Current and Future Pathways in Aspergillus Diagnosis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
22-06771S
Czech Science Foundation
SGS05/LF/2022
Internal Grant Agency of University of Ostrava
PubMed
36830296
PubMed Central
PMC9952630
DOI
10.3390/antibiotics12020385
PII: antibiotics12020385
Knihovny.cz E-zdroje
- Klíčová slova
- PCR, aspergillosis, bronchoalveolar lavage fluid, galactomannan, lateral flow, metagenomic next-generation sequencing, metallophore, serum assays, siderophore, β-d-glucan,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Aspergillus fumigatus has been designated by the World Health Organization as a critical priority fungal pathogen. Some commercially available diagnostics for many forms of aspergillosis rely on fungal metabolites. These encompass intracellular molecules, cell wall components, and extracellular secretomes. This review summarizes the shortcomings of antibody tests compared to tests of fungal products in body fluids and highlights the application of β-d-glucan, galactomannan, and pentraxin 3 in bronchoalveolar lavage fluids. We also discuss the detection of nucleic acids and next-generation sequencing, along with newer studies on Aspergillus metallophores.
Zobrazit více v PubMed
World Health Organization Fungal Priority Pathogens List to Guide Research, Development and Public Health Action. [(accessed on 11 November 2022)]. Available online: https://www.who.int/publications/i/item/9789240060241.
Kanj A., Abdallah N., Soubani A.O. The spectrum of pulmonary aspergillosis. Respir. Med. 2018;141:121–131. doi: 10.1016/j.rmed.2018.06.029. PubMed DOI
Bassetti M., Azoulay E., Kullberg B.-J., Ruhnke M., Shoham S., Vazquez J., Giacobbe D.R., Calandra T. EORTC/MSGERC Definitions of Invasive Fungal Diseases: Summary of Activities of the Intensive Care Unit Working Group. Clin. Infect. Dis. 2021;72:S121–S127. doi: 10.1093/cid/ciaa1751. PubMed DOI
Giacobbe D.R., Prattes J., Wauters J., Dettori S., Signori A., Salmanton-García J., Maertens J., Bourgeois M., Reynders M., Rutsaert L., et al. Prognostic Impact of Bronchoalveolar Lavage Fluid Galactomannan and Aspergillus Culture Results on Survival in COVID-19 Intensive Care Unit Patients: A Post Hoc Analysis from the European Confederation of Medical Mycology (ECMM) COVID-19-Associated Pulmonary Aspergillosis Study. J. Clin. Microbiol. 2022;60:e0229821. doi: 10.1128/jcm.02298-21. PubMed DOI PMC
El-Baba F., Gao Y., Soubani A.O. Pulmonary Aspergillosis: What the Generalist Needs to Know. Am. J. Med. 2020;133:668–674. doi: 10.1016/j.amjmed.2020.02.025. PubMed DOI
Bassetti M., Giacobbe D.R., Grecchi C., Rebuffi C., Zuccaro V., Scudeller L., Akova M., Alastruey-Izquierdo A., Arikan-Akdagli S., Azoulay E., et al. Performance of existing definitions and tests for the diagnosis of invasive aspergillosis in critically ill, adult patients: A systematic review with qualitative evidence synthesis. J. Infect. 2020;81:131–146. doi: 10.1016/j.jinf.2020.03.065. PubMed DOI
