CAIX-Mediated Control of LIN28/let-7 Axis Contributes to Metabolic Adaptation of Breast Cancer Cells to Hypoxia

. 2020 Jun 16 ; 21 (12) : . [epub] 20200616

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32560271

Grantová podpora
14-0816 Agentúra na Podporu Výskumu a Vývoja
15-0697 Agentúra na Podporu Výskumu a Vývoja
2/0155/15 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
2/0076/20 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
2/0105/19 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Solid tumors, including breast cancer, are characterized by the hypoxic microenvironment, extracellular acidosis, and chemoresistance. Hypoxia marker, carbonic anhydrase IX (CAIX), is a pH regulator providing a selective survival advantage to cancer cells through intracellular neutralization while facilitating tumor invasion by extracellular acidification. The expression of CAIX in breast cancer patients is associated with poor prognosis and metastases. Importantly, CAIX-positive hypoxic tumor regions are enriched in cancer stem cells (CSCs). Here we investigated the biological effects of CA9-silencing in breast cancer cell lines. We found that CAIX-downregulation in hypoxia led to increased levels of let-7 (lethal-7) family members. Simultaneously with the increase of let-7 miRNAs in CAIX-suppressed cells, LIN28 protein levels decreased, along with downstream metabolic pathways: pyruvate dehydrogenase kinase 1 (PDK1) and phosphorylation of its substrate, pyruvate dehydrogenase (PDH) at Ser-232, causing attenuation of glycolysis. In addition to perturbed glycolysis, CAIX-knockouts, in correlation with decreased LIN28 (as CSC reprogramming factor), also exhibit reduction of the further CSC-associated markers NANOG (Homeobox protein NANOG) and ALDH1 (Aldehyde dehydrogenase isoform 1). Oppositely, overexpression of CAIX leads to the enhancement of LIN28, ALDH1, and NANOG. In conclusion, CAIX-driven regulation of the LIN28/let-7 axis augments glycolytic metabolism and enhances stem cell markers expression during CAIX-mediated adaptation to hypoxia and acidosis in carcinogenesis.

Zobrazit více v PubMed

Pastorek J., Pastorekova S. Hypoxia-induced carbonic anhydrase IX as a target for cancer therapy: From biology to clinical use. Semin. Cancer Biol. 2015;31:52–64. doi: 10.1016/j.semcancer.2014.08.002. PubMed DOI

Svastova E., Witarski W., Csaderova L., Kosik I., Skvarkova L., Hulikova A., Zatovicova M., Barathova M., Kopacek J., Pastorek J., et al. Carbonic anhydrase IX interacts with bicarbonate transporters in lamellipodia and increases cell migration via its catalytic domain. J. Biol. Chem. 2012;287:3392–3402. doi: 10.1074/jbc.M111.286062. PubMed DOI PMC

Debreova M., Csaderova L., Burikova M., Lukacikova L., Kajanova I., Sedlakova O., Kery M., Kopacek J., Zatovicova M., Bizik J., et al. CAIX regulates invadopodia formation through both a pH-dependent mechanism and interplay with actin regulatory proteins. Int. J. Mol. Sci. 2019;20:2745. doi: 10.3390/ijms20112745. PubMed DOI PMC

Gatenby R.A., Smallbone K., Maini P.K., Rose F., Averill J., Nagle R.B., Worrall L., Gillies R.J. Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br. J. Cancer. 2007;97:646–653. doi: 10.1038/sj.bjc.6603922. PubMed DOI PMC

Webb B.A., Chimenti M., Jacobson M.P., Barber D.L. Dysregulated pH: A perfect storm for cancer progression. Nat. Rev. Cancer. 2011;11:671–677. doi: 10.1038/nrc3110. PubMed DOI

Kulshreshtha R., Davuluri R.V., Calin G.A., Ivan M. A microRNA component of the hypoxic response. Cell Death Differ. 2008;15:667–671. doi: 10.1038/sj.cdd.4402310. PubMed DOI

