Biomimetic Analogues of the Desferrioxamine E Siderophore for PET Imaging of Invasive Aspergillosis: Targeting Properties and Species Specificity

. 2024 Jul 25 ; 67 (14) : 12143-12154. [epub] 20240622

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38907990

The pathogenic fungus Aspergillus fumigatus utilizes a cyclic ferrioxamine E (FOXE) siderophore to acquire iron from the host. Biomimetic FOXE analogues were labeled with gallium-68 for molecular imaging with PET. [68Ga]Ga(III)-FOXE analogues were internalized in A. fumigatus cells via Sit1. Uptake of [68Ga]Ga(III)-FOX 2-5, the most structurally alike analogue to FOXE, was high by both A. fumigatus and bacterial Staphylococcus aureus. However, altering the ring size provoked species-specific uptake between these two microbes: ring size shortening by one methylene unit (FOX 2-4) increased uptake by A. fumigatus compared to that by S. aureus, whereas lengthening the ring (FOX 2-6 and 3-5) had the opposite effect. These results were consistent both in vitro and in vivo, including PET imaging in infection models. Overall, this study provided valuable structural insights into the specificity of siderophore uptake and, for the first time, opened up ways for selective targeting and imaging of microbial pathogens by siderophore derivatization.

Zobrazit více v PubMed

Tekaia F.; Latge J. P. Aspergillus fumigatus: saprophyte or pathogen?. Curr. Opin. Microbiol. 2005, 8 (4), 385–392. 10.1016/j.mib.2005.06.017. PubMed DOI

Hissen A. H. T.; Chow J. M. T.; Pinto L. J.; Moore M. M. Survival of Aspergillus fumigatus in serum involves removal of iron from transferrin: the role of siderophores. Infect. Immun. 2004, 72 (3), 1402–1408. 10.1128/IAI.72.3.1402-1408.2004. PubMed DOI PMC

Kwon-Chung K. J.; Sugui J. A. Aspergillus fumigatus-What Makes the Species a Ubiquitous Human Fungal Pathogen?. PLoS Pathog. 2013, 9 (12), e100374310.1371/journal.ppat.1003743. PubMed DOI PMC

Dagenais T. R. T.; Keller N. P. Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin. Microbiol. Rev. 2009, 22 (3), 447–465. 10.1128/CMR.00055-08. PubMed DOI PMC

Murdoch C. C.; Skaar E. P. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat. Rev. Microbiol. 2022, 20 (11), 657–670. 10.1038/s41579-022-00745-6. PubMed DOI PMC

Moore M. M. The crucial role of iron uptake in Aspergillus fumigatus virulence. Curr. Opin. Microbiol. 2013, 16 (6), 692–699. 10.1016/j.mib.2013.07.012. PubMed DOI

Hider R. C.; Kong X. L. Chemistry and biology of siderophores. Nat. Prod. Rep. 2010, 27 (5), 637–657. 10.1039/b906679a. PubMed DOI

Codd R.Siderophores and Iron Transport. In Comprehensive Inorganic Chemistry III, 3rd ed.; Reedijk J.; Poeppelmeier K. R., Eds.; Elsevier, 2023; pp 3–29.

Johnson L. Iron and siderophores in fungal-host interactions. Mycol. Res. 2008, 112, 170–183. 10.1016/j.mycres.2007.11.012. PubMed DOI

Schrettl M.; Bignell E.; Kragl C.; Joechl C.; Rogers T.; Arst H.; Haynes K.; Haas H. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J. Exp. Med. 2004, 200 (9), 1213–1219. 10.1084/jem.20041242. PubMed DOI PMC

Szebesczyk A.; Olshvang E.; Shanzer A.; Carver P. L.; Gumienna-Kontecka E. Harnessing the power of fungal siderophores for the imaging and treatment of human diseases. Coord. Chem. Rev. 2016, 327, 84–109. 10.1016/j.ccr.2016.05.001. DOI

Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat. Prod. Rep. 2014, 31 (10), 1266–1276. 10.1039/C4NP00071D. PubMed DOI PMC

Happacher I.; Aguiar M.; Alilou M.; Abt B.; Baltussen T. J. H.; Decristoforo C.; Melchers W. J. G.; Haas H. The siderophore ferricrocin mediates iron acquisition in Aspergillus fumigatus. Microbiol. Spectrum 2023, 11 (3), e004962310.1128/spectrum.00496-23. PubMed DOI PMC

Osiewacz H. D.; Schurmanns L. A Network of pathways controlling cellular homeostasis affects the onset of senescence in Podospora anserina. J. Fungi 2021, 7 (4), 26310.3390/jof7040263. PubMed DOI PMC

Misslinger M.; Petrik M.; Pfister J.; Hubmann I.; Bendova K.; Decristoforo C.; Haas H. Desferrioxamine B-mediated pre-clinical in vivo imaging of infection by the mold fungus Aspergillus fumigatus. J. Fungi 2021, 7 (9), 73410.3390/jof7090734. PubMed DOI PMC

Kramer J.; Oezkaya O.; Kuemmerli R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 2020, 18 (3), 152–163. 10.1038/s41579-019-0284-4. PubMed DOI PMC

Haas H. Iron - a key nexus in the virulence of Aspergillus fumigatus. Front. Microbiol. 2012, 3, 2810.3389/fmicb.2012.00028. PubMed DOI PMC

Haas H.; Eisendle M.; Turgeon B. G. Siderophores in fungal physiology and virulence. Annu. Rev. Phytopathol. 2008, 46, 149–187. 10.1146/annurev.phyto.45.062806.094338. PubMed DOI

Aguiar M.; Orasch T.; Misslinger M.; Dietl A. M.; Gsaller F.; Haas H. The siderophore transporters Sit1 and Sit2 are essential for utilization of ferrichrome-, ferrioxamine- and coprogen-type siderophores in Aspergillus fumigatus. J. Fungi 2021, 7 (9), 76810.3390/jof7090768. PubMed DOI PMC

Aguiar M.; Orasch T.; Shadkchan Y.; Caballero P.; Pfister J.; Sastre-Velasquez L. E.; Gsaller F.; Decristoforo C.; Osherov N.; Haas H. Uptake of the siderophore triacetylfusarinine c, but not fusarinine c, is crucial for virulence of Aspergillus fumigatus. mBio 2022, 13 (5), e021922210.1128/mbio.02192-22. PubMed DOI PMC

Park Y. S.; Kim J. Y.; Yun C. W. Identification of ferrichrome- and ferrioxamine B-mediated iron uptake by Aspergillus fumigatus. Biochem. J. 2016, 473, 1203–1213. 10.1042/BCJ20160066. PubMed DOI

Wang W. F.; Qiu Z. Q.; Tan H. M.; Cao L. X. Siderophore production by actinobacteria. BioMetals 2014, 27 (4), 623–631. 10.1007/s10534-014-9739-2. PubMed DOI

Essen S. A.; Johnsson A.; Bylund D.; Pedersen K.; Lundstrom U. S. Siderophore production by Pseudomonas stutzeri under aerobic and anaerobic conditions. Appl. Environ. Microbiol. 2007, 73 (18), 5857–5864. 10.1128/AEM.00072-07. PubMed DOI PMC

Berner I.; Konetschny-Rapp S.; Jung G.; Winkelmann G. Characterization of ferrioxamine E as the principal siderophore of Erwinia herbicola(Enterobacter agglomerans). Biology of Metals 1988, 1, 51–56. 10.1007/BF01128017. PubMed DOI

Mahajan S. G.; Nandre V. S.; Kodam K. M.; Kulkarni M. V. Desferrioxamine E produced by an indigenous salt tolerant Pseudomonas stutzeri stimulates iron uptake of Triticum aestivum L. Biocatal. Agric. Biotechnol. 2021, 35, 10205710.1016/j.bcab.2021.102057. DOI

