Non-invasive and invasive diagnoses of aspergillosis in a rat model by mass spectrometry
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29184111
PubMed Central
PMC5705710
DOI
10.1038/s41598-017-16648-z
PII: 10.1038/s41598-017-16648-z
Knihovny.cz E-zdroje
- MeSH
- Aspergillus chemie metabolismus MeSH
- aspergilóza diagnóza mikrobiologie MeSH
- biologické markery MeSH
- chromatografie kapalinová MeSH
- histocytochemie MeSH
- hmotnostní spektrometrie * metody MeSH
- invazivní plicní aspergilóza diagnóza mikrobiologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- metabolomika metody MeSH
- modely nemocí na zvířatech MeSH
- plíce mikrobiologie patologie MeSH
- počet mikrobiálních kolonií MeSH
- siderofory analýza chemie MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- siderofory MeSH
Invasive pulmonary aspergillosis results in 450,000 deaths per year and complicates cancer chemotherapy, transplantations and the treatment of other immunosuppressed patients. Using a rat model of experimental aspergillosis, the fungal siderophores ferricrocin and triacetylfusarinine C were identified as markers of aspergillosis and quantified in urine, serum and lung tissues. Biomarkers were analyzed by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization mass spectrometry using a 12T SolariX Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. The limits of detection of the ferri-forms of triacetylfusarinine C and ferricrocin in the rat serum were 0.28 and 0.36 ng/mL, respectively. In the rat urine the respective limits of detection achieved 0.02 and 0.03 ng/mL. In the sera of infected animals, triacetylfusarinine C was not detected but ferricrocin concentration fluctuated in the 3-32 ng/mL range. Notably, the mean concentrations of triacetylfusarinine C and ferricrocin in the rat urine were 0.37 and 0.63 μg/mL, respectively. The MALDI FTICR mass spectrometry imaging illustrated the actual microbial ferricrocin distribution in the lung tissues and resolved the false-positive results obtained by the light microscopy and histological staining. Ferricrocin and triacetylfusarinine C detection in urine represents an innovative non-invasive indication of Aspergillus infection in a host.
Institute of Microbiology of the Czech Academy of Sciences Prague 4 142 20 Czech Republic
Institute of Molecular and Translational Medicine Palacky University Olomouc 779 00 Czech Republic
Zobrazit více v PubMed
Cole, D. C., Govender, N. P., Chakrabarti, A., Sacarlal, J. & Denning, D. W. Improvement of fungal disease identification and management: combined health systems and public health approaches. The Lancet Infect. Dis. 10.1016/S1473-3099(17)30308-0 (2017). PubMed
Del Poeta M. Special issue: Novel antifungal drug discovery. J. Fungi. 2016;2:33. doi: 10.3390/jof2040033. PubMed DOI PMC
Denning DW. Minimizing fungal disease deaths will allow the unAIDS target of reducing annual AIDS deaths below 500 000 by 2020 to be realized. Philos. Transactions of the Royal Soc. B: Biol. Sci. 2016;371:20150468. doi: 10.1098/rstb.2015.0468. PubMed DOI PMC
Lin S-J, Schranz J, Teutsch SM. Aspergillosis case-fatality rate: Systematic review of the literature. Clin. Infec. Dis. 2001;32:358–366. doi: 10.1086/318483. PubMed DOI
Denning DW, Pleuvry A, Cole DC. Global burden of allergic bronchopulmonary aspergillosis with asthma and its complication chronic pulmonary aspergillosis in adults. Med. Mycol. 2013;51:361–370. doi: 10.3109/13693786.2012.738312. PubMed DOI
Dagenais TRT, Keller NP. Pathogenesis of aspergillus fumigatus in invasive aspergillosis. Clin. Microbiol. Rev. 2009;22:447–465. doi: 10.1128/CMR.00055-08. PubMed DOI PMC
Havlicek V, Lemr K, Schug KA. Current trends in microbial diagnostics based on mass spectrometry. Anal. Chem. 2013;85:790–797. doi: 10.1021/ac3031866. PubMed DOI
Page ID, Richardson MD, Denning DW. Comparison of six aspergillus-specific IgG assays for the diagnosis of chronic pulmonary aspergillosis (CPA) J. Infect. 2016;72:240–249. doi: 10.1016/j.jinf.2015.11.003. PubMed DOI
Cerqueira LB, de Francisco TMG, Gasparetto JC, Campos FR, Pontarolo R. Development and validation of an HPLC-MS/MS method for the early diagnosis of aspergillosis. Plos One. 2014;9:e92851. doi: 10.1371/journal.pone.0092851. PubMed DOI PMC
Johnson G, et al. Biomarkers for invasive aspergillosis: the challenges continue. Biomark. Med. 2014;8:429–451. doi: 10.2217/bmm.13.129. PubMed DOI