Fernández-Cruz A., Magira E., Heo S.T., Evans S., Tarrand J., Kontoyiannis D.P. Bronchoalveolar Lavage Fluid Cytology in Culture-Documented Invasive Pulmonary Aspergillosis in Patients with Hematologic Diseases: Analysis of 67 Episodes. J. Clin. Microbiol. 2018;56:e00962-18. doi: 10.1128/JCM.00962-18. PubMed DOI PMC
Lass-Flörl C., Aigner M., Nachbaur D., Eschertzhuber S., Bucher B., Geltner C., Bellmann R., Lackner M., Orth-Höller D., Würzner R., et al. Diagnosing filamentous fungal infections in immunocompromised patients applying computed tomography-guided percutaneous lung biopsies: A 12-year experience. Infection. 2017;45:867–875. doi: 10.1007/s15010-017-1072-6. PubMed DOI PMC
Lass-Flörl C. How to make a fast diagnosis in invasive aspergillosis. Med. Mycol. 2019;57:S155–S160. doi: 10.1093/mmy/myy103. PubMed DOI
Lyskova P., Hubka V., Svobodova L., Barrs V., Dhand N.K., Yaguchi T., Matsuzawa T., Horie Y., Kolarik M., Dobias R., et al. Antifungal Susceptibility of the Aspergillus viridinutans Complex: Comparison of Two In Vitro Methods. Antimicrob. Agents Chemother. 2018;62:e01927-17. doi: 10.1128/AAC.01927-17. PubMed DOI PMC
Berkow E.L., Lockhart S.R., Ostrosky-Zeichner L. Antifungal Susceptibility Testing: Current Approaches. Clin. Microbiol. Rev. 2020;33:e00069-19. doi: 10.1128/CMR.00069-19. PubMed DOI PMC
Lau A., Chen S., Sorrell T., Carter D., Malik R., Martin P., Halliday C. Development and Clinical Application of a Panfungal PCR Assay To Detect and Identify Fungal DNA in Tissue Specimens. J. Clin. Microbiol. 2007;45:380–385. doi: 10.1128/JCM.01862-06. PubMed DOI PMC
Donnelly J.P., Chen S.C., Kauffman C.A., Steinbach W.J., Baddley J.W., Verweij P.E., Clancy C.J., Wingard J.R., Lockhart S.R., Groll A.H., et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2019;71:1367–1376. doi: 10.1093/cid/ciz1008. PubMed DOI PMC
Chong W., Neu K. Incidence, diagnosis and outcomes of COVID-19-associated pulmonary aspergillosis (CAPA): A systematic review. J. Hosp. Infect. 2021;113:115–129. doi: 10.1016/j.jhin.2021.04.012. PubMed DOI PMC
Douglas A.P., Smibert O.C., Bajel A., Halliday C.L., Lavee O., McMullan B., Yong M.K., van Hal S.J., Chen S.C., Slavin M.A., et al. Consensus guidelines for the diagnosis and management of invasive aspergillosis, 2021. Intern. Med. J. 2021;51:143–176. doi: 10.1111/imj.15591. PubMed DOI
Schelenz S., Barnes R., Barton R.C., Cleverley J.R., Lucas S.B., Kibbler C.C., Denning D.W. British Society for Medical Mycology best practice recommendations for the diagnosis of serious fungal diseases. Lancet Infect. Dis. 2015;15:461–474. doi: 10.1016/S1473-3099(15)70006-X. PubMed DOI
Ullmann A.J., Aguado J.M., Arikan-Akdagli S., Denning D.W., Groll A.H., Lagrou K., Lass-Flörl C., Lewis R.E., Munoz P., Verweij P.E., et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018;24((Suppl. 1)):e1–e38. doi: 10.1016/j.cmi.2018.01.002. PubMed DOI
Meersseman W., Lagrou K., Maertens J., Wilmer A., Hermans G., Vanderschueren S., Spriet I., Verbeken E., Van Wijngaerden E. Galactomannan in Bronchoalveolar Lavage Fluid: A tool for diagnosing aspergillosis in intensive care unit patients. Am. J. Respir. Crit. Care Med. 2008;177:27–34. doi: 10.1164/rccm.200704-606OC. PubMed DOI
