Freeing Aspergillus fumigatus of Polymycovirus Infection Renders It More Resistant to Competition with Pseudomonas aeruginosa Due to Altered Iron-Acquiring Tactics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-17044S
Grantová Agentura České Republiky
IGA_PrF_2021_021
Palacky University
PubMed
34206595
PubMed Central
PMC8306778
DOI
10.3390/jof7070497
PII: jof7070497
Knihovny.cz E-zdroje
- Klíčová slova
- Aspergillus fumigatus, Pseudomonas aeruginosa, intermicrobial competition, polymycovirus, siderophore,
- Publikační typ
- časopisecké články MeSH
A virus-free (VF) A. fumigatus isolate has been shown to be resistant in competition with Pseudomonas as compared to the isogenic line infected with Aspergillus fumigatus polymycovirus 1 (AfuPmV-1), and this phenotype was apparently related to alterations in iron metabolism. Here we investigated further the mechanisms underpinning this phenotype. The extracellular siderophore profiles of five isogenic VF and virus-infected (VI) strains were sampled at 24, 31, 48, 54, and 72 h in submerged cultures and quantitatively examined by liquid chromatography and mass spectrometry. Intracellular profiles of conidia and cultures at the stationary growth phase were defined. VF A. fumigatus demonstrated the best fitness represented by the fastest onset of its exponential growth when grown on an iron-limited mineral medium. The exponential phase and transitional production phase of the extracellular triacetylfusarinine C (TafC) were achieved at 24 and 31 h, respectively, contrary to VI strains, which acted more slowly. As a result, the TafC reservoir was consumed sooner in the VF strain. Additionally, the VF strain had lower ferricrocin and higher hydroxyferricrocin content in the pellet during the stationary phase. All of these differences were significant (Kruskal-Wallis, p < 0.01). In our study, the siderophore reservoir of a VF strain was consumed sooner, improving the fitness of the VF strain in competition with P. aeruginosa.
California Institute for Medical Research 2260 Clove Dr San Jose CA 95128 USA
Department of Life Sciences Imperial College London London SW7 2AZ UK
Zobrazit více v PubMed
Dobiáš R., Havlíček V. Microbial siderophores: Markers of infectious diseases. In: Das S., Das H.R., editors. Microbial and Natural Macromolecules: Synthesis and Applications. Elsevier Academic Press; London, UK: 2021.
Rutsaert L., Steinfort N., Van Hunsel T., Bomans P., Naesens R., Mertes H., Dits H., Van Regenmortel N. COVID-19-associated invasive pulmonary aspergillosis. Ann. Intensive Care. 2020;10:71. doi: 10.1186/s13613-020-00686-4. PubMed DOI PMC
Kotta-Loizou I., Coutts R.H.A. Mycoviruses in aspergilli: A comprehensive review. Front. Microbiol. 2017;8 doi: 10.3389/fmicb.2017.01699. PubMed DOI PMC
Chatterjee P., Sass G., Swietnicki W., Stevens D.A. Review of potential Pseudomonas weaponry, relevant to the Pseudomonas–Aspergillus interplay, for the mycology community. J. Fungi. 2020;6:81. doi: 10.3390/jof6020081. PubMed DOI PMC
Kanhayuwa L., Kotta-Loizou I., Özkan S., Gunning A.P., Coutts R.H.A. A novel mycovirus from Aspergillus fumigatus contains four unique dsRNAs as its genome and is infectious as dsRNA. Proc. Natl. Acad. Sci. USA. 2015;112:9100–9105. doi: 10.1073/pnas.1419225112. PubMed DOI PMC
Nazik H., Kotta-Loizou I., Sass G., Coutts R.H.H., Stevens D.A. Virus infection of Aspergillus fumigatus compromises the fungus in intermicrobial competition. Viruses. 2021;13:686. doi: 10.3390/v13040686. PubMed DOI PMC
Nazik H., Sass G., Deziel E., Stevens D.A. Aspergillus is inhibited by Pseudomonas aeruginosa volatiles. J. Fungi. 2020;6:118. doi: 10.3390/jof6030118. PubMed DOI PMC
Wallner A., Blatzer M., Schrettl M., Sarg B., Lindner H., Haas H. Ferricrocin, a siderophore involved in intra- and transcellular iron distribution in Aspergillus fumigatus. Appl. Environ. Microb. 2009;75:4194–4196. doi: 10.1128/AEM.00479-09. PubMed DOI PMC
Oide S., Berthiller F., Wiesenberger G., Adam G., Turgeon B.G. Individual and combined roles of malonichrome, ferricrocin, and TafC siderophores in Fusarium graminearum pathogenic and sexual development. Front. Microbiol. 2015;5 doi: 10.3389/fmicb.2014.00759. PubMed DOI PMC