Pluhacek T, et al. Characterization of microbial siderophores by mass spectrometry. Mass Spectrom. Rev. 2016;35:35–47. doi: 10.1002/mas.21461. PubMed DOI
Hissen AH, Wan AN, Warwas ML, Pinto LJ, Moore MM. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence. Infect. and Immun. 2005;73:5493–503. doi: 10.1128/IAI.73.9.5493-5503.2005. PubMed DOI PMC
Pluhacek T, et al. Aspergillus infection monitored by multimodal imaging in a rat model. Proteomics. 2016;16:1785–92. doi: 10.1002/pmic.201500487. PubMed DOI
Mascuch SJ, et al. Direct detection of fungal siderophores on bats with white-nose syndrome via fluorescence microscopy-guided ambient ionization mass spectrometry. Plos One. 2015;10:e0119668. doi: 10.1371/journal.pone.0119668. PubMed DOI PMC
Carroll CS, Amankwa LN, Pinto LJ, Fuller JD, Moore MM. Detection of a serum siderophore by LC-MS/MS as a potential biomarker of invasive aspergillosis. Plos One. 2016;11:e0151260. doi: 10.1371/journal.pone.0151260. PubMed DOI PMC
Prichystal J, Schug KA, Lemr K, Novak J, Havlicek V. Structural analysis of natural products. Anal. Chem. 2016;88:10338–10346. doi: 10.1021/acs.analchem.6b02386. PubMed DOI
Novak J, Lemr K, Schug KA, Havlicek V. CycloBranch: De novo sequencing of nonribosomal peptides from accurate product ion mass spectra. J. Am. Soc. for Mass Spectrom. 2015;26:1780–1786. doi: 10.1007/s13361-015-1211-1. PubMed DOI
Novak J, et al. Batch-processing of imaging or liquid-chromatography mass spectrometry datasets and de novo sequencing of polyketide siderophores. BBA-Proteins Proteom. 2017;1865:768–775. doi: 10.1016/j.bbapap.2016.12.003. PubMed DOI
Brandon M, Howard B, Lawrence C, Laubenbacher R. Iron acquisition and oxidative stress response in Aspergillus fumigatus. BMC Syst. Biol. 2015;9:17. doi: 10.1186/s12918-015-0163-1. PubMed DOI PMC
Schrettl M, Haas H. Iron homeostasis-achilles’ heel of Aspergillus fumigatus? Curr. Opin. in Microbiol. 2011;14:400–405. doi: 10.1016/j.mib.2011.06.002. PubMed DOI PMC
Blatzer M, et al. SidL, an Aspergillus fumigatus transacetylase involved in biosynthesis of the siderophores ferricrocin and hydroxyferricrocin. Appl. and Environ. Microbiol. 2011;77:4959–4966. doi: 10.1128/AEM.00182-11. PubMed DOI PMC
Petrik M, et al. In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging. Nucl. Medicine Biol. 2012;39:361–369. doi: 10.1016/j.nucmedbio.2011.09.012. PubMed DOI PMC
Strohalm M, et al. Poly N-(2-hydroxypropyl)methacrylamide -based tissue-embedding medium compatible with MALDI mass spectrometry imaging experiments. Anal. Chem. 2011;83:5458–5462. doi: 10.1021/ac2011679. PubMed DOI
Petrik M, et al. Ga-68-siderophores for PET imaging of invasive pulmonary aspergillosis: Proof of principle. J. Nucl. Medicine. 2010;51:639–645. doi: 10.2967/jnumed.109.072462. PubMed DOI PMC
Yuan M, Breitkopf SB, Yang XM, Asara JM. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 2012;7:872–881. doi: 10.1038/nprot.2012.024. PubMed DOI PMC
Gu HD, Liu GW, Wang J, Aubry AF, Arnold ME. Selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays and impacts of using incorrect weighting factors on curve stability, data quality, and assay performance. Anal. Chem. 2014;86:8959–8966. doi: 10.1021/ac5018265. PubMed DOI
Oide S, Berthiller F, Wiesenberger G, Adam G, Turgeon BG. Individual and combined roles of malonichrome, ferricrocin, and tafc siderophores in Fusarium graminearum pathogenic and sexual development. Front. Microbiol. 2015;5:759. doi: 10.3389/fmicb.2014.00759. PubMed DOI PMC
Silva-Baila MG, et al. Hydroxamate production as a high affinity iron acquisition mechanism in Paracoccidioides spp. Plos One. 2014;9:e105805. doi: 10.1371/journal.pone.0105805. PubMed DOI PMC
Inglis DO, et al. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiol. 2013;13:91. doi: 10.1186/1471-2180-13-91. PubMed DOI PMC
Imbert S, et al. Aspergillus pcr in serum for the diagnosis, follow-up and prognosis of invasive aspergillosis in neutropenic and nonneutropenic patients. Clin. Microbiol. Infect. 2016;22:562.e1–562.e8. doi: 10.1016/j.cmi.2016.01.027. PubMed DOI PMC
Levesque E, et al. Detection of (1,3)-beta-d-glucan for the diagnosis of invasive fungal infection in liver transplant recipients. Int. J. Mol. Sci. 2017;18:862. doi: 10.3390/ijms18040862. PubMed DOI PMC
Current and Future Pathways in Aspergillus Diagnosis