Biomimetic Analogues of the Desferrioxamine E Siderophore for PET Imaging of Invasive Aspergillosis: Targeting Properties and Species Specificity
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38907990
PubMed Central
PMC11284789
DOI
10.1021/acs.jmedchem.4c00887
Knihovny.cz E-zdroje
- MeSH
- Aspergillus fumigatus * metabolismus chemie MeSH
- aspergilóza * diagnostické zobrazování mikrobiologie MeSH
- biomimetické materiály chemie metabolismus MeSH
- cyklické peptidy MeSH
- deferoxamin chemie MeSH
- druhová specificita MeSH
- myši MeSH
- pozitronová emisní tomografie * metody MeSH
- radioizotopy galia * chemie MeSH
- siderofory * chemie metabolismus MeSH
- Staphylococcus aureus * metabolismus MeSH
- železité sloučeniny chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cyklické peptidy MeSH
- deferoxamin MeSH
- ferrioxamine E MeSH Prohlížeč
- Gallium-68 MeSH Prohlížeč
- radioizotopy galia * MeSH
- siderofory * MeSH
- železité sloučeniny MeSH
The pathogenic fungus Aspergillus fumigatus utilizes a cyclic ferrioxamine E (FOXE) siderophore to acquire iron from the host. Biomimetic FOXE analogues were labeled with gallium-68 for molecular imaging with PET. [68Ga]Ga(III)-FOXE analogues were internalized in A. fumigatus cells via Sit1. Uptake of [68Ga]Ga(III)-FOX 2-5, the most structurally alike analogue to FOXE, was high by both A. fumigatus and bacterial Staphylococcus aureus. However, altering the ring size provoked species-specific uptake between these two microbes: ring size shortening by one methylene unit (FOX 2-4) increased uptake by A. fumigatus compared to that by S. aureus, whereas lengthening the ring (FOX 2-6 and 3-5) had the opposite effect. These results were consistent both in vitro and in vivo, including PET imaging in infection models. Overall, this study provided valuable structural insights into the specificity of siderophore uptake and, for the first time, opened up ways for selective targeting and imaging of microbial pathogens by siderophore derivatization.
Department of Nuclear Medicine Medical University Innsbruck A 6020 Innsbruck Austria
Department of Organic Chemistry The Weizmann Institute of Science Rehovot 7610001 Israel
Faculty of Chemistry University of Wrocław 50 383 Wrocław Poland
Institute of Molecular Biology Biocenter Medical University Innsbruck A 6020 Innsbruck Austria
Public Higher Medical Professional School in Opole Katowicka 68 45 060 Opole Poland
Zobrazit více v PubMed
Tekaia F.; Latge J. P. Aspergillus fumigatus: saprophyte or pathogen?. Curr. Opin. Microbiol. 2005, 8 (4), 385–392. 10.1016/j.mib.2005.06.017. PubMed DOI
Hissen A. H. T.; Chow J. M. T.; Pinto L. J.; Moore M. M. Survival of Aspergillus fumigatus in serum involves removal of iron from transferrin: the role of siderophores. Infect. Immun. 2004, 72 (3), 1402–1408. 10.1128/IAI.72.3.1402-1408.2004. PubMed DOI PMC
Kwon-Chung K. J.; Sugui J. A. Aspergillus fumigatus-What Makes the Species a Ubiquitous Human Fungal Pathogen?. PLoS Pathog. 2013, 9 (12), e100374310.1371/journal.ppat.1003743. PubMed DOI PMC
Dagenais T. R. T.; Keller N. P. Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin. Microbiol. Rev. 2009, 22 (3), 447–465. 10.1128/CMR.00055-08. PubMed DOI PMC
Murdoch C. C.; Skaar E. P. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat. Rev. Microbiol. 2022, 20 (11), 657–670. 10.1038/s41579-022-00745-6. PubMed DOI PMC
Moore M. M. The crucial role of iron uptake in Aspergillus fumigatus virulence. Curr. Opin. Microbiol. 2013, 16 (6), 692–699. 10.1016/j.mib.2013.07.012. PubMed DOI
Hider R. C.; Kong X. L. Chemistry and biology of siderophores. Nat. Prod. Rep. 2010, 27 (5), 637–657. 10.1039/b906679a. PubMed DOI
Codd R.Siderophores and Iron Transport. In Comprehensive Inorganic Chemistry III, 3rd ed.; Reedijk J.; Poeppelmeier K. R., Eds.; Elsevier, 2023; pp 3–29.