Hebert C., Norris K., Scheper M.A., Nikitakis N., Sauk J.J. High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol. Cancer. 2007;6:5. doi: 10.1186/1476-4598-6-5. PubMed DOI PMC

Hua Z., Lv Q., Ye W., Wong C.K., Cai G., Gu D., Ji Y., Zhao C., Wang J., Yang B.B., et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS ONE. 2006;1:e116. doi: 10.1371/journal.pone.0000116. PubMed DOI PMC

Heo I., Joo C., Cho J., Ha M., Han J., Kim V.N. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol. Cell. 2008;32:276–284. doi: 10.1016/j.molcel.2008.09.014. PubMed DOI

Ambros V., Horvitz H.R. Heterochronic mutants of the nematode Caenorhabditis elegans. Science. 1984;226:409–416. doi: 10.1126/science.6494891. PubMed DOI

Iliopoulos D., Hirsch H.A., Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell. 2009;139:693–706. doi: 10.1016/j.cell.2009.10.014. PubMed DOI PMC

Viswanathan S.R., Daley G.Q., Gregory R.I. Selective blockade of microRNA processing by Lin28. Science. 2008;320:97–100. doi: 10.1126/science.1154040. PubMed DOI PMC

Wang T., He Y., Zhu Y., Chen M., Weng M., Yang C., Zhang Y., Ning N., Zhao R., Yang W., et al. Comparison of the expression and function of Lin28A and Lin28B in colon cancer. Oncotarget. 2016;7:79605–79616. doi: 10.18632/oncotarget.12869. PubMed DOI PMC

Ma X., Li C., Sun L., Huang D., Li T., He X., Wu G., Yang Z., Zhong X., Song L., et al. Lin28/let-7 axis regulates aerobic glycolysis and cancer progression via PDK1. Nat. Commun. 2014;5:5212. doi: 10.1038/ncomms6212. PubMed DOI

Zhu H., Shyh-Chang N., Segre A.V., Shinoda G., Shah S.P., Einhorn W.S., Takeuchi A., Engreitz J.M., Hagan J.P., Kharas M.G., et al. The Lin28/let-7 axis regulates glucose metabolism. Cell. 2011;147:81–94. doi: 10.1016/j.cell.2011.08.033. PubMed DOI PMC

Nguyen L.H., Zhu H. Lin28 and let-7 in cell metabolism and cancer. Transl. Pediatr. 2015;4:4–11. PubMed PMC

Balzeau J., Menezes M.R., Cao S., Hagan J.P. The LIN28/let-7 pathway in cancer. Front. Genet. 2017;8:1–16. doi: 10.3389/fgene.2017.00031. PubMed DOI PMC

Heiden M.G.V., Cantley L.C., Thompson C.B. Understanding the warburg effect: The metabolic requirements of cell proliferation. Science. 2009;324:1029–1033. doi: 10.1126/science.1160809. PubMed DOI PMC

Kaelin W.G., Thompson C.B. Q and A: Cancer: Clues from cell metabolism. Nature. 2010;465:562–564. doi: 10.1038/465562a. PubMed DOI

Velpula K.K., Bhasin A., Asuthkar S., Tsung A.J. Combined targeting of PDK1 and EGFR triggers regression of glioblastoma by reversing the warburg effect. Cancer Res. 2013;73:7277–7289. doi: 10.1158/0008-5472.CAN-13-1868. PubMed DOI

Shyh-Chang N., Daley G.Q. Lin28: Primal regulator of growth and metabolism in stem cells. Cell Stem Cell. 2013;12:395–406. doi: 10.1016/j.stem.2013.03.005. PubMed DOI PMC

Zhong X., Li N., Liang S., Huang Q., Coukos G., Zhang L. Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. J. Biol. Chem. 2010;285:41961–41971. doi: 10.1074/jbc.M110.169607. PubMed DOI PMC

Chafe S.C., Lou Y., Sceneay J., Vallejo M., Hamilton M.J., McDonald P.C., Bennewith K.L., Moller A., Dedhar S. Carbonic anhydrase IX promotes myeloid-derived suppressor cell mobilization and establishment of a metastatic niche by stimulating G-CSF production. Cancer Res. 2015;75:996–1008. doi: 10.1158/0008-5472.CAN-14-3000. PubMed DOI

