Noninvasive Combined Diagnosis and Monitoring of Aspergillus and Pseudomonas Infections: Proof of Concept

. 2021 Sep 06 ; 7 (9) : . [epub] 20210906

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu kazuistiky, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34575768

Grantová podpora
IGA_PrF_2021_021 Palacky University
19-10907S Grantová Agentura České Republiky

In acutely ill patients, particularly in intensive care units or in mixed infections, time to a microbe-specific diagnosis is critical to a successful outcome of therapy. We report the application of evolving technologies involving mass spectrometry to diagnose and monitor a patient's course. As proof of this concept, we studied five patients and used two rat models of mono-infection and coinfection. We report the noninvasive combined monitoring of Aspergillus fumigatus and Pseudomonas aeruginosa infection. The invasive coinfection was detected by monitoring the fungal triacetylfusarinine C and ferricrocin siderophore levels and the bacterial metabolites pyoverdin E, pyochelin, and 2-heptyl-4-quinolone, studied in the urine, endotracheal aspirate, or breath condensate. The coinfection was monitored by mass spectrometry followed by isotopic data filtering. In the rat infection model, detection indicated 100-fold more siderophores in urine compared to sera, indicating the diagnostic potential of urine sampling. The tools utilized in our studies can now be examined in large clinical series, where we could expect the accuracy and speed of diagnosis to be competitive with conventional methods and provide advantages in unraveling the complexities of mixed infections.

Zobrazit více v PubMed

Janbon G., Quintin J., Lanternier F., d’Enfert C. Studying fungal pathogens of humans and fungal infections: Fungal diversity and diversity of approaches. Genes Immun. 2019;20:403–414. doi: 10.1038/s41435-019-0071-2. PubMed DOI

Köhler J.R., Casadevall A., Perfect J. The spectrum of fungi that infects humans. Cold Spring Harb. Perspect. Med. 2014;5:a019273. doi: 10.1101/cshperspect.a019273. PubMed DOI PMC

Salmanton-García J., Sprute R., Stemler J., Bartoletti M., Dupont D., Valerio M., Garcia-Vidal C., Falces-Romero I., Machado M., de la Villa S., et al. COVID-19–associated pulmonary aspergillosis, March–August 2020. Emerg. Infect. Dis. 2021;27:1077. doi: 10.3201/eid2704.204895. PubMed DOI PMC

Verweij P.E., Rijnders B.J.A., Bruggemann R.J.M., Azoulay E., Bassetti M., Blot S., Calandra T., Clancy C.J., Cornely O.A., Chiller T., et al. Review of influenza-associated pulmonary aspergillosis in ICU patients and proposal for a case definition: An expert opinion. Intensive Care Med. 2020;46:1524–1535. doi: 10.1007/s00134-020-06091-6. PubMed DOI PMC

Shortridge D., Gales A.C., Streit J.M., Huband M.D., Tsakris A., Jones R.N. Geographic and Temporal Patterns of Antimicrobial Resistance in Pseudomonas aeruginosa Over 20 Years From the SENTRY Antimicrobial Surveillance Program, 1997–2016. Open Forum Infect. Dis. 2019;6:S63–S68. doi: 10.1093/ofid/ofy343. PubMed DOI PMC

Curran C.S., Bolig T., Torabi-Parizi P. Mechanisms and targeted therapies for Pseudomonas aeruginosa lung infection. Am. J. Respir. Crit. Care Med. 2018;197:708–727. doi: 10.1164/rccm.201705-1043SO. PubMed DOI PMC

Cassini A., Högberg L.D., Plachouras D., Quattrocchi A., Hoxha A., Simonsen G.S., Colomb-Cotinat M., Kretzschmar M.E., Devleesschauwer B., Cecchini M., et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019;19:56–66. doi: 10.1016/S1473-3099(18)30605-4. PubMed DOI PMC

Sass G., Nazik H., Penner J., Shah H., Ansari S.R., Clemons K.V., Groleau M.-C., Dietl A.-M., Visca P., Haas H., et al. Aspergillus-Pseudomonas interaction, relevant to competition in airways. Med. Mycol. 2019;57:S228–S232. doi: 10.1093/mmy/myy087. PubMed DOI

Novák J., Škríba A., Havlíček V. Cyclobranch 2: Molecular formula annotations applied to imzML data sets in bimodal fusion and LC-MS data files. Anal. Chem. 2020;92:6844–6849. doi: 10.1021/acs.analchem.0c00170. PubMed DOI