Johnson L. Iron and siderophores in fungal-host interactions. Mycol. Res. 2008, 112, 170–183. 10.1016/j.mycres.2007.11.012. PubMed DOI
Schrettl M.; Bignell E.; Kragl C.; Joechl C.; Rogers T.; Arst H.; Haynes K.; Haas H. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J. Exp. Med. 2004, 200 (9), 1213–1219. 10.1084/jem.20041242. PubMed DOI PMC
Szebesczyk A.; Olshvang E.; Shanzer A.; Carver P. L.; Gumienna-Kontecka E. Harnessing the power of fungal siderophores for the imaging and treatment of human diseases. Coord. Chem. Rev. 2016, 327, 84–109. 10.1016/j.ccr.2016.05.001. DOI
Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat. Prod. Rep. 2014, 31 (10), 1266–1276. 10.1039/C4NP00071D. PubMed DOI PMC
Happacher I.; Aguiar M.; Alilou M.; Abt B.; Baltussen T. J. H.; Decristoforo C.; Melchers W. J. G.; Haas H. The siderophore ferricrocin mediates iron acquisition in Aspergillus fumigatus. Microbiol. Spectrum 2023, 11 (3), e004962310.1128/spectrum.00496-23. PubMed DOI PMC
Osiewacz H. D.; Schurmanns L. A Network of pathways controlling cellular homeostasis affects the onset of senescence in Podospora anserina. J. Fungi 2021, 7 (4), 26310.3390/jof7040263. PubMed DOI PMC
Misslinger M.; Petrik M.; Pfister J.; Hubmann I.; Bendova K.; Decristoforo C.; Haas H. Desferrioxamine B-mediated pre-clinical in vivo imaging of infection by the mold fungus Aspergillus fumigatus. J. Fungi 2021, 7 (9), 73410.3390/jof7090734. PubMed DOI PMC
Kramer J.; Oezkaya O.; Kuemmerli R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 2020, 18 (3), 152–163. 10.1038/s41579-019-0284-4. PubMed DOI PMC
Haas H. Iron - a key nexus in the virulence of Aspergillus fumigatus. Front. Microbiol. 2012, 3, 2810.3389/fmicb.2012.00028. PubMed DOI PMC
Haas H.; Eisendle M.; Turgeon B. G. Siderophores in fungal physiology and virulence. Annu. Rev. Phytopathol. 2008, 46, 149–187. 10.1146/annurev.phyto.45.062806.094338. PubMed DOI
Aguiar M.; Orasch T.; Misslinger M.; Dietl A. M.; Gsaller F.; Haas H. The siderophore transporters Sit1 and Sit2 are essential for utilization of ferrichrome-, ferrioxamine- and coprogen-type siderophores in Aspergillus fumigatus. J. Fungi 2021, 7 (9), 76810.3390/jof7090768. PubMed DOI PMC
Aguiar M.; Orasch T.; Shadkchan Y.; Caballero P.; Pfister J.; Sastre-Velasquez L. E.; Gsaller F.; Decristoforo C.; Osherov N.; Haas H. Uptake of the siderophore triacetylfusarinine c, but not fusarinine c, is crucial for virulence of Aspergillus fumigatus. mBio 2022, 13 (5), e021922210.1128/mbio.02192-22. PubMed DOI PMC
Park Y. S.; Kim J. Y.; Yun C. W. Identification of ferrichrome- and ferrioxamine B-mediated iron uptake by Aspergillus fumigatus. Biochem. J. 2016, 473, 1203–1213. 10.1042/BCJ20160066. PubMed DOI
Wang W. F.; Qiu Z. Q.; Tan H. M.; Cao L. X. Siderophore production by actinobacteria. BioMetals 2014, 27 (4), 623–631. 10.1007/s10534-014-9739-2. PubMed DOI
Essen S. A.; Johnsson A.; Bylund D.; Pedersen K.; Lundstrom U. S. Siderophore production by Pseudomonas stutzeri under aerobic and anaerobic conditions. Appl. Environ. Microbiol. 2007, 73 (18), 5857–5864. 10.1128/AEM.00072-07. PubMed DOI PMC