Peppicelli S., Bianchini F., Contena C., Tombaccini D., Calorini L. Acidic pH via NF-κB favours VEGF-C expression in human melanoma cells. Clin. Exp. Metastasis. 2013;30:957–967. doi: 10.1007/s10585-013-9595-4. PubMed DOI

Xu L., Fidler I.J. Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells. Cancer Res. 2000;60:4610–4616. PubMed

Xiong Q., Shi Q., Le X., Wang B., Xie K. Regulation of interleukin-8 expression by nitric oxide in human pancreatic adenocarcinoma. J. Interf. Cytokine Res. 2001;21:529–537. doi: 10.1089/10799900152434411. PubMed DOI

Fukumura D., Xu L., Chen Y., Gohongi T., Seed B., Jain R.K. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res. 2001;61:6020–6024. PubMed

Zhou J., Ng S.B., Chng W.J. LIN28/LIN28B: An emerging oncogenic driver in cancer stem cells. Int. J. Biochem. Cell Biol. 2013;45:973–978. doi: 10.1016/j.biocel.2013.02.006. PubMed DOI

Yang X., Lin X., Zhong X., Kaur S., Li N., Liang S., Lassus H., Wang L., Katsaros D., Montone K., et al. Double-negative feedback loop between reprogramming factor LIN28 and microRNA let-7 regulates aldehyde dehydrogenase 1-positive cancer stem cells. Cancer Res. 2010;70:9463–9472. doi: 10.1158/0008-5472.CAN-10-2388. PubMed DOI PMC

Yu F., Yao H., Zhu P., Zhang X., Pan Q., Gong C., Huang Y., Hu X., Su F., Lieberman J., et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131:1109–1123. doi: 10.1016/j.cell.2007.10.054. PubMed DOI

Reinhart B.J., Slack F.J., Basson M., Pasquinelli A.E., Bettinger J.C., Rougvie A.E., Horvitz H.R., Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–906. doi: 10.1038/35002607. PubMed DOI

Thornton J.E., Gregory R.I. How does Lin28 let-7 control development and disease? Trends Cell Biol. 2012;22:474–482. doi: 10.1016/j.tcb.2012.06.001. PubMed DOI PMC

Semenza G.L. HIF-1: Upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 2010;20:51–56. doi: 10.1016/j.gde.2009.10.009. PubMed DOI PMC

Kim J.W., Tchernyshyov I., Semenza G.L., Dang C. V HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177–185. doi: 10.1016/j.cmet.2006.02.002. PubMed DOI

Papandreou I., Cairns R.A., Fontana L., Lim A.L., Denko N.C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3:187–197. doi: 10.1016/j.cmet.2006.01.012. PubMed DOI

Golias T., Papandreou I., Sun R., Kumar B., Brown N.V., Swanson B.J., Pai R., Jaitin D., Le Q.T., Teknos T.N., et al. Hypoxic repression of pyruvate dehydrogenase activity is necessary for metabolic reprogramming and growth of model tumours. Sci. Rep. 2016;6:31146. doi: 10.1038/srep31146. PubMed DOI PMC

Orlowski A., De Giusti V.C., Morgan P.E., Aiello E.A., Alvarez B. V Binding of carbonic anhydrase IX to extracellular loop 4 of the NBCe1 Na+/HCO3- cotransporter enhances NBCe1-mediated HCO3- influx in the rat heart. Am. J. Physiol. Cell Physiol. 2012;303:C69–C80. doi: 10.1152/ajpcell.00431.2011. PubMed DOI

Swietach P., Patiar S., Supuran C.T., Harris A.L., Vaughan-Jones R.D. The role of carbonic anhydrase 9 in regulating extracellular and intracellular ph in three-dimensional tumor cell growths. J. Biol. Chem. 2009;284:20299–20310. doi: 10.1074/jbc.M109.006478. PubMed DOI PMC

