The Deciphering of Growth-Dependent Strategies for Quorum-Sensing Networks in Pseudomonas aeruginosa

. 2023 Sep 15 ; 11 (9) : . [epub] 20230915

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37764173

Grantová podpora
21-17044S Czech Science Foundation
IGA_PrF_2023_027 internal grant agency of Palacky University
RVO:61388971 Czech Academy of Sciences, Institute of Microbiology

Odkazy

PubMed 37764173
PubMed Central PMC10534576
DOI 10.3390/microorganisms11092329
PII: microorganisms11092329
Knihovny.cz E-zdroje

Pseudomonas aeruginosa is recognized as a significant cause of morbidity and mortality among nosocomial pathogens. In respiratory infections, P. aeruginosa acts not only as a single player but also collaborates with the opportunistic fungal pathogen Aspergillus fumigatus. This study introduced a QS molecule portfolio as a potential new biomarker that affects the secretion of virulence factors and biofilm formation. The quantitative levels of QS molecules, including 3-o-C12-HSL, 3-o-C8-HSL, C4-HSL, C6-HSL, HHQ, PQS, and PYO, measured using mass spectrometry in a monoculture, indicated metabolic changes during the transition from planktonic to sessile cells. In the co-cultures with A. fumigatus, the profile of abundant QS molecules was reduced to 3-o-C12-HSL, C4-HSL, PQS, and PYO. A decrease in C4-HSL by 50% to 170.6 ± 11.8 ng/mL and an increase 3-o-C12-HSL by 30% up to 784.4 ± 0.6 ng/mL were detected at the stage of the coverage of the hyphae with bacteria. Using scanning electron microscopy, we showed the morphological stages of the P. aeruginosa biofilm, such as cell aggregates, maturated biofilm, and cell dispersion. qPCR quantification of the genome equivalents of both microorganisms suggested that they exhibited an interplay strategy rather than antagonism. This is the first study demonstrating the quantitative growth-dependent appearance of QS molecule secretion in a monoculture of P. aeruginosa and a co-culture with A. fumigatus.

Zobrazit více v PubMed

Douglas A.E. The microbial exometabolome: Ecological resource and architect of microbial communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2020;375:20190250. doi: 10.1098/rstb.2019.0250. PubMed DOI PMC

Schroter L., Dersch P. Phenotypic diversification of microbial pathogens—Cooperating and preparing for the future. J. Mol. Biol. 2019;431:4645–4655. doi: 10.1016/j.jmb.2019.06.024. PubMed DOI

Spratt M.R., Lane K. Navigating environmental transitions: The role of phenotypic variation in bacterial responses. mBio. 2022;13:e0221222. doi: 10.1128/mbio.02212-22. PubMed DOI PMC

Assefa M., Amare A. Biofilm-associated multi-drug resistance in hospital-acquired infections: A review. Infect. Drug Resist. 2022;31:5061–5068. doi: 10.2147/IDR.S379502. PubMed DOI PMC

Sauer K., Camper A.K., Ehrlich G.D., Costerton J.W., Davies D.G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 2002;184:1140–1154. doi: 10.1128/jb.184.4.1140-1154.2002. PubMed DOI PMC

Stoodley P., Sauer K., Davies D.G., Costerton J.W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 2002;56:187–209. doi: 10.1146/annurev.micro.56.012302.160705. PubMed DOI

Sauer K., Stoodley P., Goeres D.M., Hall-Stoodley L., Burmølle M., Stewart P.S., Bjarnsholt T. The biofilm life cycle: Expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol. 2022;20:608–620. doi: 10.1038/s41579-022-00767-0. PubMed DOI PMC

Thi M.T.T., Wibowo D., Rehm B.H.A. Pseudomonas aeruginosa Biofilms. Int. J. Mol. Sci. 2020;21:8671. doi: 10.3390/ijms21228671. PubMed DOI PMC

Qin S., Xiao W., Zhou C., Pu Q., Deng X., Lan L., Liang H., Song X., Wu M. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Sig. Transduct. Target. Ther. 2022;7:199. doi: 10.1038/s41392-022-01056-1. PubMed DOI PMC

Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis. World Health Organization; Geneva, Switzerland: 2017.

