68Ga]Ga-Ornibactin for Burkholderia cepacia complex Infection Imaging Using Positron Emission Tomography
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37252893
PubMed Central
PMC10258796
DOI
10.1021/acs.jmedchem.3c00469
Knihovny.cz E-zdroje
- MeSH
- Burkholderia cepacia komplex * MeSH
- infekce bakteriemi rodu Burkholderia * diagnostické zobrazování epidemiologie MeSH
- myši MeSH
- pozitronová emisní tomografie MeSH
- radioizotopy galia MeSH
- siderofory MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- radioizotopy galia MeSH
- siderofory MeSH
Bacteria from the Burkholderia cepacia complex are generally considered to be non-pathogenic to the healthy population. However, some of these species may cause serious nosocomial infections in immunocompromised patients; as such, it is essential to diagnose these infections rapidly so that adequate treatment can be initiated. We report here the use of a radiolabeled siderophore, ornibactin (ORNB), for positron emission tomography imaging. We successfully radiolabeled ORNB with gallium-68 with high radiochemical purity and proved that the resulting complex has optimal in vitro characteristics. In mice, the complex did not show excessive accumulation in organs and was excreted in the urine. We demonstrated that the [68Ga]Ga-ORNB complex accumulates at the site of Burkholderia multivorans infection, including pneumonia, in two animal infection models. These results suggest that [68Ga]Ga-ORNB is a promising tool for the diagnosis, monitoring, and evaluation of the therapeutic response to B. cepacia complex infection.
Zobrazit více v PubMed
Suetens C.; Latour K.; Kärki T.; Ricchizzi E.; Kinross P.; Moro M. L.; Jans B.; Hopkins S.; Hansen S.; Lyytikäinen O.; Reilly J.; Deptula A.; Zingg W.; Plachouras D.; Monnet D. L. Prevalence of Healthcare-Associated Infections, Estimated Incidence and Composite Antimicrobial Resistance Index in Acute Care Hospitals and Long-Term Care Facilities: Results from Two European Point Prevalence Surveys, 2016 to 2017. Eurosurveillance 2018, 23, 1–17. 10.2807/1560-7917.ES.2018.23.46.1800516. PubMed DOI PMC
Azoulay E.; Russell L.; Van de Louw A.; Metaxa V.; Bauer P.; Povoa P.; Montero J. G.; Loeches I. M.; Mehta S.; Puxty K.; Schellongowski P.; Rello J.; Mokart D.; Lemiale V.; Mirouse A. Diagnosis of Severe Respiratory Infections in Immunocompromised Patients. Intensive Care Med. 2020, 46, 298–314. 10.1007/s00134-019-05906-5. PubMed DOI PMC
Contejean A.; Lemiale V.; Resche-Rigon M.; Mokart D.; Pène F.; Kouatchet A.; Mayaux J.; Vincent F.; Nyunga M.; Bruneel F.; Rabbat A.; Perez P.; Meert A. P.; Benoit D.; Hamidfar R.; Darmon M.; Jourdain M.; Renault A.; Schlemmer B.; Azoulay E. Increased mortality in hematological malignancy patients with acute respiratory failure from undetermined etiology: a Groupe de Recherche en Réanimation Respiratoire en Onco-Hématologie (Grrr-OH) study. Ann. Intensive Care 2016, 6, 102–109. 10.1186/s13613-016-0202-0. PubMed DOI PMC
Cornelis P.; Dingemans J. Pseudomonas Aeruginosa Adapts Its Iron Uptake Strategies in Function of the Type of Infections. Front. Cell. Infect. Microbiol. 2013, 3, 1–7. 10.3389/fcimb.2013.00075. PubMed DOI PMC
