Positron Emission Tomography Imaging of Acinetobacter baumannii Infection: Comparison of Gallium-68 Labeled Siderophores
Language English Country United States Media print-electronic
Document type Journal Article, Comparative Study
PubMed
40099411
PubMed Central
PMC11997986
DOI
10.1021/acsinfecdis.4c00946
Knihovny.cz E-resources
- Keywords
- Acinetobacter baumannii, PET, gallium-68, radiolabeling, siderophores,
- MeSH
- Acinetobacter baumannii * MeSH
- Acinetobacter Infections * diagnostic imaging microbiology MeSH
- Rats MeSH
- Disease Models, Animal MeSH
- Mice MeSH
- Positron-Emission Tomography * methods MeSH
- Gallium Radioisotopes * chemistry MeSH
- Siderophores * chemistry pharmacokinetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Names of Substances
- Gallium-68 MeSH Browser
- Gallium Radioisotopes * MeSH
- Siderophores * MeSH
Acinetobacter baumannii (AB) is an opportunistic pathogen with growing clinical relevance due to its increasing level of antimicrobial resistance in the last few decades. In the event of an AB hospital outbreak, fast detection and localization of the pathogen is crucial, to prevent its further spread. However, contemporary diagnostic tools do not always meet the requirements for rapid and accurate diagnosis. For this reason, we report here the possibility of using gallium-68 labeled siderophores, bacterial iron chelators, for positron emission tomography imaging of AB infections. In our study, we radiolabeled several siderophores and tested their in vitro uptake in AB cultures. Based on the results and the in vitro properties of studied siderophores, we selected two of them for further in vivo testing in infectious models. Both selected siderophores, ferrioxamine E and ferrirubin, showed promising in vitro characteristics. In vivo, we observed rapid pharmacokinetics and no excessive accumulation in organs other than the excretory organs in normal mice. We demonstrated that the radiolabeled siderophores accumulate in AB-infected tissue in three animal models: a murine model of myositis, a murine model of dorsal wound infection and a rat model of pneumonia. These results suggest that both siderophores radiolabeled with Ga-68 could be used for PET imaging of AB infection.
Czech Advanced Technology and Research Institute Palacký University 779 00 Olomouc Czech Republic
Laboratory of Experimental Medicine University Hospital 779 00 Olomouc Czech Republic
See more in PubMed
Giamarellou H.; Antoniadou A.; Kanellakopoulou K. Acinetobacter baumannii: A Universal Threat to Public Health?. Int. J. Antimicrob. Agents 2008, 32 (2), 106–119. 10.1016/j.ijantimicag.2008.02.013. PubMed DOI
Ramirez M. S.; Bonomo R. A.; Tolmasky M. E. Carbapenemases: Transforming Acinetobacter baumannii into Yet a More Dangerous Menace. Biomolecules 2020, 10 (5), 720.10.3390/biom10050720. PubMed DOI PMC
Lee C. R.; Lee J. H.; Park M.; Park K. S.; Bae I. K.; Kim Y. B.; Cha C. J.; Jeong B. C.; Lee S. H. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Cell. Infect. Microbiol. 2017, 7, 55.10.3389/fcimb.2017.00055. PubMed DOI PMC
Peleg A. Y.; Seifert H.; Paterson D. L. Acinetobacter baumannii: Emergence of a Successful Pathogen. Clin. Microbiol. Rev. 2008, 21 (3), 538–582. 10.1128/CMR.00058-07. PubMed DOI PMC
Tacconelli E.; Carrara E.; Savoldi A.; Harbarth S.; Mendelson M.; Monnet D. L.; Pulcini C.; Kahlmeter G.; Kluytmans J.; Carmeli Y.; Ouellette M.; Outterson K.; Patel J.; Cavaleri M.; Cox E. M.; Houchens C. R.; Grayson M. L.; Hansen P.; Singh N.; Theuretzbacher U.; Magrini N.; Aboderin A. O.; Al-Abri S. S.; Awang Jalil N.; Benzonana N.; Bhattacharya S.; Brink A. J.; Burkert F. R.; Cars O.; Cornaglia G.; Dyar O. J.; Friedrich A. W.; Gales A. C.; Gandra S.; Giske C. G.; Goff D. A.; Goossens H.; Gottlieb T.; Guzman Blanco M.; Hryniewicz W.; Kattula D.; Jinks T.; Kanj S. S.; Kerr L.; Kieny M. P.; Kim Y. S.; Kozlov R. S.; Labarca J.; Laxminarayan R.; Leder K.; Leibovici L.; Levy-Hara G.; Littman J.; Malhotra-Kumar S.; Manchanda V.; Moja L.; Ndoye B.; Pan A.; Paterson D. L.; Paul M.; Qiu H.; Ramon-Pardo P.; Rodríguez-Baño J.; Sanguinetti M.; Sengupta S.; Sharland M.; Si-Mehand M.; Silver L. L.; Song W.; Steinbakk M.; Thomsen J.; Thwaites G. E.; van der Meer J. W.; Van Kinh N.; Vega S.; Villegas M. V.; Wechsler-Fördös A.; Wertheim H. F. L.; Wesangula E.; Woodford N.; Yilmaz F. O.; Zorzet A. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18 (3), 318–327. 10.1016/S1473-3099(17)30753-3. PubMed DOI