Tashiro Y., Yawata Y., Toyofuku M., Uchiyama H., Nomura N. Interspecies interaction between Pseudomonas aeruginosa and other microorganisms. Microbes Environ. 2013;28:13–24. doi: 10.1264/jsme2.ME12167. PubMed DOI PMC

Hector A., Kirn T., Ralhan A., Graepler-Mainka U., Berenbrinker S., Riethmueller J., Hogardt M., Wagner M., Pfleger A., Hartl D., et al. Microbial colonization and lung function in adolescents with cystic fibrosis. J. Cyst. Fibros. 2016;15:340–349. doi: 10.1016/j.jcf.2016.01.004. PubMed DOI

Baxter C.G., Dunn G., Jones A.M., Webb K., Gore R., Richardson M.D., Denning D.W. Novel immunologic classification of aspergillosis in adult cystic fibrosis. J. Allergy Clin. Immunol. 2013;132:560–566. doi: 10.1016/j.jaci.2013.04.007. PubMed DOI

Moss A., Juarez-Colunga E., Nathoo F., Wagner B., Sagel S. A comparison of change point models with application to longitudinal lung function measurements in children with cystic fibrosis. Stat. Med. 2016;35:2058–2073. doi: 10.1002/sim.6845. PubMed DOI

Latgé J.P., Chamilos G. Aspergillus fumigatus and aspergillosis in 2019. Clin. Microbiol. Rev. 2019;33:e00140-18. doi: 10.1128/CMR.00140-18. PubMed DOI PMC

Agarwal R., Sehgal I.S., Dhooria S., Aggarwal A.N. Developments in the diagnosis and treatment of allergic bronchopulmonary aspergillosis. Expert Rev. Respir. Med. 2016;10:1317–1334. doi: 10.1080/17476348.2016.1249853. PubMed DOI

Brandt C., Roehmel J., Rickerts V., Melichar V., Niemann N., Schwarz C. Aspergillus bronchitis in patients with cystic fibrosis. Mycopathologia. 2018;183:61–69. doi: 10.1007/s11046-017-0190-0. PubMed DOI

Reece E., Doyle S., Greally P., Renwick J., McClean S. Aspergillus fumigatus inhibits Pseudomonas aeruginosa in co-culture: Implications of a mutually antagonistic relationship on virulence and inflammation in the CF Airway. Front. Microbiol. 2018;5:1205. doi: 10.3389/fmicb.2018.01205. PubMed DOI PMC

Bastos R.W., Akiyama D., Dos Reis T.F., Colabardini A.C., Luperini R.S., de Castro P.A., Baldini R.L., Fill T., Goldman G.H. Secondary metabolites produced during Aspergillus fumigatus and Pseudomonas aeruginosa biofilm formation. mBio. 2022;30:e0185022. doi: 10.1128/mbio.01850-22. PubMed DOI PMC

Mowat E., Rajendran R., Williams C., McCulloch E., Jones B., Lang S., Ramage G. Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation. FEMS Microbiol. Lett. 2010;313:96–102. doi: 10.1111/j.1574-6968.2010.02130.x. PubMed DOI

Sass G., Nazik H., Penner J., Shah H., Ansari S.R., Clemons K.V., Groleau M.C., Dietl A.M., Visca P., Stevens D.A., et al. Studies of Pseudomonas aeruginosa mutants indicate pyoverdine as the central factor in inhibition of Aspergillus fumigatus biofilm. J. Bacteriol. 2018;200:e00345-17. doi: 10.1128/JB.00345-17. PubMed DOI PMC

Briard B., Mislin G.L.A., Latgé J.P., Beauvais A. Interactions between Aspergillus fumigatus and pulmonary bacteria: Current state of the field, new data, and future perspective. J. Fungi. 2019;5:48. doi: 10.3390/jof5020048. PubMed DOI PMC

Sass G., Ansari S.R., Dietl A.M., Déziel E., Haas H., Stevens D.A. Intermicrobial interaction: Aspergillus fumigatus siderophores protect against competition by Pseudomonas aeruginosa. PLoS ONE. 2019;14:e0216085. doi: 10.1371/journal.pone.0216085. PubMed DOI PMC

Surpeta B., Grulich M., Brezovsky J. Quorum quenching enzymes—Understanding molecular determinants responsible for activity of N-terminal serine hydrolases to increase their strong antibacterial potency. Biophys. J. 2021;120:305a. doi: 10.1016/j.bpj.2020.11.1942. DOI