Fan D.; Fang Q. Siderophores for Medical Applications: Imaging, Sensors, and Therapeutics. Int. J. Pharm. 2021, 597, 120306.10.1016/j.ijpharm.2021.120306. PubMed DOI
Khan A.; Singh P.; Srivastava A. Synthesis, nature and utility of universal iron chelator—Siderophore: A review. Microbiol. Res. 2018, 212–213, 103–111. 10.1016/j.micres.2017.10.012. PubMed DOI
Wilson B. R.; Bogdan A. R.; Miyazawa M.; Hashimoto K.; Tsuji Y. Siderophores in Iron Metabolism: From Mechanism to Therapy Potential. Trends Mol. Med. 2016, 22, 1077–1090. 10.1016/j.molmed.2016.10.005. PubMed DOI PMC
Ellermann M.; Arthur J. C. Siderophore-Mediated Iron Acquisition and Modulation of Host-Bacterial Interactions. Free Radic. Biol. Med. 2017, 105, 68–78. 10.1016/j.freeradbiomed.2016.10.489. PubMed DOI PMC
Butt A. T.; Thomas M. S. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species. Front. Cell. Infect. Microbiol. 2017, 7, 1–21. 10.3389/fcimb.2017.00460. PubMed DOI PMC
Jin Y.; Zhou J.; Zhou J.; Hu M.; Zhang Q.; Kong N.; Ren H.; Liang L.; Yue J. Genome-Based Classification of Burkholderia Cepacia Complex Provides New Insight into Its Taxonomic Status. Biol. Direct 2020, 15, 6–14. 10.1186/s13062-020-0258-5. PubMed DOI PMC
Compant S.; Nowak J.; Coenye T.; Clément C.; Ait Barka E. Diversity and Occurrence of Burkholderia Spp. in the Natural Environment. FEMS Microbiol. Rev. 2008, 32, 607–626. 10.1111/j.1574-6976.2008.00113.x. PubMed DOI
Häfliger E.; Atkinson A.; Marschall J. Systematic Review of Healthcare-Associated Burkholderia Cepacia Complex Outbreaks: Presentation, Causes and Outbreak Control. Infect. Prev. Pract. 2020, 2, 100082.10.1016/j.infpip.2020.100082. PubMed DOI PMC
Drevinek P.; Mahenthiralingam E. Burkholderia Cenocepacia in Cystic Fibrosis: Epidemiology and Molecular Mechanisms of Virulence. Clin. Microbiol. Infect. 2010, 16, 821–830. 10.1111/j.1469-0691.2010.03237.x. PubMed DOI
Sfeir M. M. Burkholderia Cepacia Complex Infections: More Complex than the Bacterium Name Suggest. J. Infect. 2018, 77, 166–170. 10.1016/j.jinf.2018.07.006. PubMed DOI
LiPuma J. J. The Changing Microbial Epidemiology in Cystic Fibrosis. Clin. Microbiol. Rev. 2010, 23, 299–323. 10.1128/CMR.00068-09. PubMed DOI PMC
Jones A. M.; Dodd M. E.; Govan J. R. W.; Barcus V.; Doherty C. J.; Morris J.; Webb A. K. Burkholderia Cenocepacia and Burkholderia Multivorans: Influence on Survival in Cystic Fibrosis. Thorax 2004, 59, 948–951. 10.1136/thx.2003.017210. PubMed DOI PMC
Hauser N.; Orsini J. Cepacia Syndrome in a Non-Cystic Fibrosis Patient. Case Rep. Infect. Dis. 2015, 2015, 1–4. 10.1155/2015/537627. PubMed DOI PMC
Rhodes K. A.; Schweizer H. P. Antibiotic Resistance in Burkholderia Species. Drug Resist. Updat. 2016, 28, 82–90. 10.1016/j.drup.2016.07.003. PubMed DOI PMC
Rose H.; Baldwin A.; Dowson C. G.; Mahenthiralingam E. Biocide Susceptibility of the Burkholderia Cepacia Complex. J. Antimicrob. Chemother. 2009, 63, 502–510. 10.1093/jac/dkn540. PubMed DOI PMC
Regan K. H.; Bhatt J. Eradication Therapy for Burkholderia Cepacia Complex in People with Cystic Fibrosis. Cochrane Database Syst. Rev. 2019, 4, CD009876.10.1002/14651858.CD009876.pub4. PubMed DOI PMC