Bostanghadiri N.; Narimisa N.; Mirshekar M.; Dadgar-Zankbar L.; Taki E.; Navidifar T.; Darban-Sarokhalil D. Prevalence of Colistin Resistance in Clinical Isolates of Acinetobacter baumannii: A Systematic Review and Meta-Analysis. Antimicrob. Resist. Infect. Control 2024, 13 (1), 24.10.1186/s13756-024-01376-7. PubMed DOI PMC
Ayobami O.; Willrich N.; Harder T.; Okeke I. N.; Eckmanns T.; Markwart R. The Incidence and Prevalence of Hospital-Acquired (Carbapenem-Resistant) Acinetobacter baumannii in Europe, Eastern Mediterranean and Africa: A Systematic Review and Meta-Analysis. Emerging Microbes Infect. 2019, 8 (1), 1747–1759. 10.1080/22221751.2019.1698273. PubMed DOI PMC
Katsaragakis S.; Markogiannakis H.; Toutouzas K. G.; Drimousis P.; Larentzakis A.; Theodoraki E. M.; Theodorou D. Acinetobacter baumannii Infections in a Surgical Intensive Care Unit: Predictors of Multi-Drug Resistance. World J. Surg. 2008, 32 (6), 1194–1202. 10.1007/s00268-008-9571-3. PubMed DOI
Bergogne-Bérézin E.; Towner K. J. Acinetobacter spp. as Nosocomial Pathogens: Microbiological, Clinical, and Epidemiological Features. Clin. Microbiol. Rev. 1996, 9 (2), 148–165. 10.1128/CMR.9.2.148. PubMed DOI PMC
Falagas M. E.; Rafailidis P. I. Attributable Mortality of Acinetobacter baumannii: No Longer a Controversial Issue. Crit. Care 2007, 11 (3), 134.10.1186/cc5911. PubMed DOI PMC
Nguyen M.; Joshi S. G. Carbapenem Resistance in Acinetobacter baumannii, and Their Importance in Hospital-Acquired Infections: A Scientific Review. J. Appl. Microbiol. 2021, 131 (6), 2715–2738. 10.1111/jam.15130. PubMed DOI
Metersky M. L.; Kalil A. C. New Guidelines for Nosocomial Pneumonia. Curr. Opin. Pulm. Med. 2017, 23 (3), 211–217. 10.1097/MCP.0000000000000367. PubMed DOI
Lee C. Y.; Degani I.; Cheong J.; Weissleder R.; Lee J. H.; Cheon J.; Lee H. Development of Integrated Systems for On-Site Infection Detection. Acc. Chem. Res. 2021, 54 (21), 3991–4000. 10.1021/acs.accounts.1c00498. PubMed DOI PMC
Bartal C.; Rolston K. V. I.; Nesher L. Carbapenem-Resistant Acinetobacter baumannii: Colonization, Infection and Current Treatment Options. Infect. Dis. Ther. 2022, 11 (2), 683–694. 10.1007/s40121-022-00597-w. PubMed DOI PMC
Berton D. C.; Kalil A. C.; Teixeira P. J. Z. Quantitative versus Qualitative Cultures of Respiratory Secretions for Clinical Outcomes in Patients with Ventilator-Associated Pneumonia. Cochrane Database Syst. Rev. 2014, 2014 (10), CD006482.10.1002/14651858.CD006482.pub4. PubMed DOI PMC
Khasheii B.; Mahmoodi P.; Mohammadzadeh A. Siderophores: Importance in Bacterial Pathogenesis and Applications in Medicine and Industry. Microbiol. Res. 2021, 250, 126790.10.1016/j.micres.2021.126790. PubMed DOI
Khan A.; Singh P.; Srivastava A. Synthesis, Nature and Utility of Universal Iron Chelator – Siderophore: A Review. Microbiol. Res. 2018, 212–213, 103–111. 10.1016/j.micres.2017.10.012. PubMed DOI
Ferreira D.; Seca A. M. L.; Pinto D. C. G. A.; Silva A. M. S. Targeting Human Pathogenic Bacteria by Siderophores: A Proteomics Review. J. Proteonomics 2016, 145, 153–166. 10.1016/j.jprot.2016.04.006. PubMed DOI
Fardeau S.; Mullié C.; Dassonville-Klimpt A.; Audic N.; Sasaki A.; Sonnet P.. Bacterial Iron Uptake: A Promising Solution Against Multidrug Resistant Bacteria. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances; Formatex Research Center, 2011; Vol. 1, pp 695–705.
