Desferrioxamine B-Mediated Pre-Clinical In Vivo Imaging of Infection by the Mold Fungus Aspergillus fumigatus
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
KLI 909
Austrian Science Fund FWF - Austria
P 30924
Austrian Science Fund FWF - Austria
PubMed
34575772
PubMed Central
PMC8472378
DOI
10.3390/jof7090734
PII: jof7090734
Knihovny.cz E-resources
- Keywords
- Aspergillus fumigatus, PET, desferrioxamine B, gallium-68, imaging, infection, invasive pulmonary aspergillosis, pH, positron emission tomography, siderophore,
- Publication type
- Journal Article MeSH
Fungal infections are a serious threat, especially for immunocompromised patients. Early and reliable diagnosis is crucial to treat such infections. The bacterially produced siderophore desferrioxamine B (DFO-B) is utilized by a variety of microorganisms for iron acquisition, while mammalian cells lack the uptake of DFO-B chelates. DFO-B is clinically approved for a variety of long-term chelation therapies. Recently, DFO-B-complexed gallium-68 ([68Ga]Ga-DFO-B) was shown to enable molecular imaging of bacterial infections by positron emission tomography (PET). Here, we demonstrate that [68Ga]Ga-DFO-B can also be used for the preclinical molecular imaging of pulmonary infection caused by the fungal pathogen Aspergillus fumigatus in a rat aspergillosis model. Moreover, by combining in vitro uptake studies and the chemical modification of DFO-B, we show that the cellular transport efficacy of ferrioxamine-type siderophores is impacted by the charge of the molecule and, consequently, the environmental pH. The chemical derivatization has potential implications for its diagnostic use and characterizes transport features of ferrioxamine-type siderophores.
Department of Nuclear Medicine Medical University of Innsbruck 6020 Innsbruck Austria
Institute of Molecular Biology Biocenter Medical University of Innsbruck 6020 Innsbruck Austria
See more in PubMed
Bongomin F., Gago S., Oladele R.O., Denning D.W. Global and multi-national prevalence of fungal diseases—Estimate precision. J. Fungi. 2017;3:57. doi: 10.3390/jof3040057. PubMed DOI PMC
Arastehfar A., Carvalho A., Houbraken J., Lombardi L., Garcia-Rubio R., Jenks J., Rivero-Menendez O., Aljohani R., Jacobsen I., Berman J., et al. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud. Mycol. 2021;100:100115. doi: 10.1016/j.simyco.2021.100115. PubMed DOI PMC
Kozel T.R., Wickes B. Fungal diagnostics. Cold Spring Harb. Perspect. Med. 2014;4:a019299. doi: 10.1101/cshperspect.a019299. PubMed DOI PMC
Kontoyiannis D.P., Sumoza D., Tarrand J., Bodey G.P., Storey R., Raad I.I. Significance of Aspergillemia in patients with cancer: A 10-year study. Clin. Infect. Dis. 2000;31:188–189. doi: 10.1086/313918. PubMed DOI
Thornton C.R. Detection of the ‘Big Five’ mold killers of humans: Aspergillus, Fusarium, Lomentospora, Scedosporium and Mucormycetes. Adv. Appl. Microbiol. 2020;110:1–61. PubMed
Barnes R.A. Early diagnosis of fungal infection in immunocompromised patients. J. Antimicrob. Chemother. 2008;61:i3–i6. doi: 10.1093/jac/dkm424. PubMed DOI
Palmer L.D., Skaar E.P. Transition metals and virulence in bacteria. Annu. Rev. Genet. 2016;50:67–91. doi: 10.1146/annurev-genet-120215-035146. PubMed DOI PMC
