Siderophore-Based Noninvasive Differentiation of Aspergillus fumigatus Colonization and Invasion in Pulmonary Aspergillosis

. 2023 Jan 31 ; 11 (2) : e0406822. [epub] 20230131

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36719229

Germination from conidia to hyphae and hyphal propagation of Aspergillus fumigatus are the key pathogenic steps in the development of invasive pulmonary aspergillosis (IPA). By applying in vitro observations in a clinical study of 13 patients diagnosed with probable IPA, here, we show that the transition from colonization to the A. fumigatus invasive stage is accompanied by the secretion of triacetylfusarinine C (TafC), triacetylfusarinine B (TafB), and ferricrocin (Fc) siderophores into urine, with strikingly better sensitivity performance than serum sampling. The best-performing index, the TafC/creatinine index, with a median value of 17.2, provided 92.3% detection sensitivity (95% confidence interval [CI], 64.0 to 99.8%) and 100% specificity (95% CI, 84.6 to 100%), i.e., substantially better than the corresponding indications provided by galactomannan (GM) and β-d-glucan (BDG) serology. For the same patient cohort, the serum GM and BDG sensitivities were 46.2 and 76.9%, respectively, and their specificities were 86.4 and 63.6%, respectively. The time-dependent specific appearance of siderophores in the host's urine represents an impactful clinical diagnostic advantage in the early discrimination of invasive aspergillosis from colonization. A favorable concentration of TafC in a clinical specimen distant from a deep infection site enables the noninvasive sampling of patients suffering from IPA. IMPORTANCE The importance of this research lies in the demonstration that siderophore analysis can distinguish between asymptomatic colonization and invasive pulmonary aspergillosis. We found clear associations between phases of fungal development, from conidial germination to the proliferative stage of invasive aspergillosis, and changes in secondary metabolite secretion. The critical extracellular fungal metabolites triacetylfusarinines C and B are produced during the polarized germination or postpolarized growth phase and reflect the morphological status of the proliferating pathogen. False positivity in Aspergillus diagnostics is minimized as mammalian cells do not synthesize Aspergillus siderophore or mycotoxin molecules.

Zobrazit více v PubMed

Mousavi B, Hedayati MT, Hedayati N, Ilkit M, Syedmousavi S. 2016. Aspergillus species in indoor environments and their possible occupational and public health hazards. Curr Med Mycol 2:36–42. doi:10.18869/acadpub.cmm.2.1.36. PubMed DOI PMC

Pfister J, Summer D, Petrik M, Khoylou M, Lichius A, Kaeopookum P, Kochinke L, Orasch T, Haas H, Decristoforo C. 2020. Hybrid imaging of Aspergillus fumigatus pulmonary infection with fluorescent, 68Ga-labelled siderophores. Biomolecules 10:168. doi:10.3390/biom10020168. PubMed DOI PMC

Henneberg S, Hasenberg A, Maurer A, Neumann F, Bornemann L, Gonzalez-Menendez I, Kraus A, Hasenberg M, Thornton CR, Pichler BJ, Gunzer M, Beziere N. 2021. Antibody-guided in vivo imaging of Aspergillus fumigatus lung infections during antifungal azole treatment. Nature Commun 12:1707. doi:10.1038/s41467-021-21965-z. PubMed DOI PMC

Moura S, Cerqueira L, Almeida A. 2018. Invasive pulmonary aspergillosis: current diagnostic methodologies and a new molecular approach. Eur J Clin Microbiol Infect Dis 37:1393–1403. doi:10.1007/s10096-018-3251-5. PubMed DOI

Alanio A, Dellière S, Fodil S, Bretagne S, Mégarbane B. 2020. Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19. Lancet Respir Med 8:e48–e49. doi:10.1016/S2213-2600(20)30237-X. PubMed DOI PMC

Misslinger M, Hortschansky P, Brakhage AA, Haas H. 2021. Fungal iron homeostasis with a focus on Aspergillus fumigatus. Biochim Biophys Acta 1868:118885. doi:10.1016/j.bbamcr.2020.118885. PubMed DOI

Matthaiou EI, Sass G, Stevens DA, Hsu JL. 2018. Iron: an essential nutrient for Aspergillus fumigatus and a fulcrum for pathogenesis. Curr Opin Infect Dis 31:506–511. doi:10.1097/QCO.0000000000000487. PubMed DOI PMC