Yakkala H.; Samantarrai D.; Gribskov M.; Siddavattam D. Comparative Genome Analysis Reveals Nichespecific Genome Expansion in Acinetobacter baumannii Strains. PLoS One 2019, 14 (6), e021820410.1371/journal.pone.0218204. PubMed DOI PMC
Funahashi T.; Tanabe T.; Mihara K.; Miyamoto K.; Tsujibo H.; Yamamoto S. Identification and Characterization of an Outer Membrane Receptor Gene in Acinetobacter Baumannii Required for Utilization of Desferricoprogen, Rhodotorulic Acid, and Desferrioxamine B as Xenosiderophores. Biol. Pharm. Bull. 2012, 35 (5), 753–760. 10.1248/bpb.35.753. PubMed DOI
Petrik M.; Haas H.; Schrettl M.; Helbok A.; Blatzer M.; Decristoforo C. In Vitro and In Vivo Evaluation of Selected 68Ga-Siderophores for Infection Imaging. Nucl. Med. Biol. 2012, 39 (3), 361–369. 10.1016/j.nucmedbio.2011.09.012. PubMed DOI PMC
Petrik M.; Umlaufova E.; Raclavsky V.; Palyzova A.; Havlicek V.; Haas H.; Novy Z.; Dolezal D.; Hajduch M.; Decristoforo C. Imaging of Pseudomonas aeruginosa Infection with Ga-68 Labelled Pyoverdine for Positron Emission Tomography. Sci. Rep. 2018, 8 (1), 15698.10.1038/s41598-018-33895-w. PubMed DOI PMC
Petrik M.; Haas H.; Dobrozemsky G.; Lass-Flörl C.; Helbok A.; Blatzer M.; Dietrich H.; Decristoforo C. 68Ga-Siderophores for PET Imaging of Invasive Pulmonary Aspergillosis: Proof of Principle. J. Nucl. Med. 2010, 51 (4), 639–645. 10.2967/jnumed.109.072462. PubMed DOI PMC
Petrik M.; Umlaufova E.; Raclavsky V.; Palyzova A.; Havlicek V.; Pfister J.; Mair C.; Novy Z.; Popper M.; Hajduch M.; Decristoforo C. 68Ga-labelled Desferrioxamine-B for Bacterial Infection Imaging. Eur. J. Nucl. Med. Mol. Imaging 2021, 48 (2), 372–382. 10.1007/s00259-020-04948-y. PubMed DOI PMC
Petrik M.; Franssen G. M.; Haas H.; Laverman P.; Hörtnagl C.; Schrettl M.; Helbok A.; Lass-Flörl C.; Decristoforo C. Preclinical Evaluation of Two 68Ga-siderophores as Potential Radiopharmaceuticals for Aspergillus fumigatus Infection Imaging. Eur. J. Nucl. Med. Mol. Imaging 2012, 39 (7), 1175–1183. 10.1007/s00259-012-2110-3. PubMed DOI PMC
Krasulova K.; Neuzilova B.; Dvorakova Bendova K.; Novy Z.; Popper M.; Hajduch M.; Petrik M. Preclinical Characterisation of Gallium-68 Labeled Ferrichrome Siderophore Stereoisomers for PET Imaging Applications. EJNMMI Radiopharm. Chem. 2024, 9 (1), 20.10.1186/s41181-024-00249-z. PubMed DOI PMC
Murdoch D. R.; O’Brien K. L.; Driscoll A. J.; Karron R. A.; Bhat N. Laboratory Methods for Determining Pneumonia Etiology In Children. Clin. Infect. Dis. 2012, 54 (suppl_2), S146–S152. 10.1093/cid/cir1073. PubMed DOI
Boers S. A.; Jansen R.; Hays J. P. Understanding and Overcoming the Pitfalls and Biases of Next-Generation Sequencing (NGS) Methods for Use in the Routine Clinical Microbiological Diagnostic Laboratory. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38 (6), 1059–1070. 10.1007/s10096-019-03520-3. PubMed DOI PMC
Polvoy I.; Flavell R. R.; Rosenberg O. S.; Ohliger M. A.; Wilson D. M. Nuclear Imaging of Bacterial Infection: The State of the Art and Future Directions. J. Nucl. Med. 2020, 61 (12), 1708–1716. 10.2967/jnumed.120.244939. PubMed DOI PMC
