Brain Regional Glucose Metabolism, Neuropsychiatric Symptoms, and the Risk of Incident Mild Cognitive Impairment: The Mayo Clinic Study of Aging
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
K01 MH068351
NIMH NIH HHS - United States
R01 AG041851
NIA NIH HHS - United States
R01 AG056366
NIA NIH HHS - United States
R01 AG034676
NIA NIH HHS - United States
P50 AG016574
NIA NIH HHS - United States
R01 AG011378
NIA NIH HHS - United States
R33 AG058738
NIA NIH HHS - United States
R01 NS097495
NINDS NIH HHS - United States
R01 AG057708
NIA NIH HHS - United States
R37 AG011378
NIA NIH HHS - United States
U01 AG006786
NIA NIH HHS - United States
PubMed
32646634
PubMed Central
PMC7744363
DOI
10.1016/j.jagp.2020.06.006
PII: S1064-7481(20)30375-4
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer Disease, FDG-PET, Neuropsychiatric symptoms, mild cognitive impairment,
- MeSH
- Alzheimerova nemoc metabolismus MeSH
- fluorodeoxyglukosa F18 MeSH
- glukosa metabolismus MeSH
- kognitivní dysfunkce diagnostické zobrazování metabolismus patofyziologie psychologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mozek diagnostické zobrazování metabolismus MeSH
- pozitronová emisní tomografie MeSH
- prospektivní studie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- stárnutí metabolismus psychologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- fluorodeoxyglukosa F18 MeSH
- glukosa MeSH
OBJECTIVE: The authors conducted a prospective cohort study to examine the risk of incident mild cognitive impairment (MCI) as predicted by baseline neuropsychiatric symptoms (NPS) and brain regional glucose metabolic dysfunction. METHODS: About 1,363 cognitively unimpaired individuals (52.8% males) aged ≥50 years were followed for a median of 4.8 years to the outcome of incident MCI. NPS were assessed using Beck Depression and Anxiety Inventories and Neuropsychiatric Inventory Questionnaire. Glucose hypometabolism was measured by fluorodeoxyglucose positron emission tomography and defined as standardized uptake value ratio ≤ 1.47 in regions typically affected in Alzheimer disease. Cox proportional hazards models were adjusted for age, sex, education, and APOE ε4 status. RESULTS: Participants with regional glucose hypometabolism and depression (Beck Depression Inventory-II ≥13) had a more than threefold increased risk of incident MCI (hazard ratio [95% confidence interval], 3.66 [1.75, 7.65], p <0.001, χ2 = 11.83, degree of freedom [df] = 1) as compared to the reference group (normal regional glucose metabolism and no depression), and the risk was also significantly elevated (7.21 [3.54, 14.7], p <0.001, χ2 = 29.68, df = 1) for participants with glucose hypometabolism and anxiety (Beck Anxiety Inventory ≥10). Having glucose hypometabolism and ≥1 NPS (3.74 [2.40, 5.82], p <0.001, χ2 = 34.13, df = 1) or ≥2 NPS (3.89 [2.20, 6.86], p <0.001, χ2 = 21.92, df = 1) increased the risk of incident MCI by more than three times, and having ≥3 NPS increased the risk by more than four times (4.12 [2.03, 8.37], p <0.001, χ2 = 15.39, df = 1). CONCLUSION: Combined presence of NPS with regional glucose hypometabolism is associated with an increased risk of incident MCI, with fluorodeoxyglucose positron emission tomography appearing to be a stronger driving force of cognitive decline than NPS.