Svastova E., Hulikova A., Rafajova M., Zat’ovicova M., Gibadulinova A., Casini A., Cecchi A., Scozzafava A., Supuran C.T., Pastorek J., et al. Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett. 2004;577:439–445. doi: 10.1016/j.febslet.2004.10.043. PubMed DOI

Gupta S.C., Singh R., Pochampally R., Watabe K., Mo Y.Y. Acidosis promotes invasiveness of breast cancer cells through ROS-AKT-NF-kappaB pathway. Oncotarget. 2014;5:12070–12082. doi: 10.18632/oncotarget.2514. PubMed DOI PMC

Balgi A.D., Diering G.H., Donohue E., Lam K.K., Fonseca B.D., Zimmerman C., Numata M., Roberge M. Regulation of mTORC1 signaling by pH. PLoS ONE. 2011;6:e21549. doi: 10.1371/journal.pone.0021549. PubMed DOI PMC

Boyd N.H., Walker K., Fried J., Hackney J.R., McDonald P.C., Benavides G.A., Spina R., Audia A., Scott S.E., Libby C.J., et al. Addition of carbonic anhydrase 9 inhibitor SLC-0111 to temozolomide treatment delays glioblastoma growth in vivo. JCI Insight. 2017;2:1–16. doi: 10.1172/jci.insight.92928. PubMed DOI PMC

Hedlund E.M.E., McDonald P.C., Nemirovsky O., Awrey S., Jensen L.D.E., Dedhar S. Harnessing induced essentiality: Targeting carbonic anhydrase IX and angiogenesis reduces lung metastasis of triple negative breast cancer xenografts. Cancers. 2019;11:1002. doi: 10.3390/cancers11071002. PubMed DOI PMC

Faes S., Planche A., Uldry E., Santoro T., Pythoud C., Stehle J.C., Horlbeck J., Letovanec I., Riggi N., Datta D., et al. Targeting carbonic anhydrase IX improves the anti-cancer efficacy of mTOR inhibitors. Oncotarget. 2016;7:36666–36680. doi: 10.18632/oncotarget.9134. PubMed DOI PMC

McDonald P.C., Chafe S.C., Brown W.S., Saberi S., Swayampakula M., Venkateswaran G., Nemirovsky O., Gillespie J.A., Karasinska J.M., Kalloger S.E., et al. Regulation of pH by Carbonic Anhydrase 9 Mediates Survival of Pancreatic Cancer Cells With Activated KRAS in Response to Hypoxia. Gastroenterology. 2019;157:823–837. doi: 10.1053/j.gastro.2019.05.004. PubMed DOI

Hashim A.A.I., Abrahams D., Xu L., Centeno B., Sunassee E., Abddelgader R., Dubois L., Lambin P., Gatenby R.A., Gillies R.J. Targeting tumor acidity with the LDHA inhibitor (FX11) and CAIX inhibitor (DH348) overcomes resistance to PD-1 blockade and inhibits metastasis in a pancreatic cancer model [abstract] Proc. Annu. Meet. Am. Assoc. Cancer Res. 2017;77:5932. doi: 10.1158/1538-7445. DOI

Deev I.E., Vasilenko K.P., Kurmangaliev E., Serova O.V., Popova N.V., Galagan Y.S., Burova E.B., Zozulya S.A., Nikol’skii N.N., Petrenko A.G. Effect of changes in ambient pH on phosphorylation of cellular proteins. Dokl. Biochem. Biophys. 2006;408:184–187. doi: 10.1134/S1607672906030203. PubMed DOI

Tsanov K.M., Pearson D.S., Wu Z., Han A., Triboulet R., Seligson M.T., Powers J.T., Osborne J.K., Kane S., Gygi S.P., et al. LIN28 phosphorylation by MAPK/ERK couples signalling to the post-transcriptional control of pluripotency. Nat. Cell Biol. 2017;19:60–67. doi: 10.1038/ncb3453. PubMed DOI PMC

Lock F.E., McDonald P.C., Lou Y., Serrano I., Chafe S.C., Ostlund C., Aparicio S., Winum J.Y., Supuran C.T., Dedhar S. Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. Oncogene. 2012;32:5210–5219. doi: 10.1038/onc.2012.550. PubMed DOI