Normant V.; Josts I.; Kuhn L.; Perraud Q.; Fritsch S.; Hammann P.; Mislin G. L. A.; Tidow H.; Schalk I. J. Nocardamine-dependent iron uptake in Pseudomonas aeruginosa: exclusive involvement of the FoxA outer membrane transporter. ACS Chem. Biol. 2020, 15 (10), 2741–2751. 10.1021/acschembio.0c00535. PubMed DOI

Endicott N. P.; Lee E.; Wencewicz T. A. Structural basis for xenosiderophore utilization by the human pathogen Staphylococcus aureus. ACS Infect. Dis. 2017, 3 (7), 542–553. 10.1021/acsinfecdis.7b00036. PubMed DOI

Renshaw J. C.; Robson G. D.; Trinci A. P. J.; Wiebe M. G.; Livens F. R.; Collison D.; Taylor R. J. Fungal siderophores: structures, functions and applications. Mycological Research 2002, 106, 1123–1142. 10.1017/S0953756202006548. DOI

Pecoraro L.; Wang X.; Shah D. W.; Song X. X.; Kumar V.; Shakoor A.; Tripathi K.; Ramteke P. W.; Rani R. Biosynthesis pathways, transport mechanisms and biotechnological applications of fungal siderophores. J. Fungi 2022, 8 (1), 2110.3390/jof8010021. PubMed DOI PMC

Swayambhu G.; Bruno M.; Gulick A. M.; Pfeifer B. A. Siderophore natural products as pharmaceutical agents. Curr. Opin. Biotechnol. 2021, 69, 242–251. 10.1016/j.copbio.2021.01.021. PubMed DOI

Marzella N. Treatment for multidrug resistant gram-negative infections with cefiderocol (fetroja). J. Nurse Pract. 2023, 19 (3), 10451810.1016/j.nurpra.2022.11.026. DOI

Gumienna-Kontecka E.; Carver P. L.. Building a Trojan Horse: Siderophore-Drug Conjugates for the Treatment of Infectious Diseases. In Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic; De Gruyter, 2019; Vol. 19, pp 181–20210.1515/9783110527872-007. PubMed DOI

Klebba P. E.; Newton S. M. C.; Six D. A.; Kumar A.; Yang T. H.; Nairn B. L.; Munger C.; Chakravorty S. Iron acquisition systems of gram-negative bacterial pathogens define TonB-dependent pathways to novel antibiotics. Chem. Rev. 2021, 121 (9), 5193–5239. 10.1021/acs.chemrev.0c01005. PubMed DOI PMC

Petrik M.; Franssen G. M.; Haas H.; Laverman P.; Hortnagl C.; Schrettl M.; Helbok A.; Lass-Florl C.; Decristoforo C. Preclinical evaluation of two Ga-68-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur. J. Nucl. Med. Mol. Imaging 2012, 39 (7), 1175–1183. 10.1007/s00259-012-2110-3. PubMed DOI PMC

Petrik M.; Haas H.; Dobrozemsky G.; Lass-Florl C.; Helbok A.; Blatzer M.; Dietrich H.; Decristoforo C. Ga-68-Siderophores for PET imaging of Invasive Pulmonary Aspergillosis: proof of principle. J. Nucl. Med. 2010, 51 (4), 639–645. 10.2967/jnumed.109.072462. PubMed DOI PMC

Petrik M.; Pfister J.; Misslinger M.; Decristoforo C.; Haas H. Siderophore-based molecular imaging of fungal and bacterial infections-current status and future perspectives. J. Fungi 2020, 6 (2), 7310.3390/jof6020073. PubMed DOI PMC

Petrik M.; Zhai C. Y.; Novy Z.; Urbanek L.; Haas H.; Decristoforo C. In vitro and In vivo comparison of selected Ga-68 and Zr-89 labelled siderophores. Mol. Imaging Biol. 2016, 18 (3), 344–352. 10.1007/s11307-015-0897-6. PubMed DOI PMC