Blatzer M., Schrettl M., Sarg B., Lindner H.H., Pfaller K., Haas H. SidL, an Aspergillus fumigatus transacetylase involved in biosynthesis of the siderophores ferricrocin and hydroxyferricrocin. Appl. Environ. Microbiol. 2011;77:4959–4966. doi: 10.1128/AEM.00182-11. PubMed DOI PMC
Kotta-Loizou I. Mycoviruses and their role in fungal pathogenesis. Curr. Opin. Microbiol. 2021 doi: 10.1016/j.mib.2021.05.007. in press. PubMed DOI
Filippou C., Diss R.M., Daudu J.O., Coutts R.H.A., Kotta-Loizou I. The polymycovirus-mediated growth enhancement of the entomopathogenic fungus Beauveria bassiana is dependent on carbon and nitrogen metabolism. Front. Microbiol. 2021;12 doi: 10.3389/fmicb.2021.606366. PubMed DOI PMC
Özkan S., Coutts R.H.A. Aspergillus fumigatus mycovirus causes mild hypervirulent effect on pathogenicity when tested on Galleria mellonella. Fungal Genet. Biol. 2015;76:20–26. doi: 10.1016/j.fgb.2015.01.003. PubMed DOI
Lagashetti A.C., Dufossé L., Singh S.K., Singh P.N. Fungal pigments and their prospects in different industries. Microorganisms. 2019;7:604. doi: 10.3390/microorganisms7120604. PubMed DOI PMC
Heinekamp T., Thywissen A., Macheleidt J., Keller S., Valiante V., Brakhage A. Aspergillus fumigatus melanins: Interference with the host endocytosis pathway and impact on virulence. Front. Microbiol. 2013;3 doi: 10.3389/fmicb.2012.00440. PubMed DOI PMC
Fuller K.K., Cramer R.A., Zegans M.E., Dunlap J.C., Loros J.J. Aspergillus fumigatus photobiology illuminates the marked heterogeneity between isolates. MBio. 2016;7:e01517. doi: 10.1128/mBio.01517-16. PubMed DOI PMC
Takahashi-Nakaguchi A., Shishido E., Yahara M., Urayama S.-I., Ninomiya A., Chiba Y., Sakai K., Hagiwara D., Chibana H., Moriyama H., et al. Phenotypic and molecular biological analysis of polymycovirus AfuPmv-1M from Aspergillus fumigatus: Reduced fungal virulence in a mouse infection model. Front. Microbiol. 2020;11 doi: 10.3389/fmicb.2020.607795. PubMed DOI PMC
Liu G.-L., Chi Z., Wang G.-Y., Wang Z.-P., Li Y., Chi Z.-M. Yeast killer toxins, molecular mechanisms of their action and their applications. Crit. Rev. Biotechnol. 2015;35:222–234. doi: 10.3109/07388551.2013.833582. PubMed DOI
Van de Sande W.W.J., Vonk A.G. Mycovirus therapy for invasive pulmonary aspergillosis? Med. Mycol. 2019;57:S179–S188. doi: 10.1093/mmy/myy073. PubMed DOI
Schmidt F., Lemke P., Esser K. Viral influences on aflatoxin formation by Aspergillus flavus. Appl. Microbiol. Biotechnol. 1986;24:248–252. doi: 10.1007/BF00261546. DOI
Silva V.N., Durigon E.L., Pires M.d.F.C., Lourenço A., Faria M.J.d., Corrêa B. Time course of virus-like particles (VLPs) double-stranded RNA accumulation in toxigenic and non-toxigenic strains of Aspergillus flavus. Braz. J. Microbiol. 2001;32:56–60. doi: 10.1590/S1517-83822001000100013. DOI
Nerva L., Chitarra W., Siciliano I., Gaiotti F., Ciuffo M., Forgia M., Varese G.C., Turina M. Mycoviruses mediate mycotoxin regulation in Aspergillus ochraceus. Environ. Microbiol. 2019;21:1957–1968. doi: 10.1111/1462-2920.14436. PubMed DOI
Takahashi-Nakaguchi A., Shishido E., Yahara M., Urayama S.I., Sakai K., Chibana H., Kamei K., Moriyama H., Gonoi T. Analysis of an intrinsic mycovirus associated with reduced virulence of the human pathogenic fungus Aspergillus fumigatus. Front. Microbiol. 2019;10:3045. doi: 10.3389/fmicb.2019.03045. PubMed DOI PMC
Özkan S., Mohorianu I., Xu P., Dalmay T., Coutts R.H.A. Profile and functional analysis of small RNAs derived from Aspergillus fumigatus infected with double-stranded RNA mycoviruses. BMC Genom. 2017;18:416. doi: 10.1186/s12864-017-3773-8. PubMed DOI PMC
Matthaiou E.I., Sass G., Stevens D.A., Hsu J.L. Iron: An essential nutrient for Aspergillus fumigatus and a fulcrum for pathogenesis. Curr. Opin. Infect. Dis. 2018;31:506–511. doi: 10.1097/QCO.0000000000000487. PubMed DOI PMC
Houšť J., Spížek J., Havlíček V. Antifungal Drugs. Metabolites. 2020;10:106. doi: 10.3390/metabo10030106. PubMed DOI PMC
The Expanding Mycovirome of Aspergilli
The Deciphering of Growth-Dependent Strategies for Quorum-Sensing Networks in Pseudomonas aeruginosa
Current and Future Pathways in Aspergillus Diagnosis