Siderophore-Based Noninvasive Differentiation of Aspergillus fumigatus Colonization and Invasion in Pulmonary Aspergillosis
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36719229
PubMed Central
PMC10100950
DOI
10.1128/spectrum.04068-22
Knihovny.cz E-zdroje
- Klíčová slova
- Aspergillus fumigatus, colonization, invasive pulmonary aspergillosis, iron metabolism, mass spectrometry, noninvasive diagnosis, siderophore, urine analysis,
- Publikační typ
- časopisecké články MeSH
Germination from conidia to hyphae and hyphal propagation of Aspergillus fumigatus are the key pathogenic steps in the development of invasive pulmonary aspergillosis (IPA). By applying in vitro observations in a clinical study of 13 patients diagnosed with probable IPA, here, we show that the transition from colonization to the A. fumigatus invasive stage is accompanied by the secretion of triacetylfusarinine C (TafC), triacetylfusarinine B (TafB), and ferricrocin (Fc) siderophores into urine, with strikingly better sensitivity performance than serum sampling. The best-performing index, the TafC/creatinine index, with a median value of 17.2, provided 92.3% detection sensitivity (95% confidence interval [CI], 64.0 to 99.8%) and 100% specificity (95% CI, 84.6 to 100%), i.e., substantially better than the corresponding indications provided by galactomannan (GM) and β-d-glucan (BDG) serology. For the same patient cohort, the serum GM and BDG sensitivities were 46.2 and 76.9%, respectively, and their specificities were 86.4 and 63.6%, respectively. The time-dependent specific appearance of siderophores in the host's urine represents an impactful clinical diagnostic advantage in the early discrimination of invasive aspergillosis from colonization. A favorable concentration of TafC in a clinical specimen distant from a deep infection site enables the noninvasive sampling of patients suffering from IPA. IMPORTANCE The importance of this research lies in the demonstration that siderophore analysis can distinguish between asymptomatic colonization and invasive pulmonary aspergillosis. We found clear associations between phases of fungal development, from conidial germination to the proliferative stage of invasive aspergillosis, and changes in secondary metabolite secretion. The critical extracellular fungal metabolites triacetylfusarinines C and B are produced during the polarized germination or postpolarized growth phase and reflect the morphological status of the proliferating pathogen. False positivity in Aspergillus diagnostics is minimized as mammalian cells do not synthesize Aspergillus siderophore or mycotoxin molecules.
California Institute for Medical Research San Jose California USA
Department of Analytical Chemistry Palacký University Olomouc Czechia
Department of Anesthesiology and Intensive Care Medicine University Hospital Ostrava Ostrava Czechia
Department of Bacteriology and Mycology Public Health Institute in Ostrava Ostrava Czechia
Department of Hematooncology University Hospital Ostrava Ostrava Czechia
Department of Medical Microbiology Charles University Prague Czechia
Institute of Laboratory Medicine Faculty of Medicine University of Ostrava Ostrava Czechia
Institute of Microbiology of the Czech Academy of Sciences Prague Czechia
Lung Department Krnov Combined Medical Facility Krnov Czechia
Zobrazit více v PubMed
Mousavi B, Hedayati MT, Hedayati N, Ilkit M, Syedmousavi S. 2016. Aspergillus species in indoor environments and their possible occupational and public health hazards. Curr Med Mycol 2:36–42. doi:10.18869/acadpub.cmm.2.1.36. PubMed DOI PMC
Pfister J, Summer D, Petrik M, Khoylou M, Lichius A, Kaeopookum P, Kochinke L, Orasch T, Haas H, Decristoforo C. 2020. Hybrid imaging of Aspergillus fumigatus pulmonary infection with fluorescent, 68Ga-labelled siderophores. Biomolecules 10:168. doi:10.3390/biom10020168. PubMed DOI PMC