Jurkevitch E.; Hadar Y.; Chen Y.; Libman J.; Shanzer A. Iron uptake and molecular recognition in Pseudomonas putida - Receptor mapping with ferrichrome and its biomimetic analogs. J. Bacteriol. 1992, 174 (1), 78–83. 10.1128/jb.174.1.78-83.1992. PubMed DOI PMC

Besserglick J.; Olshvang E.; Szebesczyk A.; Englander J.; Levinson D.; Hadar Y.; Gumienna-Kontecka E.; Shanzer A. Ferrichrome has found its match: Biomimetic analogues with diversified activity map discrete microbial targets. Chem. - Eur. J. 2017, 23 (53), 13181–13191. 10.1002/chem.201702647. PubMed DOI

Olshvang E.; Szebesczyk A.; Kozlowski H.; Hadar Y.; Gumienna-Kontecka E.; Shanzer A. Biomimetic ferrichrome: structural motifs for switching between narrow- and broad-spectrum activities in P. putida and E. coli. Dalton Trans. 2015, 44 (48), 20850–20858. 10.1039/C5DT02685G. PubMed DOI

Shanzer A.; Felder C.; Barda Y.. Natural and Biomimetic Hydroxamic Acid Based Siderophores. In Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids; Rappoport Z.; Liebman J., Eds.; John Wiley & Sons, Ltd, 2009; pp 751–815.

Mular A.; Shanzer A.; Kozlowski H.; Hubmann I.; Misslinger M.; Krzywik J.; Decristoforo C.; Gumienna-Kontecka E. Cyclic analogs of desferrioxamine E siderophore for Ga-68 nuclear imaging: Coordination chemistry and biological activity in Staphylococcus aureus. Inorg. Chem. 2021, 60 (23), 17846–17857. 10.1021/acs.inorgchem.1c02453. PubMed DOI PMC

Petrik M.; Haas H.; Laverman P.; Schrettl M.; Franssen G. M.; Blatzer M.; Decristoforo C. Ga-68-Triacetylfusarinine C and Ga-68-Ferrioxamine E for Aspergillus infection imaging: Uptake specificity in various microorganisms. Mol. Imaging Biol. 2014, 16 (1), 102–108. 10.1007/s11307-013-0654-7. PubMed DOI PMC

Petrik M.; Haas H.; Schrettl M.; Helbok A.; Blatzer M.; Decristoforo C. In vitro and In vivo evaluation of selected Ga-68-siderophores for infection imaging. Nucl. Med. Biol. 2012, 39 (3), 361–369. 10.1016/j.nucmedbio.2011.09.012. PubMed DOI PMC

Dietl A. M.; Misslinger M.; Aguiar M. M.; Ivashov V.; Teis D.; Pfister J.; Decristoforo C.; Hermann M.; Sullivan S. M.; Smith L. R.; et al. The siderophore transporter Sit1 determines susceptibility to the antifungal VL-2397. Antimicrob. Agents Chemother. 2019, 63 (10), e00807-1910.1128/AAC.00807-19. PubMed DOI PMC

Schrettl M.; Kim H. S.; Eisendle M.; Kragl C.; Nierman W. C.; Heinekamp T.; Werner E. R.; Jacobsen I.; Illmer P.; Yi H.; et al. SreA-mediated iron regulation in Aspergillus fumigatus. Mol. Microbiol. 2008, 70 (1), 27–43. 10.1111/j.1365-2958.2008.06376.x. PubMed DOI PMC

Kornreich-Leshem H.; Ziv C.; Gumienna-Kontecka E.; Arad-Yellin R.; Chen Y.; Elhabiri M.; Albrecht-Gary A. M.; Hadar Y.; Shanzer A. Ferrioxamine B analogues: Targeting the FoxA uptake system in the pathogenic Yersinia enterocolitica. J. Am. Chem. Soc. 2005, 127 (4), 1137–1145. 10.1021/ja035182m. PubMed DOI