D’Haese J., Theunissen K., Vermeulen E., Schoemans H., De Vlieger G., Lammertijn L., Meersseman P., Meersseman W., Lagrou K., Maertens J. Detection of Galactomannan in Bronchoalveolar Lavage Fluid Samples of Patients at Risk for Invasive Pulmonary Aspergillosis: Analytical and Clinical Validity. J. Clin. Microbiol. 2012;50:1258–1263. doi: 10.1128/JCM.06423-11. PubMed DOI PMC
Bassetti M., Bouza E. Invasive mould infections in the ICU setting: Complexities and solutions. J. Antimicrob. Chemother. 2017;72:i39–i47. doi: 10.1093/jac/dkx032. PubMed DOI
Cao X.-J., Li Y.-P., Xie L.-M., Zhang H.-L., Qin Y.-S., Guo X.-G. Diagnostic Accuracy of Bronchoalveolar Lavage Fluid Galactomannan for Invasive Aspergillosis. BioMed Res. Int. 2020;2020:5434589. doi: 10.1155/2020/5434589. PubMed DOI PMC
Farmakiotis D., Le A., Weiss Z., Ismail N., Kubiak D.W., Koo S. False positive bronchoalveolar lavage galactomannan: Effect of host and cut-off value. Mycoses. 2018;62:204–213. doi: 10.1111/myc.12867. PubMed DOI
Izumikawa K., Yamamoto Y., Mihara T., Takazono T., Morinaga Y., Kurihara S., Nakamura S., Imamura Y., Miyazaki T., Nishino T., et al. Bronchoalveolar lavage galactomannan for the diagnosis of chronic pulmonary aspergillosis. Med. Mycol. 2012;50:811–817. doi: 10.3109/13693786.2012.682228. PubMed DOI
Sehgal I.S., Dhooria S., Choudhary H., Aggarwal A.N., Garg M., Chakrabarti A., Agarwal R. Utility of Serum and Bronchoalveolar Lavage Fluid Galactomannan in Diagnosis of Chronic Pulmonary Aspergillosis. J. Clin. Microbiol. 2019;57:e01821-18. doi: 10.1128/JCM.01821-18. PubMed DOI PMC
Fayemiwo S., Moore C.B., Foden P., Denning D.W., Richardson M.D. Comparative performance of Aspergillus galactomannan ELISA and PCR in sputum from patients with ABPA and CPA. J. Microbiol. Methods. 2017;140:32–39. doi: 10.1016/j.mimet.2017.06.016. PubMed DOI
Kawayama T., Fujiki R., Honda J., Rikimaru T., Aizawa H. High Concentration of (1→3)-β-D-Glucan in BAL Fluid in Patients With Acute Eosinophilic Pneumonia. Chest. 2003;123:1302–1307. doi: 10.1378/chest.123.4.1302. PubMed DOI
Ashitani J.-I., Kyoraku Y., Yanagi S., Matsumoto N., Nakazato M. Elevated Levels of β-D-Glucan in Bronchoalveolar Lavage Fluid in Patients with Farmer’s Lung in Miyazaki, Japan. Respiration. 2008;75:182–188. doi: 10.1159/000098406. PubMed DOI
Linder K.A., Kauffman C.A., Zhou S., Richards B.J., Kleiboeker S., Miceli M.H. Performance of the (1,3)-Beta-d-Glucan Assay on Bronchoalveolar Lavage Fluid for the Diagnosis of Invasive Pulmonary Aspergillosis. Mycopathologia. 2020;185:925–929. doi: 10.1007/s11046-020-00479-0. PubMed DOI
Weinbergerova B., Kabut T., Kocmanova I., Lengerova M., Pospisil Z., Kral Z., Mayer J. Bronchoalveolar lavage fluid and serum 1,3-β-d-glucan testing for invasive pulmonary aspergillosis diagnosis in hematological patients: The role of factors affecting assay performance. Sci. Rep. 2020;10:17963. doi: 10.1038/s41598-020-75132-3. PubMed DOI PMC