Surpeta B., Grulich M., Palyzová A., Marešová H., Brezovsky J. Common dynamic determinants govern quorum quenching activity in N-terminal serine hydrolases. ACS Catal. 2022;12:6359–6374. doi: 10.1021/acscatal.2c00569. DOI

Zhou L., Zhang Y., Ge Y., Zhu X., Pan J. Regulatory mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation. Front. Microbiol. 2020;11:589640. doi: 10.3389/fmicb.2020.589640. PubMed DOI PMC

Dulcey C.E., Dekimpe V., Fauvelle D.-A., Milot S., Groleau M.-C., Doucet N., Rahme L.G., Lepine F., Deziel E. The end of an old hypothesis: The Pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids. Chem. Biol. 2013;20:1481–1491. doi: 10.1016/j.chembiol.2013.09.021. PubMed DOI PMC

Lee J., Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell. 2015;6:26–41. doi: 10.1007/s13238-014-0100-x. PubMed DOI PMC

Moradali M.F., Ghods S., Rehm B.H.A. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol. 2017;7:39. doi: 10.3389/fcimb.2017.00039. PubMed DOI PMC

O’Loughlin C.T., Miller L.C., Siryaporn A., Drescher K., Semmelhack M.F., Semmelhack M.F., Bassler B.L. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc. Natl. Acad. Sci. USA. 2013;110:17981–17986. doi: 10.1073/pnas.1316981110. PubMed DOI PMC

Liu Y.C., Chan K.G., Chang C.Y. Modulation of host biology by Pseudomonas aeruginosa quorum sensing signal molecules: Messengers or traitors. Front. Microbiol. 2016;6:1226. doi: 10.3389/fmicb.2015.01226. PubMed DOI PMC

Ramos A.N., Peral M.C., Valdez J.C. Differences between Pseudomonas aeruginosa in a clinical sample and in a colony isolated fromit: Comparison of virulence capacity and susceptibility of biofilm to inhibitors. Comp. Immunol. Microbiol. Infect. Dis. 2010;33:267–275. doi: 10.1016/j.cimid.2008.10.004. PubMed DOI

Du X., Li Y., Zhou Q., Xu Y. Regulation of gene expression in Pseudomonas aeruginosa M18 by phenazine-1-carboxylic acid. Appl. Microbiol. Biotechnol. 2015;99:813–825. doi: 10.1007/s00253-014-6101-0. PubMed DOI

Vilaplana L., Marco M.P. Phenazines as potential biomarkers of Pseudomonas aeruginosa infections: Synthesis regulation, pathogenesis and analytical methods for their detection. Anal. Bioanal. Chem. 2020;412:5897–5912. doi: 10.1007/s00216-020-02696-4. PubMed DOI

Sass G., Nazik H., Chatterjee P., Stevens D.A. Under nonlimiting iron conditions pyocyanin is a major antifungal molecule, and differences between prototypic Pseudomonas aeruginosa strains. Med. Mycol. 2021;59:453–464. doi: 10.1093/mmy/myaa066. PubMed DOI

Saunders S.H., Tse E.C.M., Yates M.D., Otero F.J., Trammell S.A., Stemp E.D.A., Barton J.K., Tender L.M., Newman D.K. Extracellular DNA promotes efficient extracellular electron transfer by pyocyanin in Pseudomonas aeruginosa biofilms. Cell. 2020;182:919–932.e19. doi: 10.1016/j.cell.2020.07.006. PubMed DOI PMC

Jimenez P.N., Koch G., Thompson J.A., Xavier K.B., Cool R.H., Quax W.J. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 2012;76:46–65. doi: 10.1128/MMBR.05007-11. PubMed DOI PMC

Papenfort K., Bassler B.L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 2016;14:576–588. doi: 10.1038/nrmicro.2016.89. PubMed DOI PMC

Rutherford S.T., Bassler B.L. Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2012;2:a012427. doi: 10.1101/cshperspect.a012427. PubMed DOI PMC

Luptáková D., Patil R.H., Dobiáš R., Stevens D.A., Pluháček T., Palyzová A., Káňová M., Navrátil M., Vrba Z., Hubáček P., et al. Siderophore-based noninvasive differentiation of Aspergillus fumigatus colonization and invasion in pulmonary aspergillosis. Microbiol. Spectr. 2023;11:e0406822. doi: 10.1128/spectrum.04068-22. PubMed DOI PMC