Misslinger M., Hortschansky P., Brakhage A.A., Haas H. Fungal iron homeostasis with a focus on Aspergillus fumigatus. Biochim. Biophys. Acta (BBA) Bioenerg. 2020;1868:118885. doi: 10.1016/j.bbamcr.2020.118885. PubMed DOI
Latgé J.-P., Chamilos G. Aspergillus fumigatus and Aspergillosis in 2019. Clin. Microbiol. Rev. 2019;33:e00140-18. doi: 10.1128/CMR.00140-18. PubMed DOI PMC
Schrettl M., Bignell E., Kragl C., Joechl C., Rogers T., Arst H.N., Haynes K., Haas H. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J. Exp. Med. 2004;200:1213–1219. doi: 10.1084/jem.20041242. PubMed DOI PMC
Petrik M., Franssen G.M., Haas H., Laverman P., Hörtnagl C., Schrettl M., Helbok A., Lass-Flörl C., Decristoforo C. Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur. J. Nucl. Med. Mol. Imaging. 2012;39:1175–1183. doi: 10.1007/s00259-012-2110-3. PubMed DOI PMC
Petrik M., Haas H., Schrettl M., Helbok A., Blatzer M., Decristoforo C. In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging. Nucl. Med. Biol. 2012;39:361–369. doi: 10.1016/j.nucmedbio.2011.09.012. PubMed DOI PMC
Bickel H., Gäumann E., Keller-Schierlein W., Prelog V., Vischer E., Wettstein A., Zähner H. Über eisenhaltige wachstumsfaktoren, die sideramine, und ihre antagonisten, die eisenhaltigen antibiotika sideromycine. Cell. Mol. Life Sci. 1960;16:129–133. doi: 10.1007/BF02157712. PubMed DOI
Polsinelli I., Borruso L., Caliandro R., Triboli L., Esposito A., Benini S. A genome-wide analysis of desferrioxamine mediated iron uptake in Erwinia spp. reveals genes exclusive of the Rosaceae infecting strains. Sci. Rep. 2019;9:2818. doi: 10.1038/s41598-019-39787-x. PubMed DOI PMC
Challis G.L. A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. ChemBioChem. 2005;6:601–611. doi: 10.1002/cbic.200400283. PubMed DOI
Petrik M., Pfister J., Misslinger M., Decristoforo C., Haas H. Siderophore-based molecular imaging of fungal and bacterial infections—Current status and future perspectives. J. Fungi. 2020;6:73. doi: 10.3390/jof6020073. PubMed DOI PMC
Fadeev E.A., Luo M., Groves J.T. Synthesis, structure, and molecular dynamics of gallium complexes of schizokinen and the amphiphilic siderophore acinetoferrin. J. Am. Chem. Soc. 2004;126:12065–12075. doi: 10.1021/ja048145j. PubMed DOI
Bellotti D., Remelli M. Deferoxamine B: A natural, excellent and versatile metal chelator. Molecules. 2021;26:3255. doi: 10.3390/molecules26113255. PubMed DOI PMC
Velasquez J., Wray A.A. Deferoxamine. StatPearls Publishing; Treasure Island, FL, USA: 2021.
Desferal Vials—Summary of Product Characteristics (SmPC) [(accessed on 8 July 2021)]. Available online: https://www.medicines.org.uk/emc/product/3813/smpc#gref.
Petrik M., Umlaufova E., Raclavsky V., Palyzova A., Havlicek V., Pfister J., Mair C., Novy Z., Popper M., Hajduch M., et al. 68Ga-labelled desferrioxamine-B for bacterial infection imaging. Eur. J. Nucl. Med. Mol. Imaging. 2020;48:372–382. doi: 10.1007/s00259-020-04948-y. PubMed DOI PMC
Luptáková D., Pluháček T., Petrik M., Novak J., Palyzová A., Sokolová L., Škríba A., Šedivá B., Lemr K., Havlíček V. Non-invasive and invasive diagnoses of aspergillosis in a rat model by mass spectrometry. Sci. Rep. 2017;7:16523. doi: 10.1038/s41598-017-16648-z. PubMed DOI PMC
Pfister J., Bata R., Hubmann I., Hörmann A.A., Gsaller F., Haas H., Decristoforo C. Siderophore scaffold as carrier for antifungal peptides in therapy of Aspergillus Fumigatus infections. J. Fungi. 2020;6:367. doi: 10.3390/jof6040367. PubMed DOI PMC