Khan A, Singh P, Srivastava A. 2018. Synthesis, nature and utility of universal iron chelator—siderophore: a review. Microbiol Res 212–213:103–111. doi:10.1016/j.micres.2017.10.012. PubMed DOI

Liu H, Xu W, Bruno VM, Phan QT, Solis NV, Woolford CA, Ehrlich RL, Shetty AC, McCraken C, Lin J, Bromley MJ, Mitchell AP, Filler SG. 2021. Determining Aspergillus fumigatus transcription factor expression and function during invasion of the mammalian lung. PLoS Pathog 17:e1009235. doi:10.1371/journal.ppat.1009235. PubMed DOI PMC

Schrettl M, Bignell E, Kragl C, Sabiha Y, Loss O, Eisendle M, Wallner A, Arst HN, Jr, Haynes K, Haas H. 2007. Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog 3:e128. doi:10.1371/journal.ppat.0030128. PubMed DOI PMC

Oide S, Berthiller F, Wiesenberger G, Adam G, Turgeon BG. 2015. Individual and combined roles of malonichrome, ferricrocin, and TAFC siderophores in Fusarium graminearum pathogenic and sexual development. Front Microbiol 5:759. doi:10.3389/fmicb.2014.00759. PubMed DOI PMC

Kriegl L, Havlíček V, Dichtl K, Egger M, Hoenigl M. 2022. Siderophores: a potential role as a diagnostic for invasive fungal disease. Curr Opin Infect Dis 35:485–492. doi:10.1097/QCO.0000000000000862. PubMed DOI

Lewis RE, Wiederhold NP, Chi J, Han XY, Komanduri KV, Kontoyiannis DP, Prince RA. 2005. Detection of gliotoxin in experimental and human aspergillosis. Infect Immun 73:635–637. doi:10.1128/IAI.73.1.635-637.2005. PubMed DOI PMC

Kamei K, Watanabe A. 2005. Aspergillus mycotoxins and their effect on the host. Med Mycol 43:S95–S99. doi:10.1080/13693780500051547. PubMed DOI

Raffa N, Keller NP. 2019. A call to arms: mustering secondary metabolites for success and survival of an opportunistic pathogen. PLoS Pathog 15:e1007606. doi:10.1371/journal.ppat.1007606. PubMed DOI PMC

Vidal-García M, Sánchez-Chueca P, Domingo MP, Ballester C, Roc L, Ferrer I, Revillo MJ, Pardo J, Gálvez EM, Rezusta A. 2017. Disseminated aspergillosis in an immunocompetent patient with detectable bis(methylthio)gliotoxin and negative galactomannan. Rev Iberoam Micol 34:49–52. doi:10.1016/j.riam.2016.05.007. PubMed DOI

Lehrnbecher T, Hassler A, Groll AH, Bochennek K. 2018. Diagnostic approaches for invasive aspergillosis—specific considerations in the pediatric population. Front Microbiol 9:518. doi:10.3389/fmicb.2018.00518. PubMed DOI PMC

Reichenberger F, Habicht JM, Gratwohl A, Tamm M. 2002. Diagnosis and treatment of invasive pulmonary aspergillosis in neutropenic patients. Eur Respir J 19:743–755. doi:10.1183/09031936.02.00256102. PubMed DOI

Luptáková D, Pluháček T, Petřík M, Novák J, Palyzová A, Sokolová L, Škríba A, Šedivá B, Lemr K, Havlíček V. 2017. Non-invasive and invasive diagnoses of aspergillosis in a rat model by mass spectrometry. Sci Rep 7:16523. doi:10.1038/s41598-017-16648-z. PubMed DOI PMC

Skriba A, Pluhacek T, Palyzova A, Novy Z, Lemr K, Hajduch M, Petrik M, Havlicek V. 2018. Early and non-invasive diagnosis of aspergillosis revealed by infection kinetics monitored in a rat model. Front Microbiol 9:2356. doi:10.3389/fmicb.2018.02356. PubMed DOI PMC

Hoenigl M, Orasch T, Faserl K, Prattes J, Loeffler J, Springer J, Gsaller F, Reischies F, Duettmann W, Raggam RB, Lindner H, Haas H. 2019. Triacetylfusarinine C: a urine biomarker for diagnosis of invasive aspergillosis. J Infect 78:150–157. doi:10.1016/j.jinf.2018.09.006. PubMed DOI PMC