Urabe N., Sakamoto S., Sano G., Suzuki J., Hebisawa A., Nakamura Y., Koyama K., Ishii Y., Tateda K., Homma S. Usefulness of Two Aspergillus PCR Assays and Aspergillus Galactomannan and β-d-Glucan Testing of Bronchoalveolar Lavage Fluid for Diagnosis of Chronic Pulmonary Aspergillosis. J. Clin. Microbiol. 2017;55:1738–1746. doi: 10.1128/JCM.02497-16. PubMed DOI PMC
Imbert S., Meyer I., Palous M., Brossas J.-Y., Uzunov M., Touafek F., Gay F., Trosini-Desert V., Fekkar A. Aspergillus PCR in Bronchoalveolar Lavage Fluid for the Diagnosis and Prognosis of Aspergillosis in Patients with Hematological and Non-hematological Conditions. Front. Microbiol. 2018;9:1877. doi: 10.3389/fmicb.2018.01877. PubMed DOI PMC
Wehrle-Wieland E., Affolter K., Goldenberger D., Sutter S.T., Halter J., Passweg J., Tamm M., Khanna N., Stolz D. Diagnosis of invasive mold diseases in patients with hematological malignancies using Aspergillus, Mucorales, and panfungal PCR in BAL. Transpl. Infect. Dis. Off. J. Transplant. Soc. 2018;20:e12953. doi: 10.1111/tid.12953. PubMed DOI
Mikulska M., Furfaro E., De Carolis E., Drago E., Pulzato I., Borghesi M.L., Zappulo E., Raiola A.M., Di Grazia C., Del Bono V., et al. Use of Aspergillus fumigatus real-time PCR in bronchoalveolar lavage samples (BAL) for diagnosis of invasive aspergillosis, including azole-resistant cases, in high risk haematology patients: The need for a combined use with galactomannan. Med. Mycol. 2019;57:987–996. doi: 10.1093/mmy/myz002. PubMed DOI PMC
Pelzer B.W., Seufert R., Koldehoff M., Liebregts T., Schmidt D., Buer J., Rath P.-M., Steinmann J. Performance of the AsperGenius® PCR assay for detecting azole resistant Aspergillus fumigatus in BAL fluids from allogeneic HSCT recipients: A prospective cohort study from Essen, West Germany. Med. Mycol. 2020;58:268–271. doi: 10.1093/mmy/myz050. PubMed DOI
Mikulska M., Furfaro E., Dettori S., Giacobbe D.R., Magnasco L., Dentone C., Ball L., Russo C., Taramasso L., Vena A., et al. Aspergillus-PCR in bronchoalveolar lavage-diagnostic accuracy for invasive pulmonary aspergillosis in critically ill patients. Mycoses. 2022;65:411–418. doi: 10.1111/myc.13428. PubMed DOI
Peng J.-M., Du B., Qin H.-Y., Wang Q., Shi Y. Metagenomic next-generation sequencing for the diagnosis of suspected pneumonia in immunocompromised patients. J. Infect. 2021;82:22–27. doi: 10.1016/j.jinf.2021.01.029. PubMed DOI
Dobiáš R., Jaworská P., Skopelidou V., Strakoš J., Višňovská D., Káňová M., Škríba A., Lysková P., Bartek T., Janíčková I., et al. Distinguishing invasive from chronic pulmonary infections: Host pentraxin 3 and fungal siderophores in bronchoalveolar lavage fluids. J. Fungi. 2022;8:1194. doi: 10.3390/jof8111194. PubMed DOI PMC
Kabbani D., Bhaskaran A., Singer L., Bhimji A., Rotstein C., Keshavjee S., Liles W.C., Husain S. Pentraxin 3 levels in bronchoalveolar lavage fluid of lung transplant recipients with invasive aspergillosis. J. Heart Lung Transplant. 2017;36:973–979. doi: 10.1016/j.healun.2017.04.007. PubMed DOI
Takazono T., Izumikawa K. Recent Advances in Diagnosing Chronic Pulmonary Aspergillosis. Front. Microbiol. 2018;9:1810. doi: 10.3389/fmicb.2018.01810. PubMed DOI PMC