Vaidyanathan S.; Patel C. N.; Scarsbrook A. F.; Chowdhury F. U. FDG PET/CT in Infection and Inflammation - Current and Emerging Clinical Applications. Clin. Radiol. 2015, 70 (7), 787–800. 10.1016/j.crad.2015.03.010. PubMed DOI
Mota F.; Ordonez A. A.; Firth G.; Ruiz-Bedoya C. A.; Ma M. T.; Jain S. K. Radiotracer Development for Bacterial Imaging. J. Med. Chem. 2020, 63 (5), 1964–1977. 10.1021/acs.jmedchem.9b01623. PubMed DOI PMC
Ordonez A. A.; Jain S. K. Pathogen-Specific Bacterial Imaging in Nuclear Medicine. Semin. Nucl. Med. 2018, 48 (2), 182–194. 10.1053/j.semnuclmed.2017.11.003. PubMed DOI PMC
van Oosten M.; Hahn M.; Crane L. M. A.; Pleijhuis R. G.; Francis K. P.; van Dijl J. M.; van Dam G. M. Targeted Imaging of Bacterial Infections: Advances, Hurdles and Hopes. FEMS Microbiol. Rev. 2015, 39 (6), 892–916. 10.1093/femsre/fuv029. PubMed DOI
Bendova K.; Raclavsky V.; Novotny R.; Luptakova D.; Popper M.; Novy Z.; Hajduch M.; Petrik M. [68Ga]Ga-Ornibactin for Burkholderia cepacia complex Infection Imaging Using Positron Emission Tomography. J. Med. Chem. 2023, 66 (11), 7584–7593. 10.1021/acs.jmedchem.3c00469. PubMed DOI PMC
Cook-Libin S.; Sykes E. M. E.; Kornelsen V.; Kumar A. Iron Acquisition Mechanisms and Their Role in the Virulence of Acinetobacter baumannii. Infect. Immun. 2022, 90 (10), e0022310.1128/iai.00223-22. PubMed DOI PMC
Aghajani Z.; Rasooli I.; Mousavi Gargari S. L. Exploitation of two siderophore receptors, BauA and BfnH, for protection against Acinetobacter baumannii infection. APMIS 2019, 127 (12), 753–763. 10.1111/apm.12992. PubMed DOI
Tiwari V.; Rajeswari M. R.; Tiwari M. Proteomic Analysis of Iron-Regulated Membrane Proteins Identify FhuE Receptor as a Target to Inhibit Siderophore-Mediated Iron Acquisition in Acinetobacter baumannii. Int. J. Biol. Macromol. 2019, 125, 1156–1167. 10.1016/j.ijbiomac.2018.12.173. PubMed DOI
Maingot M.; Bourotte M.; Vetter A. C.; Schellhorn B.; Antraygues K.; Scherer H.; Gitzinger M.; Kemmer C.; Dale G. E.; Defert O.; Lociuro S.; Brönstrup M.; Willand N.; Trebosc V. Structure-Activity Relationships of Actively FhuE Transported Rifabutin Derivatives with Potent Activity Against Acinetobacter baumannii. Eur. J. Med. Chem. 2023, 252, 115257.10.1016/j.ejmech.2023.115257. PubMed DOI
Bohac T. J.; Fang L.; Giblin D. E.; Wencewicz T. A. Fimsbactin and Acinetobactin Compete for the Periplasmic Siderophore Binding Protein BauB in Pathogenic Acinetobacter baumannii. ACS Chem. Biol. 2019, 14 (4), 674–687. 10.1021/acschembio.8b01051. PubMed DOI
Sokol P. A.; Darling P.; Lewenza S.; Corbett C. R.; Kooi C. D. Identification of a Siderophore Receptor Required for Ferric Ornibactin Uptake in Burkholderia Cepacia. Infect. Immun. 2000, 68 (12), 6554–6560. 10.1128/IAI.68.12.6554-6560.2000. PubMed DOI PMC
Artuso I.; Poddar H.; Evans B. A.; Visca P. Genomics of Acinetobacter baumannii iron uptake. Microb. Genomes 2023, 9 (8), mgen001080.10.1099/mgen.0.001080. PubMed DOI PMC