Henneberg S, Hasenberg A, Maurer A, Neumann F, Bornemann L, Gonzalez-Menendez I, Kraus A, Hasenberg M, Thornton CR, Pichler BJ, Gunzer M, Beziere N. 2021. Antibody-guided in vivo imaging of Aspergillus fumigatus lung infections during antifungal azole treatment. Nature Commun 12:1707. doi:10.1038/s41467-021-21965-z. PubMed DOI PMC
Moura S, Cerqueira L, Almeida A. 2018. Invasive pulmonary aspergillosis: current diagnostic methodologies and a new molecular approach. Eur J Clin Microbiol Infect Dis 37:1393–1403. doi:10.1007/s10096-018-3251-5. PubMed DOI
Alanio A, Dellière S, Fodil S, Bretagne S, Mégarbane B. 2020. Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19. Lancet Respir Med 8:e48–e49. doi:10.1016/S2213-2600(20)30237-X. PubMed DOI PMC
Misslinger M, Hortschansky P, Brakhage AA, Haas H. 2021. Fungal iron homeostasis with a focus on Aspergillus fumigatus. Biochim Biophys Acta 1868:118885. doi:10.1016/j.bbamcr.2020.118885. PubMed DOI
Matthaiou EI, Sass G, Stevens DA, Hsu JL. 2018. Iron: an essential nutrient for Aspergillus fumigatus and a fulcrum for pathogenesis. Curr Opin Infect Dis 31:506–511. doi:10.1097/QCO.0000000000000487. PubMed DOI PMC
Khan A, Singh P, Srivastava A. 2018. Synthesis, nature and utility of universal iron chelator—siderophore: a review. Microbiol Res 212–213:103–111. doi:10.1016/j.micres.2017.10.012. PubMed DOI
Liu H, Xu W, Bruno VM, Phan QT, Solis NV, Woolford CA, Ehrlich RL, Shetty AC, McCraken C, Lin J, Bromley MJ, Mitchell AP, Filler SG. 2021. Determining Aspergillus fumigatus transcription factor expression and function during invasion of the mammalian lung. PLoS Pathog 17:e1009235. doi:10.1371/journal.ppat.1009235. PubMed DOI PMC
Schrettl M, Bignell E, Kragl C, Sabiha Y, Loss O, Eisendle M, Wallner A, Arst HN, Jr, Haynes K, Haas H. 2007. Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog 3:e128. doi:10.1371/journal.ppat.0030128. PubMed DOI PMC
Oide S, Berthiller F, Wiesenberger G, Adam G, Turgeon BG. 2015. Individual and combined roles of malonichrome, ferricrocin, and TAFC siderophores in Fusarium graminearum pathogenic and sexual development. Front Microbiol 5:759. doi:10.3389/fmicb.2014.00759. PubMed DOI PMC
Kriegl L, Havlíček V, Dichtl K, Egger M, Hoenigl M. 2022. Siderophores: a potential role as a diagnostic for invasive fungal disease. Curr Opin Infect Dis 35:485–492. doi:10.1097/QCO.0000000000000862. PubMed DOI
Lewis RE, Wiederhold NP, Chi J, Han XY, Komanduri KV, Kontoyiannis DP, Prince RA. 2005. Detection of gliotoxin in experimental and human aspergillosis. Infect Immun 73:635–637. doi:10.1128/IAI.73.1.635-637.2005. PubMed DOI PMC
Kamei K, Watanabe A. 2005. Aspergillus mycotoxins and their effect on the host. Med Mycol 43:S95–S99. doi:10.1080/13693780500051547. PubMed DOI
Raffa N, Keller NP. 2019. A call to arms: mustering secondary metabolites for success and survival of an opportunistic pathogen. PLoS Pathog 15:e1007606. doi:10.1371/journal.ppat.1007606. PubMed DOI PMC
Vidal-García M, Sánchez-Chueca P, Domingo MP, Ballester C, Roc L, Ferrer I, Revillo MJ, Pardo J, Gálvez EM, Rezusta A. 2017. Disseminated aspergillosis in an immunocompetent patient with detectable bis(methylthio)gliotoxin and negative galactomannan. Rev Iberoam Micol 34:49–52. doi:10.1016/j.riam.2016.05.007. PubMed DOI
Lehrnbecher T, Hassler A, Groll AH, Bochennek K. 2018. Diagnostic approaches for invasive aspergillosis—specific considerations in the pediatric population. Front Microbiol 9:518. doi:10.3389/fmicb.2018.00518. PubMed DOI PMC
Reichenberger F, Habicht JM, Gratwohl A, Tamm M. 2002. Diagnosis and treatment of invasive pulmonary aspergillosis in neutropenic patients. Eur Respir J 19:743–755. doi:10.1183/09031936.02.00256102. PubMed DOI
Luptáková D, Pluháček T, Petřík M, Novák J, Palyzová A, Sokolová L, Škríba A, Šedivá B, Lemr K, Havlíček V. 2017. Non-invasive and invasive diagnoses of aspergillosis in a rat model by mass spectrometry. Sci Rep 7:16523. doi:10.1038/s41598-017-16648-z. PubMed DOI PMC