Berner I.; Konetschny-Rapp S.; Jung G.; Winkelmann G. Characterization of ferrioxamine E as the principal siderophore of Erwinia herbicola(Enterobacter agglomerans). Biology of Metals 1988, 1, 51–56. 10.1007/BF01128017. PubMed DOI
Mahajan S. G.; Nandre V. S.; Kodam K. M.; Kulkarni M. V. Desferrioxamine E produced by an indigenous salt tolerant Pseudomonas stutzeri stimulates iron uptake of Triticum aestivum L. Biocatal. Agric. Biotechnol. 2021, 35, 10205710.1016/j.bcab.2021.102057. DOI
Normant V.; Josts I.; Kuhn L.; Perraud Q.; Fritsch S.; Hammann P.; Mislin G. L. A.; Tidow H.; Schalk I. J. Nocardamine-dependent iron uptake in Pseudomonas aeruginosa: exclusive involvement of the FoxA outer membrane transporter. ACS Chem. Biol. 2020, 15 (10), 2741–2751. 10.1021/acschembio.0c00535. PubMed DOI
Endicott N. P.; Lee E.; Wencewicz T. A. Structural basis for xenosiderophore utilization by the human pathogen Staphylococcus aureus. ACS Infect. Dis. 2017, 3 (7), 542–553. 10.1021/acsinfecdis.7b00036. PubMed DOI
Renshaw J. C.; Robson G. D.; Trinci A. P. J.; Wiebe M. G.; Livens F. R.; Collison D.; Taylor R. J. Fungal siderophores: structures, functions and applications. Mycological Research 2002, 106, 1123–1142. 10.1017/S0953756202006548. DOI
Pecoraro L.; Wang X.; Shah D. W.; Song X. X.; Kumar V.; Shakoor A.; Tripathi K.; Ramteke P. W.; Rani R. Biosynthesis pathways, transport mechanisms and biotechnological applications of fungal siderophores. J. Fungi 2022, 8 (1), 2110.3390/jof8010021. PubMed DOI PMC
Swayambhu G.; Bruno M.; Gulick A. M.; Pfeifer B. A. Siderophore natural products as pharmaceutical agents. Curr. Opin. Biotechnol. 2021, 69, 242–251. 10.1016/j.copbio.2021.01.021. PubMed DOI
Marzella N. Treatment for multidrug resistant gram-negative infections with cefiderocol (fetroja). J. Nurse Pract. 2023, 19 (3), 10451810.1016/j.nurpra.2022.11.026. DOI
Gumienna-Kontecka E.; Carver P. L.. Building a Trojan Horse: Siderophore-Drug Conjugates for the Treatment of Infectious Diseases. In Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic; De Gruyter, 2019; Vol. 19, pp 181–20210.1515/9783110527872-007. PubMed DOI
Klebba P. E.; Newton S. M. C.; Six D. A.; Kumar A.; Yang T. H.; Nairn B. L.; Munger C.; Chakravorty S. Iron acquisition systems of gram-negative bacterial pathogens define TonB-dependent pathways to novel antibiotics. Chem. Rev. 2021, 121 (9), 5193–5239. 10.1021/acs.chemrev.0c01005. PubMed DOI PMC
Petrik M.; Franssen G. M.; Haas H.; Laverman P.; Hortnagl C.; Schrettl M.; Helbok A.; Lass-Florl C.; Decristoforo C. Preclinical evaluation of two Ga-68-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur. J. Nucl. Med. Mol. Imaging 2012, 39 (7), 1175–1183. 10.1007/s00259-012-2110-3. PubMed DOI PMC
Petrik M.; Haas H.; Dobrozemsky G.; Lass-Florl C.; Helbok A.; Blatzer M.; Dietrich H.; Decristoforo C. Ga-68-Siderophores for PET imaging of Invasive Pulmonary Aspergillosis: proof of principle. J. Nucl. Med. 2010, 51 (4), 639–645. 10.2967/jnumed.109.072462. PubMed DOI PMC