Škríba A., Pluháček T., Palyzová A., Nový Z., Lemr K., Hajdúch M., Petřík M., Havlíček V. Early and non-invasive diagnosis of aspergillosis revealed by infection kinetics monitored in a rat model. Front. Microbiol. 2018;9:2356. doi: 10.3389/fmicb.2018.02356. PubMed DOI PMC

Petrik M., Umlaufova E., Raclavsky V., Palyzova A., Havlicek V., Pfister J., Mair C., Novy Z., Popper M., Hajduch M., et al. 68Ga-labelled desferrioxamine-B for bacterial infection imaging. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:372–382. doi: 10.1007/s00259-020-04948-y. PubMed DOI PMC

Raymond K.N., Dertz E.A., Kim S.S. Enterobactin: An archetype for microbial iron transport. Proc. Natl. Acad. Sci. USA. 2003;100:3584–3588. doi: 10.1073/pnas.0630018100. PubMed DOI PMC

Nazik H., Sass G., Ansari S.R., Ertekin R., Haas H., Deziel E., Stevens D.A. Novel intermicrobial molecular interaction: Pseudomonas aeruginosa Quinolone Signal (PQS) modulates Aspergillus fumigatus response to iron. Microbiology. 2020;166:44–55. doi: 10.1099/mic.0.000858. PubMed DOI

Petřík M., Umlaufová E., Raclavský V., Palyzová A., Havlíček V., Haas H., Nový Z., Doležal D., Hajduch M., Decristoforo C. Imaging of Pseudomonas aeruginosa infection with Ga-68 labelled pyoverdine for positron emission tomography. Sci. Rep. 2018;8:15698. doi: 10.1038/s41598-018-33895-w. PubMed DOI PMC

Matthaiou E.I., Sass G., Stevens D.A., Hsu J.L. Iron: An essential nutrient for Aspergillus fumigatus and a fulcrum for pathogenesis. Curr. Opin. Infect. Dis. 2018;31:506–511. doi: 10.1097/QCO.0000000000000487. PubMed DOI PMC

Sass G., Nazik H., Chatterjee P., Stevens D.A. Under nonlimiting iron conditions pyocyanin is a major antifungal molecule, and differences between prototypic Pseudomonas aeruginosa strains. Med. Mycol. 2021;59:453–464. doi: 10.1093/mmy/myaa066. PubMed DOI

Moura-Alves P., Puyskens A., Stinn A., Klemm M., Guhlich-Bornhof U., Dorhoi A., Furkert J., Kreuchwig A., Protze J., Lozza L., et al. Host monitoring of quorum sensing during Pseudomonas aeruginosa infection. Science. 2019;366:eaaw1629. doi: 10.1126/science.aaw1629. PubMed DOI

Allegretta G., Maurer C.K., Eberhard J., Maura D., Hartmann R.W., Rahme L., Empting M. In-depth profiling of mvfr-regulated small molecules in Pseudomonas aeruginosa after quorum sensing inhibitor treatment. Front. Microbiol. 2017;8:924. doi: 10.3389/fmicb.2017.00924. PubMed DOI PMC

Bassetti M., Azoulay E., Kullberg B.J., Ruhnke M., Shoham S., Vazquez J., Giacobbe D.R., Calandra T. EORTC/MSGERC definitions of invasive fungal diseases: Summary of activities of the intensive care unit working group. Clin. Infect. Dis. 2021;72:121–127. doi: 10.1093/cid/ciaa1751. PubMed DOI

An J., McDowell A., Kim Y.-K., Kim T.-B. Extracellular vesicle-derived microbiome obtained from exhaled breath condensate in patients with asthma. Ann. Allergy Asthma Immunol. 2021;126:729–731. doi: 10.1016/j.anai.2021.02.030. PubMed DOI

Škríba A., Patil R.H., Hubáček P., Dobiáš R., Palyzová A., Marešová H., Pluháček T., Havlíček V. Rhizoferrin glycosylation in Rhizopus microsporus. J. Fungi. 2020;6:89. doi: 10.3390/jof6020089. PubMed DOI PMC

Luptáková D., Pluháček T., Petřík M., Novák J., Palyzová A., Sokolová L., Škríba A., Šedivá B., Lemr K., Havlíček V. Non-invasive and invasive diagnoses of aspergillosis in a rat model by mass spectrometry. Sci. Rep. 2017;7:16523. doi: 10.1038/s41598-017-16648-z. PubMed DOI PMC

Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.-D., Coopersmith C.M., et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...