Skriba A, Pluhacek T, Palyzova A, Novy Z, Lemr K, Hajduch M, Petrik M, Havlicek V. 2018. Early and non-invasive diagnosis of aspergillosis revealed by infection kinetics monitored in a rat model. Front Microbiol 9:2356. doi:10.3389/fmicb.2018.02356. PubMed DOI PMC
Hoenigl M, Orasch T, Faserl K, Prattes J, Loeffler J, Springer J, Gsaller F, Reischies F, Duettmann W, Raggam RB, Lindner H, Haas H. 2019. Triacetylfusarinine C: a urine biomarker for diagnosis of invasive aspergillosis. J Infect 78:150–157. doi:10.1016/j.jinf.2018.09.006. PubMed DOI PMC
Carroll CS, Amankwa LN, Pinto LJ, Fuller JD, Moore MM. 2016. Detection of a serum siderophore by LC-MS/MS as a potential biomarker of invasive aspergillosis. PLoS One 11:e0151260. doi:10.1371/journal.pone.0151260. PubMed DOI PMC
Orasch T, Prattes J, Faserl K, Eigl S, Düttmann W, Lindner H, Haas H, Hoenigl M. 2017. Bronchoalveolar lavage triacetylfusarinine C (TAFC) determination for diagnosis of invasive pulmonary aspergillosis in patients with hematological malignancies. J Infect 75:370–373. doi:10.1016/j.jinf.2017.05.014. PubMed DOI PMC
Patil RH, Luptáková D, Havlíček V. 2 December 2021. Infection metallomics for critical care in the post-COVID era. Mass Spectrom Rev doi:10.1002/mas.21755. PubMed DOI
Blatzer M, Schrettl M, Sarg B, Lindner HH, Pfaller K, Haas H. 2011. SidL, an Aspergillus fumigatus transacetylase involved in biosynthesis of the siderophores ferricrocin and hydroxyferricrocin. Appl Environ Microbiol 77:4959–4966. doi:10.1128/AEM.00182-11. PubMed DOI PMC
Bassetti M, Azoulay E, Kullberg B-J, Ruhnke M, Shoham S, Vazquez J, Giacobbe DR, Calandra T. 2021. EORTC/MSGERC definitions of invasive fungal diseases: summary of activities of the Intensive Care Unit Working Group. Clin Infect Dis 72:S121–S127. doi:10.1093/cid/ciaa1751. PubMed DOI
Donnelly JP, Chen SC, Kauffman CA, Steinbach WJ, Baddley JW, Verweij PE, Clancy CJ, Wingard JR, Lockhart SR, Groll AH, Sorrell TC, Bassetti M, Akan H, Alexander BD, Andes D, Azoulay E, Bialek R, Bradsher RW, Bretagne S, Calandra T, Caliendo AM, Castagnola E, Cruciani M, Cuenca-Estrella M, Decker CF, Desai SR, Fisher B, Harrison T, Heussel CP, Jensen HE, Kibbler CC, Kontoyiannis DP, Kullberg B-J, Lagrou K, Lamoth F, Lehrnbecher T, Loeffler J, Lortholary O, Maertens J, Marchetti O, Marr KA, Masur H, Meis JF, Morrisey CO, Nucci M, Ostrosky-Zeichner L, Pagano L, Patterson TF, Perfect JR, Racil Z, et al.. 2020. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis 71:1367–1376. doi:10.1093/cid/ciz1008. PubMed DOI PMC
Petrik M, Haas H, Schrettl M, Helbok A, Blatzer M, Decristoforo C. 2012. In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging. Nucl Med Biol 39:361–369. doi:10.1016/j.nucmedbio.2011.09.012. PubMed DOI PMC
Patil RH, Kotta-Loizou I, Palyzová A, Pluháček T, Coutts RHA, Stevens DA, Havlíček V. 2021. Freeing Aspergillus fumigatus of polymycovirus infection renders it more resistant to competition with Pseudomonas aeruginosa due to altered iron-acquiring tactics. J Fungi (Basel) 7:497. doi:10.3390/jof7070497. PubMed DOI PMC
Danion F, van Rhijn N, Dufour AC, Legendre R, Sismeiro O, Varet H, Olivo-Marin J-C, Mouyna I, Chamilos G, Bromley M, Beauvais A, Latgé J-P. 2021. Aspergillus fumigatus, one uninucleate species with disparate offspring. J Fungi (Basel) 7:30. doi:10.3390/jof7010030. PubMed DOI PMC
Baltussen TJH, Zoll J, Verweij PE, Melchers WJG. 2020. Molecular mechanisms of conidial germination in Aspergillus spp. Microbiol Mol Biol Rev 84:e00049-19. doi:10.1128/MMBR.00049-19. PubMed DOI PMC
Oberegger H, Schoeser M, Zadra I, Abt B, Haas H. 2001. SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans. Mol Microbiol 41:1077–1089. doi:10.1046/j.1365-2958.2001.02586.x. PubMed DOI