Kaeopookum P., Summer D., Pfister J., Orasch T., Lechner B.E., Petrik M., Novy Z., Matuszczak B., Rangger C., Haas H., et al. Modifying the siderophore triacetylfusarinine C for molecular imaging of fungal infection. Mol. Imaging Biol. 2019;21:1097–1106. doi: 10.1007/s11307-019-01325-6. PubMed DOI PMC
Hartmann T., Dümig M., Jaber B.M., Szewczyk E., Olbermann P., Morschhäuser J., Krappmann S. Validation of a self-excising marker in the human pathogen Aspergillus fumigatus by employing the β-Rec/six site-specific recombination system. Appl. Environ. Microbiol. 2010;76:6313–6317. doi: 10.1128/AEM.00882-10. PubMed DOI PMC
Pontecorvo G., Roper J., Chemmons L., Macdonald K., Bufton A. The genetics of Aspergillus nidulans. Adv. Genet. 1953;5:141–238. doi: 10.1016/s0065-2660(08)60408-3. PubMed DOI
Schrettl M., Kim H., Eisendle M., Kragl C., Nierman W.C., Heinekamp T., Werner E.R., Jacobsen I.D., Illmer P., Yi H., et al. SreA-mediated iron regulation in Aspergillus fumigatus. Mol. Microbiol. 2008;70:27–43. doi: 10.1111/j.1365-2958.2008.06376.x. PubMed DOI PMC
Gunzer M., Thornton C.R., Beziere N. Advances in the in vivo molecular imaging of invasive Aspergillosis. J. Fungi. 2020;6:338. doi: 10.3390/jof6040338. PubMed DOI PMC
Anderson C.J., Ferdani R. Copper-64 radiopharmaceuticals for PET imaging of cancer: Advances in preclinical and clinical research. Cancer Biother. Radiopharm. 2009;24:379–393. doi: 10.1089/cbr.2009.0674. PubMed DOI PMC
Price E.W., Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev. 2013;43:260–290. doi: 10.1039/C3CS60304K. PubMed DOI
Rangger C., Haubner R. Radiolabelled Peptides for Positron Emission Tomography and Endoradiotherapy in Oncology. Pharmaceuticals. 2020;13:22. doi: 10.3390/ph13020022. PubMed DOI PMC
Rosebrough S.F. Plasma stability and pharmacokinetics of radiolabeled deferoxamine-biotin derivatives. J. Pharmacol. Exp. Ther. 1993;265:408–415. PubMed
Petrik M., Haas H., Laverman P., Schrettl M., Franssen G.M., Blatzer M., Decristoforo C. 68Ga-triacetylfusarinine C and 68Ga-ferrioxamine E for Aspergillus infection imaging: Uptake specificity in various microorganisms. Mol. Imaging Biol. 2013;16:102–108. doi: 10.1007/s11307-013-0654-7. PubMed DOI PMC
Kaplan C., Kaplan J. Iron acquisition and transcriptional regulation. Chem. Rev. 2009;109:4536–4552. doi: 10.1021/cr9001676. PubMed DOI
Spitzer K.W., Vaughan-Jones R.D. Regulation of intracellular pH in mammalian cells. In: Karmazyn M., Avkiran M., Fliegel L., editors. The Sodium-Hydrogen Exchanger. Springer; Boston, MA, USA: 2003. pp. 1–15. DOI
Ganz T. Iron in innate immunity: Starve the invaders. Curr. Opin. Immunol. 2009;21:63–67. doi: 10.1016/j.coi.2009.01.011. PubMed DOI PMC
Nairz M., Weiss G. Iron in infection and immunity. Mol. Asp. Med. 2020;75:100864. doi: 10.1016/j.mam.2020.100864. PubMed DOI
Pfister J., Petrik M., Bendova K., Matuszczak B., Binder U., Misslinger M., Kühbacher A., Gsaller F., Haas H., Decristoforo C. Antifungal siderophore conjugates for theranostic applications in invasive pulmonary aspergillosis using low-molecular TAFC scaffolds. J. Fungi. 2021;7:558. doi: 10.3390/jof7070558. PubMed DOI PMC
Automated Production of [68Ga]Ga-Desferrioxamine B on Two Different Synthesis Platforms
Radiotracer Development for Fungal-Specific Imaging: Past, Present, and Future