Carroll CS, Amankwa LN, Pinto LJ, Fuller JD, Moore MM. 2016. Detection of a serum siderophore by LC-MS/MS as a potential biomarker of invasive aspergillosis. PLoS One 11:e0151260. doi:10.1371/journal.pone.0151260. PubMed DOI PMC

Orasch T, Prattes J, Faserl K, Eigl S, Düttmann W, Lindner H, Haas H, Hoenigl M. 2017. Bronchoalveolar lavage triacetylfusarinine C (TAFC) determination for diagnosis of invasive pulmonary aspergillosis in patients with hematological malignancies. J Infect 75:370–373. doi:10.1016/j.jinf.2017.05.014. PubMed DOI PMC

Patil RH, Luptáková D, Havlíček V. 2 December 2021. Infection metallomics for critical care in the post-COVID era. Mass Spectrom Rev doi:10.1002/mas.21755. PubMed DOI

Blatzer M, Schrettl M, Sarg B, Lindner HH, Pfaller K, Haas H. 2011. SidL, an Aspergillus fumigatus transacetylase involved in biosynthesis of the siderophores ferricrocin and hydroxyferricrocin. Appl Environ Microbiol 77:4959–4966. doi:10.1128/AEM.00182-11. PubMed DOI PMC

Bassetti M, Azoulay E, Kullberg B-J, Ruhnke M, Shoham S, Vazquez J, Giacobbe DR, Calandra T. 2021. EORTC/MSGERC definitions of invasive fungal diseases: summary of activities of the Intensive Care Unit Working Group. Clin Infect Dis 72:S121–S127. doi:10.1093/cid/ciaa1751. PubMed DOI

Donnelly JP, Chen SC, Kauffman CA, Steinbach WJ, Baddley JW, Verweij PE, Clancy CJ, Wingard JR, Lockhart SR, Groll AH, Sorrell TC, Bassetti M, Akan H, Alexander BD, Andes D, Azoulay E, Bialek R, Bradsher RW, Bretagne S, Calandra T, Caliendo AM, Castagnola E, Cruciani M, Cuenca-Estrella M, Decker CF, Desai SR, Fisher B, Harrison T, Heussel CP, Jensen HE, Kibbler CC, Kontoyiannis DP, Kullberg B-J, Lagrou K, Lamoth F, Lehrnbecher T, Loeffler J, Lortholary O, Maertens J, Marchetti O, Marr KA, Masur H, Meis JF, Morrisey CO, Nucci M, Ostrosky-Zeichner L, Pagano L, Patterson TF, Perfect JR, Racil Z, et al.. 2020. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis 71:1367–1376. doi:10.1093/cid/ciz1008. PubMed DOI PMC

Petrik M, Haas H, Schrettl M, Helbok A, Blatzer M, Decristoforo C. 2012. In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging. Nucl Med Biol 39:361–369. doi:10.1016/j.nucmedbio.2011.09.012. PubMed DOI PMC

Patil RH, Kotta-Loizou I, Palyzová A, Pluháček T, Coutts RHA, Stevens DA, Havlíček V. 2021. Freeing Aspergillus fumigatus of polymycovirus infection renders it more resistant to competition with Pseudomonas aeruginosa due to altered iron-acquiring tactics. J Fungi (Basel) 7:497. doi:10.3390/jof7070497. PubMed DOI PMC

Danion F, van Rhijn N, Dufour AC, Legendre R, Sismeiro O, Varet H, Olivo-Marin J-C, Mouyna I, Chamilos G, Bromley M, Beauvais A, Latgé J-P. 2021. Aspergillus fumigatus, one uninucleate species with disparate offspring. J Fungi (Basel) 7:30. doi:10.3390/jof7010030. PubMed DOI PMC

Baltussen TJH, Zoll J, Verweij PE, Melchers WJG. 2020. Molecular mechanisms of conidial germination in Aspergillus spp. Microbiol Mol Biol Rev 84:e00049-19. doi:10.1128/MMBR.00049-19. PubMed DOI PMC

Oberegger H, Schoeser M, Zadra I, Abt B, Haas H. 2001. SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans. Mol Microbiol 41:1077–1089. doi:10.1046/j.1365-2958.2001.02586.x. PubMed DOI

Chi M-H, Craven KD. 2016. RacA-mediated ROS signaling is required for polarized cell differentiation in conidiogenesis of Aspergillus fumigatus. PLoS One 11:e0149548. doi:10.1371/journal.pone.0149548. PubMed DOI PMC