Sebulsky M. T.; Hohnstein D.; Hunter M. D.; Heinrichs D. E. Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus. J. Bacteriol. 2000, 182 (16), 4394–4400. 10.1128/JB.182.16.4394-4400.2000. PubMed DOI PMC

Sebulsky M. T.; Shilton B. H.; Speziali C. D.; Heinrichs D. E. The role of FhuD2 in iron(III)-hydroxamate transport in Staphylococcus aureus - Demonstration that FhuD2 binds iron(III)-hydroxamates but with minimal conformational change and implication of mutations on transport. J. Biol. Chem. 2003, 278 (50), 49890–49900. 10.1074/jbc.M305073200. PubMed DOI

Sebulsky M. T.; Speziali C. D.; Shilton B. H.; Edgell D. R.; Heinrichs D. E. FhuD1, a ferric hydroxamate-binding lipoprotein in Staphylococcus aureus - A case of gene duplication and lateral transfer. J. Biol. Chem. 2004, 279 (51), 53152–53159. 10.1074/jbc.M409793200. PubMed DOI

Speziali C. D.; Dale S. E.; Henderson J. A.; Vines E. D.; Heinrichs D. E. Requirement of Staphylococcus aureus ATP-binding cassette-ATPase FhuC for iron-restricted growth and evidence that it functions with more than one iron transporter. J. Bacteriol. 2006, 188 (6), 2048–2055. 10.1128/JB.188.6.2048-2055.2006. PubMed DOI PMC

Mariotti P.; Malito E.; Biancucci M.; Lo Surdo P.; Mishra R. P. N.; Nardi-Dei V.; Savino S.; Nissum M.; Spraggon G.; Grandi G.; et al. Structural and functional characterization of the Staphylococcus aureus virulence factor and vaccine candidate FhuD2. Biochem. J. 2013, 449, 683–693. 10.1042/BJ20121426. PubMed DOI

Conroy B. S.; Grigg J. C.; Kolesnikov M.; Morales L. D.; Murphy M. E. P. Staphylococcus aureus heme and siderophore-iron acquisition pathways. BioMetals 2019, 32 (3), 409–424. 10.1007/s10534-019-00188-2. PubMed DOI

Pontecorvo G.; Roper J. A.; Hemmons L. M.; Macdonald K. D.; Bufton A. W. J.. The genetics of Aspergillus nidulans. In Advances in Genetics Incorporating Molecular Genetic Medicine; Elsevier, 1953; Vol. 5, pp 141–23810.1016/s0065-2660(08)60408-3. PubMed DOI

Kaeopookum P.; Summer D.; Pfister J.; Orasch T.; Lechner B. E.; Petrik M.; Novy Z.; Matuszczak B.; Rangger C.; Haas H.; et al. Modifying the siderophore triacetylfusarinine C for molecular imaging of fungal infection. Mol. Imaging Biol. 2019, 21 (6), 1097–1106. 10.1007/s11307-019-01325-6. PubMed DOI PMC

Luptakova D.; Pluhacek T.; Petrik M.; Novak J.; Palyzova A.; Sokolova L.; Skriba A.; Sediva B.; Lemr K.; Havlicek V. Non-invasive and invasive diagnoses of aspergillosis in a rat model by mass spectrometry. Sci. Rep. 2017, 7, 1652310.1038/s41598-017-16648-z. PubMed DOI PMC

Bendova K.; Raclavsky V.; Novotny R.; Luptakova D.; Popper M.; Novy Z.; Hajduch M.; Petrik M. Ga-68 Ga-Ornibactin for Burkholderia cepacia complex infection imaging using positron emission tomography. J. Med. Chem. 2023, 66 (11), 7584–7593. 10.1021/acs.jmedchem.3c00469. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...