Balbontín R.; Villagra N.; Pardos de la Gándara M.; Mora G.; Figueroa-Bossi N.; Bossi L. Expression of IroN, the Salmochelin Siderophore Receptor, Requires mRNA Activation by RyhB Small RNA Homologues. Mol. Microbiol. 2016, 100 (1), 139–155. 10.1111/mmi.13307. PubMed DOI
Emery T. A. Model for Carrier-Mediated Iron Transport. Biochim. Biophys. Acta 1974, 363, 219–225. 10.1016/0005-2736(74)90061-3. PubMed DOI
Murakami C.; Tanaka A. R.; Sato Y.; Kimura Y.; Morimoto K. Easy Detection of Siderophore Production in Diluted Growth Media Using an Improved CAS Reagent. J. Microbiol. Methods 2021, 189, 106310.10.1016/j.mimet.2021.106310. PubMed DOI
CLSI . Performance Standards for Antimicrobial Susceptibility Testing. In Clinical and Laboratory Standards Institute; 35th ed. 2025.
Aguiar M.; Orasch T.; Misslinger M.; Dietl A. M.; Gsaller F.; Haas H. The Siderophore Transporters sit1 and sit2 Are Essential for Utilization of Ferrichrome-, Ferrioxamine- and Coprogen-type Siderophores in Aspergillus fumigatus. J. Fungi 2021, 7 (9), 768.10.3390/jof7090768. PubMed DOI PMC
Protchenko O.; Ferea T.; Rashford J.; Tiedeman J.; Brown P. O.; Botstein D.; Philpott C. C. Three Cell Wall Mannoproteins Facilitate the Uptake of Iron in Saccharomyces cerevisiae. J. Biol. Chem. 2001, 276 (52), 49244–49250. 10.1074/jbc.M109220200. PubMed DOI
Sheldon J. R.; Skaar E. P. Acinetobacter baumannii Can Use Multiple Siderophores for Iron Acquisition, but Only Acinetobactin is Required for Virulence. PLoS Pathog. 2020, 16 (10), e100899510.1371/journal.ppat.1008995. PubMed DOI PMC
Luna C. M.; Vujacich P.; Niederman M. S.; Vay C.; Gherardi C.; Matera J.; Jolly E. C. Impact of BAL Data on the Therapy and Outcome of Ventilator-Associated Pneumonia: 676 Clinical Investigations in Critical. Care 1997, 111 (3), 676–685. 10.1378/chest.111.3.676. PubMed DOI
Guerra L. F.; Baughman R. P. Use of Bronchoalveolar Lavage to Diagnose Bacterial Pneumonia in Mechanically Ventilated Patients. Crit. Care Med. 1990, 18 (2), 169–173. 10.1097/00003246-199002000-00009. PubMed DOI
Nomanpour B.; Ghodousi A.; Babaei A.; Abtahi H.; Tabrizi M.; Feizabadi M. Rapid, cost-effective, sensitive and quantitative detection of Acinetobacter baumannii from pneumonia patients. Iran. J. Microbiol. 2011, 3 (4), 162–169. PubMed PMC
Petrik M.; Knetsch P. A.; Knopp R.; Imperato G.; Ocak M.; Von Guggenberg E.; Haubner R.; Silbernagl R.; Decristoforo C. Radiolabelling of Peptides for PET, SPECT and Therapeutic Applications Using a Fully Automated Disposable Cassette System. Nucl. Med. Commun. 2011, 32 (10), 887–895. 10.1097/MNM.0b013e3283497188. PubMed DOI
Thompson M. G.; Black C. C.; Pavlicek R. L.; Honnold C. L.; Wise M. C.; Alamneh Y. A.; Moon J. K.; Kessler J. L.; Si Y.; Williams R.; Yildirim S.; Kirkup B. C.; Green R. K.; Hall E. R.; Palys T. J.; Zurawski D. V. Validation of a Novel Murine Wound Model of Acinetobacter baumannii Infection. Antimicrob. Agents Chemother. 2014, 58 (3), 1332–1342. 10.1128/AAC.01944-13. PubMed DOI PMC