• This record comes from PubMed

Hybrid Imaging of Aspergillus fumigatus Pulmonary Infection with Fluorescent, 68Ga-Labelled Siderophores

. 2020 Jan 22 ; 10 (2) : . [epub] 20200122

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
P 30924 Austrian Science Fund FWF - Austria
P 30924-B26 Austrian Science Fund - International
19-10907S Czech foundation - International
#256524 Amt der Tiroler Landesregierung - International

Aspergillus fumigatus (A. fumigatus) is a human pathogen causing severe invasive fungal infections, lacking sensitive and selective diagnostic tools. A. fumigatus secretes the siderophore desferri-triacetylfusarinine C (TAFC) to acquire iron from the human host. TAFC can be labelled with gallium-68 to perform positron emission tomography (PET/CT) scans. Here, we aimed to chemically modify TAFC with fluorescent dyes to combine PET/CT with optical imaging for hybrid imaging applications. Starting from ferric diacetylfusarinine C ([Fe]DAFC), different fluorescent dyes were conjugated (Cy5, SulfoCy5, SulfoCy7, IRDye 800CW, ATTO700) and labelled with gallium-68 for in vitro and in vivo characterisation. Uptake assays, growth assays and live-cell imaging as well as biodistribution, PET/CT and ex vivo optical imaging in an infection model was performed. Novel fluorophore conjugates were recognized by the fungal TAFC transporter MirB and could be utilized as iron source. Fluorescence microscopy showed partial accumulation into hyphae. µPET/CT scans of an invasive pulmonary aspergillosis (IPA) rat model revealed diverse biodistribution patterns for each fluorophore. [68Ga]Ga-DAFC-Cy5/SufloCy7 and -IRDye 800CW lead to a visualization of the infected region of the lung. Optical imaging of ex vivo lungs corresponded to PET images with high contrast of infection versus non-infected areas. Although fluorophores had a decisive influence on targeting and pharmacokinetics, these siderophores have potential as a hybrid imaging compounds combining PET/CT with optical imaging applications.

See more in PubMed

Kutlubay Z., Yardımcı G., Kantarcıoğlu A.S., Serdaroğlu S. Acral manifestations of fungal infections. Clin. Dermatol. 2017;35:28–39. doi: 10.1016/j.clindermatol.2016.09.005. PubMed DOI

Brown G.D., Denning D.W., Gow N.A.R., Levitz S.M., Netea M.G., White T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012;4:165rv13. doi: 10.1126/scitranslmed.3004404. PubMed DOI

Van de Veerdonk F.L., Gresnigt M.S., Romani L., Netea M.G., Latgé J.-P. Aspergillus fumigatus morphology and dynamic host interactions. Nat. Rev. Microbiol. 2017;15:661–674. doi: 10.1038/nrmicro.2017.90. PubMed DOI

Hope W.W. CME Infectious diseases; Invasive fungal infections. Clin. Med. (Northfield. Il). 2013;13:495–499. doi: 10.7861/clinmedicine.13-5-507. PubMed DOI PMC

Kwon-Chung K.J., Sugui J.A. Aspergillus fumigatus—What Makes the Species a Ubiquitous Human Fungal Pathogen? PLoS Pathog. 2013;9:e1003743. doi: 10.1371/journal.ppat.1003743. PubMed DOI PMC

Ng A.W., Bidani A., Heming T.A. Innate Host Defense of the Lung: Effects of Lung-lining Fluid pH. Lung. 2004;182:297–317. doi: 10.1007/s00408-004-2511-6. PubMed DOI

Haas H. Iron – A Key Nexus in the Virulence of Aspergillus fumigatus. Front. Microbiol. 2012;3:1–10. doi: 10.3389/fmicb.2012.00028. PubMed DOI PMC

Philpott C.C. Iron uptake in fungi: A system for every source. Biochim. Biophys. Acta Mol. Cell Res. 2006;1763:636–645. doi: 10.1016/j.bbamcr.2006.05.008. PubMed DOI

Petzer V., Wermke M., Tymoszuk P., Wolf D., Seifert M., Ovaçin R., Berger S., Orth-Höller D., Loacker L., Weiss G., et al. Enhanced labile plasma iron in hematopoietic stem cell transplanted patients promotes Aspergillus outgrowth. Blood Adv. 2019;3:1695–1700. doi: 10.1182/bloodadvances.2019000043. PubMed DOI PMC