Kim B.R., Shin H.J., Kim J.Y., Byun H.J., Lee J.H., Sung Y.K., Rho S.B. Dickkopf-1 (DKK-1) interrupts FAK/PI3K/mTOR pathway by interaction of carbonic anhydrase IX (CA9) in tumorigenesis. Cell. Signal. 2012;24:1406–1413. doi: 10.1016/j.cellsig.2012.03.002. PubMed DOI

Parks S.K., Chiche J., Pouysségur J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat. Rev. Cancer. 2013;13:611–623. doi: 10.1038/nrc3579. PubMed DOI

Ledaki I., Mcintyre A., Wigfield S., Buffa F., Baban D., Li J., Harris A.L. Carbonic anhydrase IX induction defines a heterogeneous cancer cell response to hypoxia and mediates stem cell-like properties and sensitivity to HDAC inhibition. Oncotargetvol. 2015;6:19423. doi: 10.18632/oncotarget.4989. PubMed DOI PMC

Pore N., Jalla S., Liu Z., Higgs B., Sorio C., Scarpa A., Hollingsworth R., Tice D.A., Michelotti E. In vivo loss of function screening reveals carbonic anhydrase IX as a key modulator of tumor initiating potential in primary pancreatic tumors. Neoplasia. 2015;17:473–480. doi: 10.1016/j.neo.2015.05.001. PubMed DOI PMC

Halpern H.J., LaManna J.C., Harrison D.K., Epel B. Oxygen Transport to Tissue XXXIX. Springer International Publishing AG; Cham, Switzerland: 2017. pp. 119–124. Chapter 16. DOI

Peng F., Wang J.H., Fan W.J., Meng Y.T., Li M.M., Li T.T., Cui B., Wang H.F., Zhao Y., An F., et al. Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene. 2018;37:1119. doi: 10.1038/onc.2017.407. PubMed DOI PMC

García-Venzor A., Mandujano-Tinoco E.A., Lizarraga F., Zampedri C., Krötzsch E., Salgado R.M., Dávila-Borja V.M., Encarnación-Guevara S., Melendez-Zajgla J., Maldonado V. Microenvironment-regulated lncRNA-HAL is able to promote stemness in breast cancer cells. Biochim. Biophys. Acta-Mol. Cell Res. 2019;1866:118523. PubMed

Radvak P., Repic M., Svastova E., Takacova M., Csaderova L., Strnad H., Pastorek J., Pastorekova S., Kopacek J. Suppression of carbonic anhydrase IX leads to aberrant focal adhesion and decreased invasion of tumor cells. Oncol. Rep. 2013;29:1147–1153. doi: 10.3892/or.2013.2226. PubMed DOI

Kery M., Oravcova N., Radenkovic S., Iuliano F., Tomaskova J., Golias T. Pyruvate dehydrogenase kinase 1 and carbonic anhydrase IX targeting in hypoxic tumors. Neoplasma. 2018;66:63–72. doi: 10.4149/neo_2018_180531N357. PubMed DOI

Gibadulinova A., Pastorek M., Filipcik P., Radvak P., Csaderova L., Vojtesek B., Pastorekova S. Cancer-associated S100P protein binds and inactivates p53, permits therapy-induced senescence and supports chemoresistance. Oncotarget. 2016;7:22508–22522. doi: 10.18632/oncotarget.7999. PubMed DOI PMC

Pastorekova S., Zavadova Z., Kostal M., Babusikova O., Zavada J. A novel quasi-viral agent, MaTu, is a two-component system. Virology. 1992;187:620–626. doi: 10.1016/0042-6822(92)90464-Z. PubMed DOI

Jurkovicova D., Lukackova R., Magyerkova M., Kulcsar L., Krivjanska M., Krivjansky V., Chovanec M. microRNA expression profiling as supportive diagnostic and therapy prediction tool in chronic myeloid leukemia. Neoplasma. 2015;62:949–957. doi: 10.4149/neo_2015_115. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...