Walsh T.J., Wissel M.C., Grantham K.J., Petraitiene R., Petraitis V., Kasai M., Francesconi A., Cotton M.P., Hughes J.E., Greene L., et al. Molecular detection and species-specific identification of medically important Aspergillus species by real-time PCR in experimental invasive pulmonary aspergillosis. J. Clin. Microbiol. 2011;49:4150–4157. doi: 10.1128/JCM.00570-11. PubMed DOI PMC

Joly B., Pierre M., Auvin S., Colin F., Gottrand F., Guery B., Husson M.O. Relative expression of Pseudomonas aeruginosa virulence genes analyzed by a real time RT-PCR method during lung infection in rats. FEMS Microbiol. Lett. 2005;243:271–278. doi: 10.1016/j.femsle.2004.12.012. PubMed DOI

Patil R.H., Kotta-Loizou I., Palyzová A., Pluháček T., Coutts R.H.A., Stevens D.A., Havlíček V. Freeing Aspergillus fumigatus of polymycovirus infection renders it more resistant to competition with Pseudomonas aeruginosa due to altered iron-acquiring tactics. J. Fungi. 2021;7:497. doi: 10.3390/jof7070497. PubMed DOI PMC

Winson M.K., Camara M., Latifi A., Foglino M., Chhabra S.R., Daykin M., Bally M., Chapon V., Salmond G.P.C., Bycroft B.W., et al. Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA. 1995;92:9427–9431. doi: 10.1073/pnas.92.20.9427. PubMed DOI PMC

Chuang S.K., Vrla G.D., Fröhlich K.S., Gitai Z. Surface association sensitizes Pseudomonas aeruginosa to quorum sensing. Nat. Commun. 2019;10:4118. doi: 10.1038/s41467-019-12153-1. PubMed DOI PMC

Pearson J.P., Gray K.M., Passador L., Tucker K.D., Eberhard A., Iglewski B.H., Greenberg E.P. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. USA. 1994;91:197–201. doi: 10.1073/pnas.91.1.197. PubMed DOI PMC

Singh P.K., Schaefer A.L., Parsek M.R., Moninger T.O., Welsh M.J., Greenberg E.P. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 2000;407:762–764. doi: 10.1038/35037627. PubMed DOI

Reimmann C., Beyeler M., Latifi A., Winteler H., Foglino M., Lazdunski A., Haas D. The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide and lipase. Mol. Microbiol. 1997;24:309–319. doi: 10.1046/j.1365-2958.1997.3291701.x. PubMed DOI

Favre-Bonté S., Kohler T., Van Delden C. Biofilm formation by Pseudomonas aerugnosa: Role of the C4-HSL cell-to-cell signal and inhibition by azithromycin. J. Antimicrobiol. Chem. 2003;52:598–604. doi: 10.1093/jac/dkg397. PubMed DOI

Mellbye B., Schuster M. Physiological framework for the regulation of quorum sensing-dependent public goods in Pseudomonas aeruginosa. J. Bacteriol. 2014;196:1155–1164. doi: 10.1128/JB.01223-13. PubMed DOI PMC

Zain N.M.M., Webb K., Stewart I., Halliday N., Barrett D.A., Nash E.F., Whitehouse J.L., Honeybourne D., Smyth A.R., Forrester D.L., et al. 2-Alkyl-4-quinolone quorum sensing molecules are biomarkers for culture-independent Pseudomonas aeruginosa burden in adults with cystic fibrosis. J. Med. Microbiol. 2021;70:001420. doi: 10.1099/jmm.0.001420. PubMed DOI PMC

Dobiáš R., Škríba A., Pluháček T., Petřík M., Palyzová A., Káňová M., Čubová E., Houšť J., Novák J., Stevens D.A., et al. Noninvasive combined diagnosis and monitoring of Aspergillus and Pseudomonas infections: Proof of concept. J. Fungi. 2021;7:730. doi: 10.3390/jof7090730. PubMed DOI PMC

Dandela R., Mantin D., Cravatt B.F., Rayo J., Meijler M.M. Proteome-wide mapping of PQS-interacting proteins in Pseudomonas aeruginosa. Chem. Sci. 2018;9:2290–2294. doi: 10.1039/C7SC04287F. PubMed DOI PMC