Chi M-H, Craven KD. 2016. RacA-mediated ROS signaling is required for polarized cell differentiation in conidiogenesis of Aspergillus fumigatus. PLoS One 11:e0149548. doi:10.1371/journal.pone.0149548. PubMed DOI PMC
Baltussen TJH, Coolen JPM, Zoll J, Verweij PE, Melchers WJG. 2018. Gene co-expression analysis identifies gene clusters associated with isotropic and polarized growth in Aspergillus fumigatus conidia. Fungal Genet Biol 116:62–72. doi:10.1016/j.fgb.2018.04.013. PubMed DOI
Wallner A, Blatzer M, Schrettl M, Sarg B, Lindner H, Haas H. 2009. Ferricrocin, a siderophore involved in intra- and transcellular iron distribution in Aspergillus fumigatus. Appl Environ Microbiol 75:4194–4196. doi:10.1128/AEM.00479-09. PubMed DOI PMC
Kragl C, Schrettl M, Abt B, Sarg B, Lindner HH, Haas H. 2007. EstB-mediated hydrolysis of the siderophore triacetylfusarinine C optimizes iron uptake of Aspergillus fumigatus. Eukaryot Cell 6:1278–1285. doi:10.1128/EC.00066-07. PubMed DOI PMC
Haas H. 2012. Iron—a key nexus in the virulence of Aspergillus fumigatus. Front Microbiol 3:28. doi:10.3389/fmicb.2012.00028. PubMed DOI PMC
Schrettl M, Kim HS, Eisendle M, Kragl C, Nierman WC, Heinekamp T, Werner ER, Jacobsen I, Illmer P, Yi H, Brakhage AA, Haas H. 2008. SreA-mediated iron regulation in Aspergillus fumigatus. Mol Microbiol 70:27–43. doi:10.1111/j.1365-2958.2008.06376.x. PubMed DOI PMC
Hortschansky P, Eisendle M, Al-Abdallah Q, Schmidt AD, Bergmann S, Thon M, Kniemeyer O, Abt B, Seeber B, Werner ER, Kato M, Brakhage AA, Haas H. 2007. Interaction of HapX with the CCAAT-binding complex—a novel mechanism of gene regulation by iron. EMBO J 26:3157–3168. doi:10.1038/sj.emboj.7601752. PubMed DOI PMC
Kamai Y, Chiang LY, Lopes Bezerra LM, Doedt T, Lossinsky AS, Sheppard DC, Filler SG. 2006. Interactions of Aspergillus fumigatus with vascular endothelial cells. Med Mycol 44(Suppl 1):S115–S117. doi:10.1080/13693780600897989. PubMed DOI
Chiang LY, Sheppard DC, Gravelat FN, Patterson TF, Filler SG. 2008. Aspergillus fumigatus stimulates leukocyte adhesion molecules and cytokine production by endothelial cells in vitro and during invasive pulmonary disease. Infect Immun 76:3429–3438. doi:10.1128/IAI.01510-07. PubMed DOI PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019. PubMed DOI PMC
Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J, Holmes E, Nicholson JK. 2010. Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc 5:1005–1018. doi:10.1038/nprot.2010.50. PubMed DOI
Center for Drug Evaluation and Research, Center for Veterinary Medicine. 2018. Bioanalytical method validation: guidance for industry. US Food and Drug Administration, Silver Spring, MD. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry. Accessed 11 May 2022.
Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, Lass-Flörl C, Lewis RE, Munoz P, Verweij PE, Warris A, Ader F, Akova M, Arendrup MC, Barnes RA, Beigelman-Aubry C, Blot S, Bouza E, Brüggemann RJM, Buchheidt D, Cadranel J, Castagnola E, Chakrabarti A, Cuenca-Estrella M, Dimopoulos G, Fortun J, Gangneux J-P, Garbino J, Heinz WJ, Herbrecht R, Heussel CP, Kibbler CC, Klimko N, Kullberg BJ, Lange C, Lehrnbecher T, Löffler J, Lortholary O, Maertens J, Marchetti O, Meis JF, Pagano L, Ribaud P, Richardson M, Roilides E, Ruhnke M, Sanguinetti M, Sheppard DC, Sinkó J, Skiada A, et al.. 2018. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 24:e1–e38. doi:10.1016/j.cmi.2018.01.002. PubMed DOI
Louhimies S. 2002. Directive 86/609/EEC on the protection of animals used for experimental and other scientific purposes. Altern Lab Anim 2:217–219. doi:10.1177/026119290203002S36. PubMed DOI
Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 . https://eur-lex.europa.eu/eli/dir/2000/54/oj/eng. Accessed 23 January 2023.
The Deciphering of Growth-Dependent Strategies for Quorum-Sensing Networks in Pseudomonas aeruginosa
Current and Future Pathways in Aspergillus Diagnosis
Diagnosis of Aspergillosis in Horses