Comparison of Two Chelator Scaffolds as Basis for Cholecystokinin-2 Receptor Targeting Bimodal Imaging Probes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DOI: 10.55776/DOC110
FWF Austrian Science Fund
PubMed
39770411
PubMed Central
PMC11676163
DOI
10.3390/ph17121569
PII: ph17121569
Knihovny.cz E-zdroje
- Klíčová slova
- FSC, PET, SulfoCy5.5, TRAP, cholecystokinin-2 receptor, dual-modality imaging agent, fluorescence guided surgery, gallium-68,
- Publikační typ
- časopisecké články MeSH
Background/Objectives: Dual-modality probes, combining positron emission tomography (PET) with fluorescence imaging (FI) capabilities in a single molecule, are of high relevance for the accurate staging and guided resection of tumours. We herein present a pair of candidates targeting the cholecystokinin-2 receptor (CCK2R), namely [68Ga]Ga-CyTMG and [68Ga]Ga-CyFMG. In these probes, the SulfoCy5.5 fluorophore and two units of a CCK2R-binding motif are coupled to the chelator acting as a core scaffold, triazacyclononane-phosphinic acid (TRAP), and Fusarinine C (FSC), respectively. Using this approach, we investigated the influence of these chelators on the final properties. Methods: The synthetic strategy to both precursors was based on the stoichiometric conjugation of the components via click chemistry. The characterization in vitro included the evaluation of the CCK2R affinity and internalization in A431-CCK2R cells. Ex vivo biodistribution as well as PET and FI studies were performed in xenografted mice. Results: 68Ga labelling was accomplished with high radiochemical yield and purity for both precursors. A CCK2R affinity in the subnanomolar range of the conjugates and a receptor-specific uptake of the radioligands in cells were observed. In A431-CCK2R/A431-mock xenografted mice, the investigated compounds showed specific accumulation in the tumours and reduced off-target uptake compared to a previously developed compound. Higher accumulation and prolonged retention in the kidneys were observed for [68Ga]Ga-CyTMG when compared to [68Ga]Ga-CyFMG. Conclusions: Despite the promising targeting properties observed, further probe optimization is required to achieve enhanced imaging contrast at early timepoints. Additionally, the results indicate a distinct influence of the chelators in terms of renal accumulation and retention.
Czech Advanced Technology and Research Institute Palacky University 77900 Olomouc Czech Republic
Department of Nuclear Medicine Medical University of Innsbruck 6020 Innsbruck Austria
Laboratory of Experimental Medicine University Hospital 77900 Olomouc Czech Republic
Perceptive Discovery Hammersmith Hospital Imperial College London London W12 0NN UK
Zobrazit více v PubMed
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Soerjomataram I., Bray F. Planning for Tomorrow: Global Cancer Incidence and the Role of Prevention 2020–2070. Nat. Rev. Clin. Oncol. 2021;18:663–672. doi: 10.1038/s41571-021-00514-z. PubMed DOI
Siegel R.L., Miller K.D., Wagle N.S., Jemal A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023;73:17–48. doi: 10.3322/caac.21763. PubMed DOI
Rowe S.P., Pomper M.G. Molecular Imaging in Oncology: Current Impact and Future Directions. CA Cancer J. Clin. 2022;72:333–352. doi: 10.3322/caac.21713. PubMed DOI PMC
Nguyen Q.T., Tsien R.Y. Fluorescence-Guided Surgery with Live Molecular Navigation—A New Cutting Edge. Nat. Rev. Cancer. 2013;13:653–662. doi: 10.1038/nrc3566. PubMed DOI PMC
Jiao J., Zhang J., Yang F., Song W., Han D., Wen W., Qin W. Quicker, Deeper and Stronger Imaging: A Review of Tumor-Targeted, near-Infrared Fluorescent Dyes for Fluorescence Guided Surgery in the Preclinical and Clinical Stages. Eur. J. Pharm. Biopharm. 2020;152:123–143. doi: 10.1016/j.ejpb.2020.05.002. PubMed DOI
Dindere M.E., Tanca A., Rusu M., Liehn E.A., Bucur O. Intraoperative Tumor Detection Using Pafolacianine. Int. J. Mol. Sci. 2022;23:12842. doi: 10.3390/ijms232112842. PubMed DOI PMC