Baltussen TJH, Coolen JPM, Zoll J, Verweij PE, Melchers WJG. 2018. Gene co-expression analysis identifies gene clusters associated with isotropic and polarized growth in Aspergillus fumigatus conidia. Fungal Genet Biol 116:62–72. doi:10.1016/j.fgb.2018.04.013. PubMed DOI

Wallner A, Blatzer M, Schrettl M, Sarg B, Lindner H, Haas H. 2009. Ferricrocin, a siderophore involved in intra- and transcellular iron distribution in Aspergillus fumigatus. Appl Environ Microbiol 75:4194–4196. doi:10.1128/AEM.00479-09. PubMed DOI PMC

Kragl C, Schrettl M, Abt B, Sarg B, Lindner HH, Haas H. 2007. EstB-mediated hydrolysis of the siderophore triacetylfusarinine C optimizes iron uptake of Aspergillus fumigatus. Eukaryot Cell 6:1278–1285. doi:10.1128/EC.00066-07. PubMed DOI PMC

Haas H. 2012. Iron—a key nexus in the virulence of Aspergillus fumigatus. Front Microbiol 3:28. doi:10.3389/fmicb.2012.00028. PubMed DOI PMC

Schrettl M, Kim HS, Eisendle M, Kragl C, Nierman WC, Heinekamp T, Werner ER, Jacobsen I, Illmer P, Yi H, Brakhage AA, Haas H. 2008. SreA-mediated iron regulation in Aspergillus fumigatus. Mol Microbiol 70:27–43. doi:10.1111/j.1365-2958.2008.06376.x. PubMed DOI PMC

Hortschansky P, Eisendle M, Al-Abdallah Q, Schmidt AD, Bergmann S, Thon M, Kniemeyer O, Abt B, Seeber B, Werner ER, Kato M, Brakhage AA, Haas H. 2007. Interaction of HapX with the CCAAT-binding complex—a novel mechanism of gene regulation by iron. EMBO J 26:3157–3168. doi:10.1038/sj.emboj.7601752. PubMed DOI PMC

Kamai Y, Chiang LY, Lopes Bezerra LM, Doedt T, Lossinsky AS, Sheppard DC, Filler SG. 2006. Interactions of Aspergillus fumigatus with vascular endothelial cells. Med Mycol 44(Suppl 1):S115–S117. doi:10.1080/13693780600897989. PubMed DOI

Chiang LY, Sheppard DC, Gravelat FN, Patterson TF, Filler SG. 2008. Aspergillus fumigatus stimulates leukocyte adhesion molecules and cytokine production by endothelial cells in vitro and during invasive pulmonary disease. Infect Immun 76:3429–3438. doi:10.1128/IAI.01510-07. PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019. PubMed DOI PMC

Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J, Holmes E, Nicholson JK. 2010. Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc 5:1005–1018. doi:10.1038/nprot.2010.50. PubMed DOI

Center for Drug Evaluation and Research, Center for Veterinary Medicine. 2018. Bioanalytical method validation: guidance for industry. US Food and Drug Administration, Silver Spring, MD. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry. Accessed 11 May 2022.

Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, Lass-Flörl C, Lewis RE, Munoz P, Verweij PE, Warris A, Ader F, Akova M, Arendrup MC, Barnes RA, Beigelman-Aubry C, Blot S, Bouza E, Brüggemann RJM, Buchheidt D, Cadranel J, Castagnola E, Chakrabarti A, Cuenca-Estrella M, Dimopoulos G, Fortun J, Gangneux J-P, Garbino J, Heinz WJ, Herbrecht R, Heussel CP, Kibbler CC, Klimko N, Kullberg BJ, Lange C, Lehrnbecher T, Löffler J, Lortholary O, Maertens J, Marchetti O, Meis JF, Pagano L, Ribaud P, Richardson M, Roilides E, Ruhnke M, Sanguinetti M, Sheppard DC, Sinkó J, Skiada A, et al.. 2018. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 24:e1–e38. doi:10.1016/j.cmi.2018.01.002. PubMed DOI

Louhimies S. 2002. Directive 86/609/EEC on the protection of animals used for experimental and other scientific purposes. Altern Lab Anim 2:217–219. doi:10.1177/026119290203002S36. PubMed DOI

Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 . https://eur-lex.europa.eu/eli/dir/2000/54/oj/eng. Accessed 23 January 2023.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...