Shin B., Koh W.-J., Jeong B.-H., Yoo H., Park H.Y., Suh G.Y., Kwon O.J., Jeon K. Serum galactomannan antigen test for the diagnosis of chronic pulmonary aspergillosis. J. Infect. 2014;68:494–499. doi: 10.1016/j.jinf.2014.01.005. PubMed DOI
Dobias R., Jaworska P., Tomaskova H., Kanova M., Lyskova P., Vrba Z., Holub C., Svobodová L., Hamal P., Raska M. Diagnostic value of serum galactomannan, (1,3)-β-d -glucan, and Aspergillus fumigatus-specific IgA and IgG assays for invasive pulmonary aspergillosis in non-neutropenic patients. Mycoses. 2018;61:576–586. doi: 10.1111/myc.12765. PubMed DOI
Dobias R., Filip M., Vragova K., Dolinska D., Zavodna P., Dujka A., Linzer P., Jurek P., Studena B., Cerna E., et al. Successful surgical excision of cerebral abscess caused by Fonsecaea monophora in an immunocompetent patient and review of literature. Folia Microbiol. 2018;64:383–388. doi: 10.1007/s12223-018-0661-9. PubMed DOI
Dobiáš R., Káňová M., Petejová N., Pisti Š.K., Bocek R., Krejčí E., Stružková H., Cachová M., Tomášková H., Hamal P., et al. Combined Use of Presepsin and (1,3)-β-D-glucan as Biomarkers for Diagnosing Candida Sepsis and Monitoring the Effectiveness of Treatment in Critically Ill Patients. J. Fungi. 2022;8:308. doi: 10.3390/jof8030308. PubMed DOI PMC
Karageorgopoulos D., Qu J.-M., Korbila I., Zhu Y.-G., Vasileiou V., Falagas M. Accuracy of β-D-glucan for the diagnosis of Pneumocystis jirovecii pneumonia: A meta-analysis. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2013;19:39–49. doi: 10.1111/j.1469-0691.2011.03760.x. PubMed DOI
White P.L., Linton C.J., Perry M.D., Johnson E.M., Barnes R.A. The Evolution and Evaluation of a Whole Blood Polymerase Chain Reaction Assay for the Detection of Invasive Aspergillosis in Hematology Patients in a Routine Clinical Setting. Clin. Infect. Dis. 2006;42:479–486. doi: 10.1086/499949. PubMed DOI
Mengoli C., Cruciani M., Barnes R., Loeffler J., Donnelly J.P. Use of PCR for diagnosis of invasive aspergillosis: Systematic review and meta-analysis. Lancet Infect. Dis. 2009;9:89–96. doi: 10.1016/S1473-3099(09)70019-2. PubMed DOI
White P.L., Mengoli C., Bretagne S., Cuenca-Estrella M., Finnstrom N., Klingspor L., Melchers W.J.G., McCulloch E., Barnes R.A., Donnelly J.P., et al. Evaluation of Aspergillus PCR Protocols for Testing Serum Specimens. J. Clin. Microbiol. 2011;49:3842–3848. doi: 10.1128/JCM.05316-11. PubMed DOI PMC
Springer J., Morton C.O., Perry M., Heinz W.J., Paholcsek M., Alzheimer M., Rogers T.R., Barnes R.A., Einsele H., Loeffler J., et al. Multicenter Comparison of Serum and Whole-Blood Specimens for Detection of Aspergillus DNA in High-Risk Hematological Patients. J. Clin. Microbiol. 2013;51:1445–1450. doi: 10.1128/JCM.03322-12. PubMed DOI PMC
White P.L., Barnes R.A., Springer J., Klingspor L., Cuenca-Estrella M., Morton C.O., Lagrou K., Bretagne S., Melchers W.J.G., Mengoli C., et al. Clinical Performance of Aspergillus PCR for Testing Serum and Plasma: A Study by the European Aspergillus PCR Initiative. J. Clin. Microbiol. 2015;53:2832–2837. doi: 10.1128/JCM.00905-15. PubMed DOI PMC