Ariztia J., Solmont K., Moïse N.P., Specklin S., Heck M.P., Lamande-Langle S., Kuhnast B. PET/Fluorescence Imaging: An Overview of the Chemical Strategies to Build Dual Imaging Tools. Bioconjug. Chem. 2022;33:24–52. doi: 10.1021/acs.bioconjchem.1c00503. PubMed DOI
Kubeil M., Martínez I.I.S., Bachmann M., Kopka K., Tuck K.L., Stephan H. Dual-Labelling Strategies for Nuclear and Fluorescence Molecular Imaging: Current Status and Future Perspectives. Pharmaceuticals. 2022;15:432. doi: 10.3390/ph15040432. PubMed DOI PMC
Zhao J., Chen J., Ma S., Liu Q., Huang L., Chen X., Lou K., Wang W. Recent Developments in Multimodality Fluorescence Imaging Probes. Acta Pharm. Sin. B. 2018;8:320–338. doi: 10.1016/j.apsb.2018.03.010. PubMed DOI PMC
Von Guggenberg E., Kolenc P., Rottenburger C., Mikołajczak R., Hubalewska-Dydejczyk A. Update on Preclinical Development and Clinical Translation of Cholecystokinin-2 Receptor Targeting Radiopharmaceuticals. Cancers. 2021;13:5776. doi: 10.3390/cancers13225776. PubMed DOI PMC
Sosabowski J.K., Matzow T., Foster J.M., Finucane C., Ellison D., Watson S.A., Mather S.J. Targeting of CCK-2 Receptor–Expressing Tumors Using a Radiolabeled Divalent Gastrin Peptide. J. Nucl. Med. 2009;50:2082–2089. doi: 10.2967/jnumed.109.064808. PubMed DOI
Viola D., Elisei R. Management of Medullary Thyroid Cancer. Endocrinol. Metab. Clin. N. Am. 2019;48:285–301. doi: 10.1016/j.ecl.2018.11.006. PubMed DOI
Machens A., Dralle H. Biomarker-Based Risk Stratification for Previously Untreated Medullary Thyroid Cancer. J. Clin. Endocrinol. Metab. 2010;95:2655–2663. doi: 10.1210/jc.2009-2368. PubMed DOI
Maia A.L., Wajner S.M., Vargas C.V.F. Advances and Controversies in the Management of Medullary Thyroid Carcinoma. Curr. Opin. Oncol. 2017;29:25–32. doi: 10.1097/CCO.0000000000000340. PubMed DOI
Ganeshan D., Paulson E., Duran C., Cabanillas M.E., Busaidy N.L., Charnsangavej C. Current Update on Medullary Thyroid Carcinoma. Am. J. Roentgenol. 2013;201:W867–W876. doi: 10.2214/AJR.12.10370. PubMed DOI
Treglia G., Castaldi P., Villani M.F., Perotti G., De Waure C., Filice A., Ambrosini V., Cremonini N., Santimaria M., Versari A., et al. Comparison of 18F-DOPA, 18F-FDG and 68Ga-Somatostatin Analogue PET/CT in Patients with Recurrent Medullary Thyroid Carcinoma. Eur. J. Nucl. Med. Mol. Imaging. 2012;39:569–580. doi: 10.1007/s00259-011-2031-6. PubMed DOI
Kossatz S., Béhé M., Mansi R., Saur D., Czerney P., Kaiser W.A., Hilger I. Multifactorial Diagnostic NIR Imaging of CCK2R Expressing Tumors. Biomaterials. 2013;34:5172–5180. doi: 10.1016/j.biomaterials.2013.03.073. PubMed DOI
Kossatz S., Mansi R., Béhé M., Czerney P., Hilger I. Influence of D-Glutamine and d-Glutamic Acid Sequences in Optical Peptide Probes Targeted against the Cholecystokinin-2/Gastrin-Receptor on Binding Affinity, Specificity and Pharmacokinetic Properties. EJNMMI Res. 2013;3:75. doi: 10.1186/2191-219X-3-75. PubMed DOI PMC
Summer D., Grossrubatscher L., Petrik M., Michalcikova T., Novy Z., Rangger C., Klingler M., Haas H., Kaeopookum P., von Guggenberg E., et al. Developing Targeted Hybrid Imaging Probes by Chelator Scaffolding. Bioconjug. Chem. 2017;28:1722–1733. doi: 10.1021/acs.bioconjchem.7b00182. PubMed DOI PMC
Klingler M., Summer D., Rangger C., Haubner R., Foster J., Sosabowski J., Decristoforo C., Virgolini I., von Guggenberg E. DOTA-MGS5, a New Cholecystokinin-2 Receptor-Targeting Peptide Analog with an Optimized Targeting Profile for Theranostic Use. J. Nucl. Med. 2019;60:1010–1016. doi: 10.2967/jnumed.118.221283. PubMed DOI PMC
Summer D., Kroess A., Woerndle R., Rangger C., Klingler M., Haas H., Kremser L., Lindner H.H., von Guggenberg E., Decristoforo C. Multimerization Results in Formation of Re-Bindable Metabolites: A Proof of Concept Study with FSC-Based Minigastrin Imaging Probes Targeting CCK2R Expression. PLoS ONE. 2018;13:e0201224. doi: 10.1371/journal.pone.0201224. PubMed DOI PMC