Henry D.; Campbell M.; McGimpsey C.; Clarke A.; Louden L.; Burns J. L.; Roe M. H.; Vandamme P.; Speert D. Comparison of Isolation Media for Recovery of Burkholderia Cepacia Complex from Respiratory Secretions of Patients with Cystic Fibrosis. J. Clin. Microbiol. 1999, 37, 1004–1007. 10.1128/jcm.37.4.1004-1007.1999. PubMed DOI PMC
McMenamin J. D.; Zaccone T. M.; Coenye T.; Vandamme P.; LiPuma J. J. Misidentification of Burkholderia Cepacia in US Cystic Fibrosis Treatment Centers: An Analysis of 1,051 Recent Sputum Isolates. Chest 2000, 117, 1661–1665. 10.1378/chest.117.6.1661. PubMed DOI
Stephan H.; Freund S.; Beck W.; Jung G.; Meyer J. M.; Winkelmann G. Ornibactins-a New Family of Siderophores from Pseudomonas. BioMetals 1993, 6, 93–100. 10.1007/BF00140109. PubMed DOI
Sokol P. A.; Darling P.; Lewenza S.; Corbett C. R.; Kooi C. D. Identification of a Siderophore Receptor Required for Ferric Ornibactin Uptake in Burkholderia Cepacia. Infect. Immun. 2000, 68, 6554–6560. 10.1128/IAI.68.12.6554-6560.2000. PubMed DOI PMC
Visser M. B.; Majumdar S.; Hani E.; Sokol P. A. Importance of the Ornibactin and Pyochelin Siderophore Transport Systems in Burkholderia Cenocepacia Lung Infections. Infect. Immun. 2004, 72, 2850–2857. 10.1128/IAI.72.5.2850-2857.2004. PubMed DOI PMC
Petrik M.; Haas H.; Schrettl M.; Helbok A.; Blatzer M.; Decristoforo C. In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging. Nucl. Med. Biol. 2012, 39, 361–369. 10.1016/j.nucmedbio.2011.09.012. PubMed DOI PMC
Petrik M.; Haas H.; Dobrozemsky G.; Lass-Flörl C.; Helbok A.; Blatzer M.; Dietrich H.; Decristoforo C. 68Ga-Siderophores for PET Imaging of Invasive Pulmonary Aspergillosis: Proof of Principle. J. Nucl. Med. 2010, 51, 639–645. 10.2967/jnumed.109.072462. PubMed DOI PMC
Petrik M.; Umlaufova E.; Raclavsky V.; Palyzova A.; Havlicek V.; Haas H.; Novy Z.; Dolezal D.; Hajduch M.; Decristoforo C. Imaging of Pseudomonas Aeruginosa Infection with Ga-68 Labelled Pyoverdine for Positron Emission Tomography. Sci. Rep. 2018, 8, 15698–15699. 10.1038/s41598-018-33895-w. PubMed DOI PMC
Petrik M.; Umlaufova E.; Raclavsky V.; Palyzova A.; Havlicek V.; Pfister J.; Mair C.; Novy Z.; Popper M.; Hajduch M.; Decristoforo C. 68Ga-Labelled Desferrioxamine-B for Bacterial Infection Imaging. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 372–382. 10.1007/s00259-020-04948-y. PubMed DOI PMC
Petrik M.; Franssen G. M.; Haas H.; Laverman P.; Hörtnagl C.; Schrettl M.; Helbok A.; Lass-Flörl C.; Decristoforo C. Preclinical Evaluation of Two 68Ga-Siderophores as Potential Radiopharmaceuticals for Aspergillus Fumigatus Infection Imaging. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 1175–1183. 10.1007/s00259-012-2110-3. PubMed DOI PMC
Uematsu H.; Hashimoto H.; Iwamoto T.; Horiguchi H.; Yasunaga H. Impact of Guideline-Concordant Microbiological Testing on Outcomes of Pneumonia. Int. J. Qual. Heal. Care 2014, 26, 100–107. 10.1093/intqhc/mzt078. PubMed DOI
Auzin A.; Spits M.; Tacconelli E.; Rodríguez-Baño J.; Hulscher M.; Adang E.; Voss A.; Wertheim H. What Is the Evidence Base of Used Aggregated Antibiotic Resistance Percentages to Change Empirical Antibiotic Treatment? A Scoping Review. Clin. Microbiol. Infect. 2022, 28, 928–935. 10.1016/j.cmi.2021.12.003. PubMed DOI