Springer J., White P.L., Hamilton S., Michel D., Barnes R.A., Einsele H., Löffler J. Comparison of Performance Characteristics of Aspergillus PCR in Testing a Range of Blood-Based Samples in Accordance with International Methodological Recommendations. J. Clin. Microbiol. 2016;54:705–711. doi: 10.1128/JCM.02814-15. PubMed DOI PMC
White P.L., Wiederhold N.P., Loeffler J., Najvar L.K., Melchers W., Herrera M., Bretagne S., Wickes B., Kirkpatrick W.R., Barnes R.A., et al. Comparison of Nonculture Blood-Based Tests for Diagnosing Invasive Aspergillosis in an Animal Model. J. Clin. Microbiol. 2016;54:960–966. doi: 10.1128/JCM.03233-15. PubMed DOI PMC
Ma X., Zhang S., Xing H., Li H., Chen J., Li H., Jiao M., Shi Q., Xu A., Xing L., et al. Invasive Pulmonary Aspergillosis Diagnosis via Peripheral Blood Metagenomic Next-Generation Sequencing. Front. Med. 2022;9:751617. doi: 10.3389/fmed.2022.751617. PubMed DOI PMC
Hogan C., Yang S., Garner O.B., Green D., Gomez C., Bard J.D., Pinsky B., Banaei N. Clinical Impact of Metagenomic Next-Generation Sequencing of Plasma Cell-Free DNA for the Diagnosis of Infectious Diseases: A Multicenter Retrospective Cohort Study. Clin. Infect. Dis. 2020;72:239–245. doi: 10.1093/cid/ciaa035. PubMed DOI
Heldt S., Hoenigl M. Lateral Flow Assays for the Diagnosis of Invasive Aspergillosis: Current Status. Curr. Fungal Infect. Rep. 2017;11:45–51. doi: 10.1007/s12281-017-0275-8. PubMed DOI PMC
Thornton C.R. Development of an Immunochromatographic Lateral-Flow Device for Rapid Serodiagnosis of Invasive Aspergillosis. Clin. Vaccine Immunol. 2008;15:1095–1105. doi: 10.1128/CVI.00068-08. PubMed DOI PMC
Held J., Schmidt T., Thornton C.R., Kotter E., Bertz H. Comparison of a novel Aspergillus lateral-flow device and the Platelia® galactomannan assay for the diagnosis of invasive aspergillosis following haematopoietic stem cell transplantation. Infection. 2013;41:1163–1169. doi: 10.1007/s15010-013-0472-5. PubMed DOI
White P.L., Parr C., Thornton C., Barnes R.A. Evaluation of Real-Time PCR, Galactomannan Enzyme-Linked Immunosorbent Assay (ELISA), and a Novel Lateral-Flow Device for Diagnosis of Invasive Aspergillosis. J. Clin. Microbiol. 2013;51:1510–1516. doi: 10.1128/JCM.03189-12. PubMed DOI PMC
Latgé J.-P., Chamilos G. Aspergillus fumigatus and Aspergillosis in 2019. Clin. Microbiol. Rev. 2019;33:e00140-18. doi: 10.1128/CMR.00140-18. PubMed DOI PMC
Stevens D.A., Moss R.B., Kurup V.P., Knutsen A.P., Greenberger P., Judson M., Denning D., Crameri R., Brody A.S., Light M., et al. Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis—State of the Art: Cystic Fibrosis Foundation Consensus Conference. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2003;37:S225–S264. doi: 10.1086/376525. PubMed DOI
Muthu V., Singh P., Choudhary H., Sehgal I.S., Dhooria S., Prasad K.T., Aggarwal A.N., Garg M., Chakrabarti A., Agarwal R. Diagnostic Cutoffs and Clinical Utility of Recombinant Aspergillus fumigatus Antigens in the Diagnosis of Allergic Bronchopulmonary Aspergillosis. J. Allergy Clin. Immunol. Pract. 2020;8:579–587. doi: 10.1016/j.jaip.2019.08.041. PubMed DOI
Seo H., Kang S., Park Y.-S., Yun C.-W. The Role of Zinc in Gliotoxin Biosynthesis of Aspergillus fumigatus. Int. J. Mol. Sci. 2019;20:6192. doi: 10.3390/ijms20246192. PubMed DOI PMC