Petrik M.; Pfister J.; Misslinger M.; Decristoforo C.; Haas H. Siderophore-based molecular imaging of fungal and bacterial infections-current status and future perspectives. J. Fungi 2020, 6 (2), 7310.3390/jof6020073. PubMed DOI PMC
Petrik M.; Zhai C. Y.; Novy Z.; Urbanek L.; Haas H.; Decristoforo C. In vitro and In vivo comparison of selected Ga-68 and Zr-89 labelled siderophores. Mol. Imaging Biol. 2016, 18 (3), 344–352. 10.1007/s11307-015-0897-6. PubMed DOI PMC
Jurkevitch E.; Hadar Y.; Chen Y.; Libman J.; Shanzer A. Iron uptake and molecular recognition in Pseudomonas putida - Receptor mapping with ferrichrome and its biomimetic analogs. J. Bacteriol. 1992, 174 (1), 78–83. 10.1128/jb.174.1.78-83.1992. PubMed DOI PMC
Besserglick J.; Olshvang E.; Szebesczyk A.; Englander J.; Levinson D.; Hadar Y.; Gumienna-Kontecka E.; Shanzer A. Ferrichrome has found its match: Biomimetic analogues with diversified activity map discrete microbial targets. Chem. - Eur. J. 2017, 23 (53), 13181–13191. 10.1002/chem.201702647. PubMed DOI
Olshvang E.; Szebesczyk A.; Kozlowski H.; Hadar Y.; Gumienna-Kontecka E.; Shanzer A. Biomimetic ferrichrome: structural motifs for switching between narrow- and broad-spectrum activities in P. putida and E. coli. Dalton Trans. 2015, 44 (48), 20850–20858. 10.1039/C5DT02685G. PubMed DOI
Shanzer A.; Felder C.; Barda Y.. Natural and Biomimetic Hydroxamic Acid Based Siderophores. In Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids; Rappoport Z.; Liebman J., Eds.; John Wiley & Sons, Ltd, 2009; pp 751–815.
Mular A.; Shanzer A.; Kozlowski H.; Hubmann I.; Misslinger M.; Krzywik J.; Decristoforo C.; Gumienna-Kontecka E. Cyclic analogs of desferrioxamine E siderophore for Ga-68 nuclear imaging: Coordination chemistry and biological activity in Staphylococcus aureus. Inorg. Chem. 2021, 60 (23), 17846–17857. 10.1021/acs.inorgchem.1c02453. PubMed DOI PMC
Petrik M.; Haas H.; Laverman P.; Schrettl M.; Franssen G. M.; Blatzer M.; Decristoforo C. Ga-68-Triacetylfusarinine C and Ga-68-Ferrioxamine E for Aspergillus infection imaging: Uptake specificity in various microorganisms. Mol. Imaging Biol. 2014, 16 (1), 102–108. 10.1007/s11307-013-0654-7. PubMed DOI PMC
Petrik M.; Haas H.; Schrettl M.; Helbok A.; Blatzer M.; Decristoforo C. In vitro and In vivo evaluation of selected Ga-68-siderophores for infection imaging. Nucl. Med. Biol. 2012, 39 (3), 361–369. 10.1016/j.nucmedbio.2011.09.012. PubMed DOI PMC
Dietl A. M.; Misslinger M.; Aguiar M. M.; Ivashov V.; Teis D.; Pfister J.; Decristoforo C.; Hermann M.; Sullivan S. M.; Smith L. R.; et al. The siderophore transporter Sit1 determines susceptibility to the antifungal VL-2397. Antimicrob. Agents Chemother. 2019, 63 (10), e00807-1910.1128/AAC.00807-19. PubMed DOI PMC
Schrettl M.; Kim H. S.; Eisendle M.; Kragl C.; Nierman W. C.; Heinekamp T.; Werner E. R.; Jacobsen I.; Illmer P.; Yi H.; et al. SreA-mediated iron regulation in Aspergillus fumigatus. Mol. Microbiol. 2008, 70 (1), 27–43. 10.1111/j.1365-2958.2008.06376.x. PubMed DOI PMC
