doi: 10.2174/156802611795165098. PubMed DOI PMC

Hannauer M, Barda Y, Mislin G, Shanzer A, Schalk I. The ferrichrome uptake pathway in Pseudomonas aeruginosa involves an iron release mechanism with acylation of the siderophore and recycling of the modified desferrichrome. J Bacteriol. 2010;192(5):1212–1220. doi: 10.1128/JB.01539-09. PubMed DOI PMC

Hider R, Kong X. Chemistry and biology of siderophores. Nat Prod Rep. 2010;27(5):637–657. doi: 10.1039/b906679a. PubMed DOI

Hoenigl M, Orasch T, Faserl K, Prattes J, Loeffler J, Springer J, Gsaller F, Reischies F, Duettmann W, Raggam R, Lindner H, Haas H. Triacetylfusarinine C: a urine biomarker for diagnosis of invasive aspergillosis. J Infect. 2019;78(2):150–157. doi: 10.1016/j.jinf.2018.09.006. PubMed DOI PMC

Huschka H, Jalal M, van der Helm D, Winkelmann G. Molecular recognition of siderophores in fungi: role of iron-surrounding N-acyl residues and the peptide backbone during membrane transport in Neurospora crassa. J Bacteriol. 1986;167(3):1020–1024. doi: 10.1128/jb.167.3.1020-1024.1986. PubMed DOI PMC

Jalal M, Mocharla R, Barnes C, Hossain M, Powell D, Eng-Wilmot D, Grayson S, Benson B, van der Helm D. Extracellular siderophores from Aspergillus ochraceous. J Bacteriol. 1984;158(2):683–688. doi: 10.1128/jb.158.2.683-688.1984. PubMed DOI PMC

Kleynhans J, Sathekge M, Ebenhan T. Preclinical research highlighting contemporary targeting mechanisms of radiolabelled compounds for PET based infection imaging. Semin Nucl Med. 2023;53(5):630–643. doi: 10.1053/j.semnuclmed.2023.03.001. PubMed DOI

Liu R, Miller P, Vakulenko S, Stewart N, Boggess W, Miller M. A synthetic dual drug sideromycin induces gram-negative bacteria to commit suicide with a gram-positive antibiotic. J Med Chem. 2018;61(9):3845–3854. doi: 10.1021/acs.jmedchem.8b00218. PubMed DOI

Namikawa H, Niki M, Niki M, Oinuma K, Yamada K, Nakaie K, Tsubouchi T, Tochino Y, Takemoto Y, Kaneko Y, Kakeya H, Shuto T. Siderophore production as a biomarker for Klebsiella pneumoniae strains that cause sepsis: a pilot study. J Formos Med Assoc. 2022;121(4):848–855. doi: 10.1016/j.jfma.2021.06.027. PubMed DOI

Ordonez A, Jain S. Pathogen-specific bacterial imaging in nuclear medicine. Semin Nucl Med. 2018;48(2):182–194. doi: 10.1053/j.semnuclmed.2017.11.003. PubMed DOI PMC

Petrik M, Haas H, Dobrozemsky G, Lass-Flörl C, Helbok A, Blatzer M, Dietrich H, Decristoforo C. 68 Ga-siderophores for PET imaging of invasive Pulmonary aspergillosis: proof of principle. J Nucl Med. 2010;51(4):639–645. doi: 10.2967/jnumed.109.072462. PubMed DOI PMC

Petrik M, Haas H, Schrettl M, Helbok A, Blatzer M, Decristoforo C. In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging. Nucl Med Biol. 2012;39(3):361–369. doi: 10.1016/j.nucmedbio.2011.09.012. PubMed DOI PMC

Petrik M, Knetsch P, Knopp R, Imperato G, Ocak M, von Guggenberg E, Haubner R, Silbernagl R, Decristoforo C. Radiolabelling of peptides for PET, SPECT and therapeutic applications using a fully automated disposable cassette system. Nucl Med Commun. 2011;32(10):887–895. doi: 10.1097/MNM.0b013e3283497188. PubMed DOI

Petrik M, Pfister J, Misslinger M, Decristoforo C, Haas H. Siderophore-based molecular imaging of fungal and bacterial infections—current status and future perspectives. J Fungi. 2020;6(2):73. doi: 10.3390/jof6020073. PubMed DOI PMC

Petrik M, Umlaufova E, Raclavsky V, Palyzova A, Havlicek V, Haas H, Novy Z, Dolezal D, Hajduch M, Decristoforo C. Imaging of Pseudomonas aeruginosa infection with Ga-68 labelled pyoverdine for positron emission tomography. Sci Rep. 2018;8(1):15698. doi: 10.1038/s41598-018-33895-w. PubMed DOI PMC

Petrik M, Umlaufova E, Raclavsky V, Palyzova A, Havlicek V, Pfister J, Mair C, Novy Z, Popper M, Hajduch M, Decristoforo C. 68Ga-labelled desferrioxamine-B for bacterial infection imaging. Eur J Nucl Med Mol Imaging. 2021;48(2):372–382. doi: 10.1007/s00259-020-04948-y. PubMed DOI PMC

Petrik M, Zhai C, Haas H, Decristoforo C. Siderophores for molecular imaging applications. Clin Transl Imaging. 2017;5(1):15–27. doi: 10.1007/s40336-016-0211-x. PubMed DOI PMC

Peukert C, Gasser V, Orth T, Fritsch S, Normant V, Cunrath O, Schalk I, Brönstrup M. Trojan horse siderophore conjugates induce Pseudomonas aeruginosa suicide and qualify the TonB protein as a novel antibiotic target. J Med Chem. 2023;66(1):553–576. doi: 10.1021/acs.jmedchem.2c01489. PubMed DOI PMC

Raymond K, Allred B, Sia A. Coordination chemistry of microbial iron transport. Acc Chem Res. 2015;48(9):2496–2505. doi: 10.1021/acs.accounts.5b00301. PubMed DOI PMC

Sebulsky M, Shilton B, Speziali C, Heinrichs D. The role of FhuD2 in iron(III)-hydroxamate transport in Staphylococcus aureus. J Biol Chem. 2003;278(50):49890–49900. doi: 10.1074/jbc.M305073200. PubMed DOI

Skriba A, Pluhacek T, Palyzova A, Novy Z, Lemr K, Hajduch M, Petrik M, Havlicek V. Early and non-invasive diagnosis of aspergillosis revealed by infection kinetics monitored in a rat model. Front Microbiol. 2018;9:2356. doi: 10.3389/fmicb.2018.02356. PubMed DOI PMC

Stow P, Reitz Z, Johnstone T, Butler A. Genomics-driven discovery of chiral triscatechol siderophores with enantiomeric Fe( iii ) coordination. Chem Sci. 2021;12(37):12485–12493. doi: 10.1039/D1SC03541J. PubMed DOI PMC

Winkelmann G. Microbial siderophore-mediated transport. Biochem Soc Trans. 2002;30(4):691–696. doi: 10.1042/bst0300691. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...