Savelieff M., Pappalardo L. Novel cutting-edge metabolite-based diagnostic tools for aspergillosis. PLoS Pathog. 2017;13:e1006486. doi: 10.1371/journal.ppat.1006486. PubMed DOI PMC
Mercier T., Sharpe A.R., Waumans D., Desmet K., Lagrou K., Maertens J. Gliotoxin and bis(methylthio)gliotoxin are not reliable as biomarkers of invasive aspergillosis. Mycoses. 2019;62:945–948. doi: 10.1111/myc.12967. PubMed DOI
Gomez-Lopez A., Rueda C., Pozo R.P., Gonzalez L.M.S. Dynamics of gliotoxin and bis(methylthio)gliotoxin production during the course of Aspergillus fumigatus infection. Med. Mycol. 2022;60:myac025. doi: 10.1093/mmy/myac025. PubMed DOI
Luptáková D., Patil H.R., Dobiáš R., Stevens D.A., Pluháček T., Palyzová A., Káňová M., Navrátil M., Vrba Z., Hubáček P., et al. Siderophore-based noninvasive differentiation of Aspergillus fumigatus colonization and invasion in pulmonary aspergillosis. Microbiol. Spectr. 2023:e04068-22. doi: 10.1128/spectrum.04068-22. PubMed DOI PMC
Mehdiratta K., Singh S., Sharma S., Bhosale R.S., Choudhury R., Masal D.P., Manocha A., Dhamale B.D., Khan N., Asokachandran V., et al. Kupyaphores are zinc homeostatic metallophores required for colonization of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA. 2022;119:e2110293119. doi: 10.1073/pnas.2110293119. PubMed DOI PMC
Golonka R., Yeoh B.S., Vijay-Kumar M. The Iron Tug-of-War between Bacterial Siderophores and Innate Immunity. J. Innate Immun. 2019;11:249–262. doi: 10.1159/000494627. PubMed DOI PMC
Abergel R.J., Wilson M.K., Arceneaux J.E.L., Hoette T.M., Strong R.K., Byers B.R., Raymond K.N. Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc. Natl. Acad. Sci. USA. 2006;103:18499–18503. doi: 10.1073/pnas.0607055103. PubMed DOI PMC
Danion F., van Rhijn N., Dufour A.C., Legendre R., Sismeiro O., Varet H., Olivo-Marin J.-C., Mouyna I., Chamilos G., Bromley M., et al. Aspergillus fumigatus, One Uninucleate Species with Disparate Offspring. J. Fungi. 2021;7:30. doi: 10.3390/jof7010030. PubMed DOI PMC
Kriegl L., Havlicek V., Dichtl K., Egger M., Hoenigl M. Siderophores: A potential role as a diagnostic for invasive fungal disease. Curr. Opin. Infect. Dis. 2022;35:485–492. doi: 10.1097/QCO.0000000000000862. PubMed DOI
Petřík M., Palyzová A., Nový Z., Houšť J., Havlíček V., Khoylou M., Popper M., Bendová K., Haas H., Decristoforo C., et al. Monitoring Aspergillus fumigatus infection in rats using(68)Ga-siderophores. Eur. J. Nucl. Med. Mol. Imaging. 2022;49:S18
Petrik M., Haas H., Dobrozemsky G., Lass-Flörl C., Helbok A., Blatzer M., Dietrich H., Decristoforo C. 68Ga-Siderophores for PET Imaging of Invasive Pulmonary Aspergillosis: Proof of Principle. J. Nucl. Med. 2010;51:639–645. doi: 10.2967/jnumed.109.072462. PubMed DOI PMC
Patil R.H., Luptáková D., Havlíček V. Infection metallomics for critical care in the post-COVID era. Mass Spectrom. Rev. 2021 doi: 10.1002/mas.21755. PubMed DOI
Novák J., Škríba A., Havlíček V. CycloBranch 2: Molecular Formula Annotations Applied to imzML Data Sets in Bimodal Fusion and LC-MS Data Files. Anal. Chem. 2020;92:6844–6849. doi: 10.1021/acs.analchem.0c00170. PubMed DOI