Raymond-Bouchard I., Carroll C.S., Nesbitt J.R., Henry K.A., Pinto L.J., Moinzadeh M., Scott J.K., Moore M.M. Structural Requirements for the Activity of the MirB Ferrisiderophore Transporter of Aspergillus fumigatus. Eukaryot. Cell. 2012;11:1333–1344. doi: 10.1128/EC.00159-12. PubMed DOI PMC

Schrettl M., Bignell E., Kragl C., Joechl C., Rogers T., Arst H.N., Haynes K., Haas H. Siderophore Biosynthesis But Not Reductive Iron Assimilation Is Essential for Aspergillus fumigatus Virulence. J. Exp. Med. 2004;200:1213–1219. doi: 10.1084/jem.20041242. PubMed DOI PMC

Schrettl M., Bignell E., Kragl C., Sabiha Y., Loss O., Eisendle M., Wallner A., Arst H.N., Haynes K., Haas H. Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog. 2007;3:e128. doi: 10.1371/journal.ppat.0030128. PubMed DOI PMC

Haas H., Schoeser M., Lesuisse E., Ernst J.F., Parson W., Abt B., Winkelmann G., Oberegger H. Characterization of the Aspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C. Biochem. J. 2003;371:505–513. doi: 10.1042/bj20021685. PubMed DOI PMC

Kaeopookum P., Summer D., Pfister J., Orasch T., Lechner B.E., Petrik M., Novy Z., Matuszczak B., Rangger C., Haas H., et al. Modifying the Siderophore Triacetylfusarinine C for Molecular Imaging of Fungal Infection. Mol. Imaging Biol. 2019;21:1097–1106. doi: 10.1007/s11307-019-01325-6. PubMed DOI PMC

Hissen A.H.T., Moore M.M. Site-specific rate constants for iron acquisition from transferrin by the Aspergillus fumigatus siderophores N′,N′′,N′′′-triacetylfusarinine C and ferricrocin. JBIC J. Biol. Inorg. Chem. 2005;10:211–220. doi: 10.1007/s00775-005-0630-z. PubMed DOI

Petrik M., Haas H., Dobrozemsky G., Lass-Florl C., Helbok A., Blatzer M., Dietrich H., Decristoforo C. 68Ga-Siderophores for PET Imaging of Invasive Pulmonary Aspergillosis: Proof of Principle. J. Nucl. Med. 2010;51:639–645. doi: 10.2967/jnumed.109.072462. PubMed DOI PMC

Sugui J.A., Peterson S.W., Figat A., Hansen B., Samson R.A., Mellado E., Cuenca-Estrella M., Kwon-Chung K.J. Genetic Relatedness versus Biological Compatibility between Aspergillus fumigatus and Related Species. J. Clin. Microbiol. 2014;52:3707–3721. doi: 10.1128/JCM.01704-14. PubMed DOI PMC

Schottelius M., Wurzer A., Wissmiller K., Beck R., Koch M., Gorpas D., Notni J., Buckle T., van Oosterom M.N., Steiger K., et al. Synthesis and Preclinical Characterization of the PSMA-Targeted Hybrid Tracer PSMA-I&F for Nuclear and Fluorescence Imaging of Prostate Cancer. J. Nucl. Med. 2019;60:71–78. PubMed PMC

Buckle T., van Willigen D.M., Spa S.J., Hensbergen A.W., van der Wal S., de Korne C.M., Welling M.M., van der Poel H.G., Hardwick J.C.H., van Leeuwen F.W.B. Tracers for Fluorescence-Guided Surgery: How Elongation of the Polymethine Chain in Cyanine Dyes Alters the Pharmacokinetics of a Dual-Modality c[RGDyK] Tracer. J. Nucl. Med. 2018;59:986–992. doi: 10.2967/jnumed.117.205575. PubMed DOI

Burggraaf J., Kamerling I.M.C., Gordon P.B., Schrier L., de Kam M.L., Kales A.J., Bendiksen R., Indrevoll B., Bjerke R.M., Moestue S.A., et al. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat. Med. 2015;21:955–961. doi: 10.1038/nm.3641. PubMed DOI