Carlucci G., Ananias H.J.K., Yu Z., Van de Wiele C., Dierckx R.A., de Jong I.J., Elsinga H.P. Multimerization Improves Targeting of Peptide Radio-Pharmaceuticals. Curr. Pharm. Des. 2012;18:2501–2516. doi: 10.2174/13816128112092501. PubMed DOI
Lindner S., Michler C., Wangler B., Bartenstein P., Fischer G., Schirrmacher R., Wangler C. PESIN Multimerization Improves Receptor Avidities and in Vivo Tumor Targeting Properties to GRPR-Overexpressing Tumors. Bioconjug. Chem. 2014;25:489–500. doi: 10.1021/bc4004662. PubMed DOI
Summer D., Rangger C., Klingler M., Laverman P., Franssen G.M., Lechner B.E., Orasch T., Haas H., von Guggenberg E., Decristoforo C. Exploiting the Concept of Multivalency with 68 Ga- and 89 Zr-Labelled Fusarinine C-Minigastrin Bioconjugates for Targeting CCK2R Expression. Contrast Media Mol. Imaging. 2018;2018:3171794. doi: 10.1155/2018/3171794. PubMed DOI PMC
Buckle T., Van Willigen D.M., Spa S.J., Hensbergen A.W., van der Wal S., de Korne C.M., Welling M.M., van der Poel H.G., Hardwick J.C., van Leeuwen F.W. Tracers for Fluorescence-Guided Surgery: How Elongation of the Polymethine Chain in Cyanine Dyes Alters the Pharmacokinetics of a Dual-Modality c[RGDyK] Tracer. J. Nucl. Med. 2018;59:986–992. doi: 10.2967/jnumed.117.205575. PubMed DOI
Sauter A.W., Mansi R., Hassiepen U., Muller L., Panigada T., Wiehr S., Wild A.M., Geistlich S., Béhé M., Rottenburger C., et al. Targeting of the Cholecystokinin-2 Receptor with the Minigastrin Analog 177 Lu-DOTA-PP-F11N: Does the Use of Protease Inhibitors Further Improve In Vivo Distribution? J. Nucl. Med. 2019;60:393–399. doi: 10.2967/jnumed.118.207845. PubMed DOI
Notni J., Šimeček J., Hermann P., Wester H.J. TRAP, a Powerful and Versatile Framework for Gallium-68 Radiopharmaceuticals. Chem. Eur. J. 2011;17:14718–14722. doi: 10.1002/chem.201103503. PubMed DOI
Notni J., Hermann P., Havlíčková J., Kotek J., Kubíček V., Plutnar J., Loktionova N., Riss P.J., Rösch F., Lukeš I. A Triazacyclononane-Based Bifunctional Phosphinate Ligand for the Preparation of Multimeric 68 Ga Tracers for Positron Emission Tomography. Chem. Eur. J. 2010;16:7174–7185. doi: 10.1002/chem.200903281. PubMed DOI
Quigley N.G., Steiger K., Hoberück S., Czech N., Zierke M.A., Kossatz S., Pretze M., Richter F., Weichert W., Pox C., et al. PET/CT Imaging of Head-and-Neck and Pancreatic Cancer in Humans by Targeting the “Cancer Integrin” Avβ6 with Ga-68-Trivehexin. Eur. J. Nucl. Med. Mol. Imaging. 2022;49:1136–1147. doi: 10.1007/s00259-021-05559-x. PubMed DOI PMC
Quigley N.G., Czech N., Sendt W., Notni J. PET/CT Imaging of Pancreatic Carcinoma Targeting the “Cancer Integrin” Avβ6. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:4107–4108. doi: 10.1007/s00259-021-05443-8. PubMed DOI PMC
Pfister J., Summer D., Petrik M., Khoylou M., Lichius A., Kaeopookum P., Kochinke L., Orasch T., Haas H., Decristoforo C. Hybrid Imaging of Aspergillus Fumigatus Pulmonary Infection with Fluorescent, 68Ga-Labelled Siderophores. Biomolecules. 2020;10:168. doi: 10.3390/biom10020168. PubMed DOI PMC
Zavvar T.S., Hörmann A.A., Klingler M., Summer D., Rangger C., Desrues L., Castel H., Gandolfo P., von Guggenberg E. Effects of Side Chain and Peptide Bond Modifications on the Targeting Properties of Stabilized Minigastrin Analogs. Pharmaceuticals. 2023;16:278. doi: 10.3390/ph16020278. PubMed DOI PMC
Aloj L., Caracò C., Panico M., Zannetti A., Del Vecchio S., Tesauro D., De Luca S., Arra C., Pedone C., Morelli G., et al. In Vitro and in Vivo Evaluation of 111In-DTPAGlu-G-CCK8 for Cholecystokinin-B Receptor Imaging. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2004;45:485–494. PubMed
Leach B.I., Lister D., Adams S.R., Bykowski J., Schwartz A.B., McConville P., Dimant H., Ahrens E.T. Cryo-Fluorescence Tomography as a Tool for Visualizing Whole-Body Inflammation Using Perfluorocarbon Nanoemulsion Tracers. Mol. Imaging Biol. 2024;26:888–898. doi: 10.1007/s11307-024-01926-w. PubMed DOI