Lanks C. W.; Musani A. I.; Hsia D. W. Community-Acquired Pneumonia and Hospital-Acquired Pneumonia. Med. Clin. North Am. 2019, 103, 487–501. 10.1016/j.mcna.2018.12.008. PubMed DOI
Heuker M.; Gomes A.; van Dijl J. M.; van Dam G. M.; Friedrich A. W.; Sinha B.; van Oosten M. Preclinical Studies and Prospective Clinical Applications for Bacteria-Targeted Imaging: The Future Is Bright. Clin. Transl. Imaging 2016, 4, 253–264. 10.1007/s40336-016-0190-y. PubMed DOI PMC
Polvoy I.; Flavell R. R.; Rosenberg O. S.; Ohliger M. A.; Wilson D. M. Nuclear Imaging of Bacterial Infection: The State of the Art and Future Directions. J. Nucl. Med. 2020, 61, 1708–1716. 10.2967/jnumed.120.244939. PubMed DOI PMC
Ordonez A. A.; Jain S. K. Pathogen-Specific Bacterial Imaging in Nuclear Medicine. Semin. Nucl. Med. 2018, 48, 182–194. 10.1053/j.semnuclmed.2017.11.003. PubMed DOI PMC
Signore A.; Bentivoglio V.; Varani M.; Lauri C. Current Status of SPECT Radiopharmaceuticals for Specific Bacteria Imaging. Semin. Nucl. Med. 2023, 53, 142–151. 10.1053/j.semnuclmed.2022.12.001. PubMed DOI
Ordonez A. A.; Sellmyer M. A.; Gowrishankar G.; Ruiz-Bedoya C. A.; Tucker E. W.; Palestro C. J.; Hammoud D. A.; Jain S. K. Molecular Imaging of Bacterial Infections: Overcoming the Barriers to Clinical Translation. Sci. Transl. Med. 2019, 11, eaax825110.1126/scitranslmed.aax8251. PubMed DOI PMC
Nairz M.; Weiss G. Iron in Infection and Immunity. Mol. Aspects Med. 2020, 75, 100864.10.1016/j.mam.2020.100864. PubMed DOI
Meyer J. M.; Van Van T.; Stintzi A.; Berge O.; Winkelmann G. Ornibactin Production and Transport Properties in Strains of Burkholderia Vietnamiensis and Burkholderia Cepacia (Formerly Pseudomonas Cepacia). BioMetals 1995, 8, 309–317. 10.1007/BF00141604. PubMed DOI
Eberl L.; Tümmler B. Pseudomonas Aeruginosa and Burkholderia Cepacia in Cystic Fibrosis: Genome Evolution, Interactions and Adaptation. Int. J. Med. Microbiol. 2004, 294, 123–131. 10.1016/j.ijmm.2004.06.022. PubMed DOI
Gautam V.; Singhal L.; Ray P. Burkholderia Cepacia Complex: Beyond Pseudomonas and Acinetobacter. Indian J. Med. Microbiol. 2011, 29, 4–12. 10.4103/0255-0857.76516. PubMed DOI
El-Laboudi A. H.; Etherington C.; Whitaker P.; Clifton I. J.; Conway S. P.; Denton M.; Peckham D. G. Acute Burkholderia Cenocepacia Pyomyositis in a Patient with Cystic Fibrosis. J. Cyst. Fibros. 2009, 8, 273–275. 10.1016/j.jcf.2009.04.007. PubMed DOI
Fadini G. P.; Tiengo A.; Avogaro A. First Isolation of Burkholderia Cepacia from a Deep Neck Abscess in a Diabetic Patient Successfully Treated with Hyperbaric Oxygen [3]Y. J. Clin. Microbiol. 2005, 43, 529.10.1128/JCM.43.1.529.2005. PubMed DOI PMC
Palmer K. L.; Mashburn L. M.; Singh P. K.; Whiteley M. Cystic Fibrosis Sputum Supports Growth and Cues Key Aspects of Pseudomonas Aeruginosa Physiology. J. Bacteriol. 2005, 187, 5267–5277. 10.1128/JB.187.15.5267-5277.2005. PubMed DOI PMC
Petrik M.; Knetsch P. A.; Knopp R.; Imperato G.; Ocak M.; Von Guggenberg E.; Haubner R.; Silbernagl R.; Decristoforo C. Radiolabelling of Peptides for PET, SPECT and Therapeutic Applications Using a Fully Automated Disposable Cassette System. Nucl. Med. Commun. 2011, 32, 887–895. 10.1097/MNM.0b013e3283497188. PubMed DOI