Hughes L.D., Rawle R.J., Boxer S.G. Choose Your Label Wisely: Water-Soluble Fluorophores Often Interact with Lipid Bilayers. PLoS ONE. 2014;9:e87649. doi: 10.1371/journal.pone.0087649. PubMed DOI PMC

Summer D., Grossrubatscher L., Petrik M., Michalcikova T., Novy Z., Rangger C., Klingler M., Haas H., Kaeopookum P., von Guggenberg E., et al. Developing Targeted Hybrid Imaging Probes by Chelator Scaffolding. Bioconjug. Chem. 2017;28:1722–1733. doi: 10.1021/acs.bioconjchem.7b00182. PubMed DOI PMC

Zhai C., Summer D., Rangger C., Haas H., Haubner R., Decristoforo C. Fusarinine C, a novel siderophore-based bifunctional chelator for radiolabeling with Gallium-68. J. Label. Compd. Radiopharm. 2015;58:209–214. doi: 10.1002/jlcr.3286. PubMed DOI PMC

Skriba A., Pluhacek T., Palyzova A., Novy Z., Lemr K., Hajduch M., Petrik M., Havlicek V. Early and Non-invasive Diagnosis of Aspergillosis Revealed by Infection Kinetics Monitored in a Rat Model. Front. Microbiol. 2018;9:1–7. doi: 10.3389/fmicb.2018.02356. PubMed DOI PMC

Seibold U., Wängler B., Schirrmacher R., Wängler C. Bimodal Imaging Probes for Combined PET and OI: Recent Developments and Future Directions for Hybrid Agent Development. Biomed Res. Int. 2014;2014:1–13. doi: 10.1155/2014/153741. PubMed DOI PMC

Signore A., Glaudemans A.W.J.M. The molecular imaging approach to image infections and inflammation by nuclear medicine techniques. Ann. Nucl. Med. 2011;25:681–700. doi: 10.1007/s12149-011-0521-z. PubMed DOI

Welling M.M., Hensbergen A.W., Bunschoten A., Velders A.H., Scheper H., Smits W.K., Roestenberg M., van Leeuwen F.W.B. Fluorescent imaging of bacterial infections and recent advances made with multimodal radiopharmaceuticals. Clin. Transl. Imaging. 2019;7:125–138. doi: 10.1007/s40336-019-00322-7. DOI

Petrik M., Franssen G.M., Haas H., Laverman P., Hörtnagl C., Schrettl M., Helbok A., Lass-Flörl C., Decristoforo C. Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur. J. Nucl. Med. Mol. Imaging. 2012;39:1175–1183. doi: 10.1007/s00259-012-2110-3. PubMed DOI PMC

Petrik M., Zhai C., Haas H., Decristoforo C. Siderophores for molecular imaging applications. Clin. Transl. Imaging. 2017;5:15–27. doi: 10.1007/s40336-016-0211-x. PubMed DOI PMC

Moloney N.M., Owens R.A., Meleady P., Henry M., Dolan S.K., Mulvihill E., Clynes M., Doyle S. The iron-responsive microsomal proteome of Aspergillus fumigatus. J. Proteom. 2016;136:99–111. doi: 10.1016/j.jprot.2015.12.025. PubMed DOI

Hickey P.C., Swift S.R., Roca M.G., Read N.D. Methods in Microbiology. Volume 34. Elsevier; Amsterdam, The Netherlands: 2004. Live-cell Imaging of Filamentous Fungi Using Vital Fluorescent Dyes and Confocal Microscopy; pp. 63–87.

Ruf D., Brantl V., Wagener J. Mitochondrial Fragmentation in Aspergillus fumigatus as Early Marker of Granulocyte Killing Activity. Front. Cell. Infect. Microbiol. 2018;8:128. doi: 10.3389/fcimb.2018.00128. PubMed DOI PMC

Ye Y., Bloch S., Xu B., Achilefu S. Novel Near-Infrared Fluorescent Integrin-Targeted DFO Analogue. Bioconjug. Chem. 2008;19:225–234. doi: 10.1021/bc7003022. PubMed DOI PMC

Besserglick J., Olshvang E., Szebesczyk A., Englander J., Levinson D., Hadar Y., Gumienna-Kontecka E., Shanzer A. Ferrichrome Has Found Its Match: Biomimetic Analogues with Diversified Activity Map Discrete Microbial Targets. Chem. Eur. J. 2017;23:13181–13191. doi: 10.1002/chem.201702647. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...