Dobiáš R., Jahn P., Tóthová K., Dobešová O., Višňovská D., Patil R., Škríba A., Jaworská P., Škorič M., Podojil L., et al. Diagnosis of Aspergillosis in Horses. J. Fungi. 2023;9:161. doi: 10.3390/jof9020161. PubMed DOI PMC
Dobiáš R., Škríba A., Pluháček T., Petřík M., Palyzová A., Káňová M., Čubová E., Houšť J., Novák J., Stevens D.A., et al. Noninvasive Combined Diagnosis and Monitoring of Aspergillus and Pseudomonas Infections: Proof of Concept. J. Fungi. 2021;7:730. doi: 10.3390/jof7090730. PubMed DOI PMC
Le Govic Y., Havlíček V., Capilla J., Luptáková D., Dumas D., Papon N., Le Gal S., Bouchara J.-P., Vandeputte P. Synthesis of the Hydroxamate Siderophore Nα-Methylcoprogen B in Scedosporium apiospermum Is Mediated by sidD Ortholog and Is Required for Virulence. Front. Cell. Infect. Microbiol. 2020;10:587909. doi: 10.3389/fcimb.2020.587909. PubMed DOI PMC
Luptáková D., Pluháček T., Petřík M., Novák J., Palyzová A., Sokolová L., Škríba A., Šedivá B., Lemr K., Havlíček V. Non-invasive and invasive diagnoses of aspergillosis in a rat model by mass spectrometry. Sci. Rep. 2017;7:16523. doi: 10.1038/s41598-017-16648-z. PubMed DOI PMC
Patil R.H., Kotta-Loizou I., Palyzová A., Pluháček T., Coutts R.H.A., Stevens D.A., Havlíček V. Freeing Aspergillus fumigatus of polymycovirus infection renders it more resistant to competition with Pseudomonas aeruginosa due to altered iron-acquiring tactics. J. Fungi. 2021;7:497. doi: 10.3390/jof7070497. PubMed DOI PMC
Matthaiou E.I., Sass G., Stevens D.A., Hsu J.L. Iron: An essential nutrient for Aspergillus fumigatus and a fulcrum for pathogenesis. Curr. Opin. Infect. Dis. 2018;31:506–511. doi: 10.1097/QCO.0000000000000487. PubMed DOI PMC
Vidal-García M., Redrado S., Domingo M.P., Marquina P., Colmenarejo C., Meis J.F., Rezusta A., Pardo J., Galvez E.M. Production of the Invasive Aspergillosis Biomarker Bis(methylthio)gliotoxin within the Genus Aspergillus: In Vitro and in Vivo Metabolite Quantification and Genomic Analysis. Front. Microbiol. 2018;9:1246. doi: 10.3389/fmicb.2018.01246. PubMed DOI PMC
Škríba A., Pluhacek T., Palyzova A., Novy Z., Lemr K., Hajduch M., Petrik M., Havlicek V. Early and Non-invasive Diagnosis of Aspergillosis Revealed by Infection Kinetics Monitored in a Rat Model. Front. Microbiol. 2018;9:2356. doi: 10.3389/fmicb.2018.02356. PubMed DOI PMC
Orasch T., Prattes J., Faserl K., Eigl S., Düttmann W., Lindner H., Haas H., Hoenigl M. Bronchoalveolar lavage triacetylfusarinine C (TAFC) determination for diagnosis of invasive pulmonary aspergillosis in patients with hematological malignancies. J. Infect. 2017;75:370–373. doi: 10.1016/j.jinf.2017.05.014. PubMed DOI PMC
Raffa N., Won T.H., Sukowaty A., Candor K., Cui C., Halder S., Dai M., Landero-Figueroa J.A., Schroeder F.C., Keller N.P. Dual-purpose isocyanides produced by Aspergillus fumigatus contribute to cellular copper sufficiency and exhibit antimicrobial activity. Proc. Natl. Acad. Sci. USA. 2021;118:e2015224118. doi: 10.1073/pnas.2015224118. PubMed DOI PMC