Miller L.C., Loughlin C.T.O., Zhang Z., Siryaporn A., Slipe J.E., Bassler B.L., Semmelhack M.F. Development of potential inhibitors of pyocyanin production in Pseudomonas aeruginosa. J. Med. Chem. 2015;58:1298–1306. doi: 10.1021/jm5015082. PubMed DOI PMC

Kumar L., Patel S.K.S., Kharga K., Kumar R., Kumar P., Pandohee J., Kulshresha S., Harjai K., Chhiber S. Molecular mechanism and apllications of N-acyl homoserine lactone-mediated quorum sensing in bacteria. Molecules. 2022;27:7584. doi: 10.3390/molecules27217584. PubMed DOI PMC

Kerr J.R., Taylor G.W., Rutman A., Høiby N., Cole P.J., Wilson R. Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J. Clin. Pathol. 1999;52:385–387. doi: 10.1136/jcp.52.5.385. PubMed DOI PMC

Ostapska H., Le Mauff F., Gravelat F.N., Snarr B.D., Bamford N.C., Van Loon J.C., McKay G., Nguyen D., Howell P.L., Sheppard D.C. Co-operative biofilm interactions between Aspergillus fumigatus and Pseudomonas aeruginosa through secreted galactosaminogalactan exopolysaccharide. J. Fungi. 2022;8:336. doi: 10.3390/jof8040336. PubMed DOI PMC

McKnight S.L., Iglewski B.H., Pesci E.C. The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 2000;182:2702–2708. doi: 10.1128/JB.182.10.2702-2708.2000. PubMed DOI PMC

Saraswathy A., Hallberg R. Mycelial pellet formation by Penicillium ochrochloron species due to exposure to pyrene. Microbiol Res. 2005;160:375–383. doi: 10.1016/j.micres.2005.03.001. PubMed DOI

Liu Y., Liao W., Chen S. Study of pellet formation of filamentous fungi Rhizopus oryzae using a multiple logistic regression model. Biotechnol. Bioeng. 2008;99:117–128. doi: 10.1002/bit.21531. PubMed DOI

Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv. 2004;22:189–259. doi: 10.1016/j.biotechadv.2003.09.005. PubMed DOI

Nair R.B., Lennartsson P.R., Taherzadeh M.J. Mycelial pellet formation by edible ascomycete filamentous fungi, Neurospora intermedia. AMB Express. 2016;6:31. doi: 10.1186/s13568-016-0203-2. PubMed DOI PMC

Zhang J., Zhang J. The filamentous fungal pellet and forces driving its formation. Crit. Rev. Biotechnol. 2016;36:1066–1077. doi: 10.3109/07388551.2015.1084262. PubMed DOI

Anyan M.E., Amiri A., Harvey C.W., Tierra G., Morales-Soto N., Driscoll C.M., Alber M.S., Shrout J.D. Type IV pili interactions promote intercellular association and moderate swarming of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA. 2014;16:18013–18018. doi: 10.1073/pnas.1414661111. PubMed DOI PMC

Durand E., Michel G., Voulhoux R., Kürner J., Bernadac A., Filloux A. XcpX controls biogenesis of the Pseudomonas aeruginosa XcpT-containing pseudopilus. J. Biol. Chem. 2005;9:31378–31389. doi: 10.1074/jbc.M505812200. PubMed DOI

Li L., Liang T., Zhao M., Lv Y., Song Z., Sheng T., Ma F. A review on mycelial pellets as biological carriers: Wastewater treatment and recovery for resource and energy. Bioresour. Technol. 2022;355:127200. doi: 10.1016/j.biortech.2022.127200. PubMed DOI

Veiter L., Rajamanickam V., Herwig C. The filamentous fungal pellet-relationship between morphology and productivity. Appl. Microbiol. Biotechnol. 2018;102:2997–3006. doi: 10.1007/s00253-018-8818-7. PubMed DOI PMC

Schleheck D., Barraud N., Klebensberger J., Webb J.S., McDougald D., Rice S.A., Kjelleberg S. Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS ONE. 2009;4:e5513. doi: 10.1371/journal.pone.0005513. PubMed DOI PMC

GBD 2019 Antimicrobial Resistance Collaborators Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;17:2221–2248. doi: 10.1016/S0140-6736(22)02185-7. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...