Kornreich-Leshem H.; Ziv C.; Gumienna-Kontecka E.; Arad-Yellin R.; Chen Y.; Elhabiri M.; Albrecht-Gary A. M.; Hadar Y.; Shanzer A. Ferrioxamine B analogues: Targeting the FoxA uptake system in the pathogenic Yersinia enterocolitica. J. Am. Chem. Soc. 2005, 127 (4), 1137–1145. 10.1021/ja035182m. PubMed DOI
Sebulsky M. T.; Hohnstein D.; Hunter M. D.; Heinrichs D. E. Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus. J. Bacteriol. 2000, 182 (16), 4394–4400. 10.1128/JB.182.16.4394-4400.2000. PubMed DOI PMC
Sebulsky M. T.; Shilton B. H.; Speziali C. D.; Heinrichs D. E. The role of FhuD2 in iron(III)-hydroxamate transport in Staphylococcus aureus - Demonstration that FhuD2 binds iron(III)-hydroxamates but with minimal conformational change and implication of mutations on transport. J. Biol. Chem. 2003, 278 (50), 49890–49900. 10.1074/jbc.M305073200. PubMed DOI
Sebulsky M. T.; Speziali C. D.; Shilton B. H.; Edgell D. R.; Heinrichs D. E. FhuD1, a ferric hydroxamate-binding lipoprotein in Staphylococcus aureus - A case of gene duplication and lateral transfer. J. Biol. Chem. 2004, 279 (51), 53152–53159. 10.1074/jbc.M409793200. PubMed DOI
Speziali C. D.; Dale S. E.; Henderson J. A.; Vines E. D.; Heinrichs D. E. Requirement of Staphylococcus aureus ATP-binding cassette-ATPase FhuC for iron-restricted growth and evidence that it functions with more than one iron transporter. J. Bacteriol. 2006, 188 (6), 2048–2055. 10.1128/JB.188.6.2048-2055.2006. PubMed DOI PMC
Mariotti P.; Malito E.; Biancucci M.; Lo Surdo P.; Mishra R. P. N.; Nardi-Dei V.; Savino S.; Nissum M.; Spraggon G.; Grandi G.; et al. Structural and functional characterization of the Staphylococcus aureus virulence factor and vaccine candidate FhuD2. Biochem. J. 2013, 449, 683–693. 10.1042/BJ20121426. PubMed DOI
Conroy B. S.; Grigg J. C.; Kolesnikov M.; Morales L. D.; Murphy M. E. P. Staphylococcus aureus heme and siderophore-iron acquisition pathways. BioMetals 2019, 32 (3), 409–424. 10.1007/s10534-019-00188-2. PubMed DOI
Pontecorvo G.; Roper J. A.; Hemmons L. M.; Macdonald K. D.; Bufton A. W. J.. The genetics of Aspergillus nidulans. In Advances in Genetics Incorporating Molecular Genetic Medicine; Elsevier, 1953; Vol. 5, pp 141–23810.1016/s0065-2660(08)60408-3. PubMed DOI
Kaeopookum P.; Summer D.; Pfister J.; Orasch T.; Lechner B. E.; Petrik M.; Novy Z.; Matuszczak B.; Rangger C.; Haas H.; et al. Modifying the siderophore triacetylfusarinine C for molecular imaging of fungal infection. Mol. Imaging Biol. 2019, 21 (6), 1097–1106. 10.1007/s11307-019-01325-6. PubMed DOI PMC
Luptakova D.; Pluhacek T.; Petrik M.; Novak J.; Palyzova A.; Sokolova L.; Skriba A.; Sediva B.; Lemr K.; Havlicek V. Non-invasive and invasive diagnoses of aspergillosis in a rat model by mass spectrometry. Sci. Rep. 2017, 7, 1652310.1038/s41598-017-16648-z. PubMed DOI PMC
Bendova K.; Raclavsky V.; Novotny R.; Luptakova D.; Popper M.; Novy Z.; Hajduch M.; Petrik M. Ga-68 Ga-Ornibactin for Burkholderia cepacia complex infection imaging using positron emission tomography. J. Med. Chem. 2023, 66 (11), 7584–7593. 10.1021/acs.jmedchem.3c00469. PubMed DOI PMC