Department of Health Sciences Research Mayo Clinic Rochester Rochester MN
Department of Neurology Barrow Neurological Institute Phoenix AZ
Department of Neurology Mayo Clinic Rochester Rochester MN
Department of Radiology Mayo Clinic Rochester Rochester MN
International Clinical Research Center St Anne Hospital Brno Czech Republic
Zobrazit více v PubMed
Knopman DS, Jack CR Jr., Wiste HJ, et al.: 18F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons. Neurobiol Aging 2014; 35:2096–2106 PubMed PMC
Minoshima S, Giordani B, Berent S, et al.: Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997; 42:85–94 PubMed
Herholz K, Salmon E, Perani D, et al.: Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 2002; 17:302–316 PubMed
Jagust W, Gitcho A, Sun F, et al.: Brain imaging evidence of preclinical Alzheimer’s disease in normal aging. Ann Neurol 2006; 59:673–681 PubMed
Alexander GE, Chen K, Pietrini P, et al.: Longitudinal PET Evaluation of Cerebral Metabolic Decline in Dementia: A Potential Outcome Measure in Alzheimer’s Disease Treatment Studies. Am J Psychiatry 2002; 159:738–745 PubMed
Drzezga A, Lautenschlager N, Siebner H, et al.: Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 2003; 30:1104–1113 PubMed
Landau SM, Harvey D, Madison CM, et al.: Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging 2011; 32:1207–1218 PubMed PMC
Ng KP, Pascoal TA, Mathotaarachchi S, et al.: Neuropsychiatric symptoms predict hypometabolism in preclinical Alzheimer disease. Neurology 2017; 88:1814–1821 PubMed PMC
Lyketsos CG, Lopez O, Jones B, et al.: Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: results from the Cardiovascular Health Study. Jama 2002; 288:1475–1483 PubMed
Geda YE, Roberts RO, Knopman DS, et al.: Prevalence of neuropsychiatric symptoms in mild cognitive impairment and normal cognitive aging: population-based study. Arch Gen Psychiatry 2008; 65:1193–1198 PubMed PMC
Rosenberg PB, Mielke MM, Appleby BS, et al.: The association of neuropsychiatric symptoms in MCI with incident dementia and Alzheimer disease. Am J Geriatr Psychiatry 2013; 21:685–695 PubMed PMC
Forrester SN, Gallo JJ, Smith GS, et al.: Patterns of Neuropsychiatric Symptoms in Mild Cognitive Impairment and Risk of Dementia. Am J Geriatr Psychiatry 2016; 24:117–125 PubMed PMC
Pink A, Stokin GB, Bartley MM, et al.: Neuropsychiatric symptoms, APOE epsilon4, and the risk of incident dementia: a population-based study. Neurology 2015; 84:935–943 PubMed PMC
Donovan NJ, Hsu DC, Dagley AS, et al.: Depressive Symptoms and Biomarkers of Alzheimer’s Disease in Cognitively Normal Older Adults. J Alzheimers Dis 2015; 46:63–73 PubMed PMC
Gatchel JR, Donovan NJ, Locascio JJ, et al.: Regional 18F-Fluorodeoxyglucose Hypometabolism is Associated with Higher Apathy Scores Over Time in Early Alzheimer Disease. Am J Geriatr Psychiatry 2017; 25:683–693 PubMed PMC
Krell-Roesch J, Ruider H, Lowe VJ, et al.: FDG-PET and Neuropsychiatric Symptoms among Cognitively Normal Elderly Persons: The Mayo Clinic Study of Aging. J Alzheimers Dis 2016; 53:1609–1616 PubMed PMC
Kaufer DI, Cummings JL, Ketchel P, et al.: Validation of the NPI-Q, a brief clinical form of the Neuropsychiatric Inventory. J Neuropsychiatry Clin Neurosci 2000; 12:233–239 PubMed
Beck AT, Steer RA,Brown GK: BDI-II, Beck Depression Inventory: Manual, 2nd San Antonio, TX; Boston, MA, Psychological Corp.; Harcourt Brace, 1996
Beck AT,Steer RA: BAI, Beck anxiety inventory: Manual, San Antonio, Psychological Corp. : Harcourt Brace Jovanovich, 1990
Roberts RO, Geda YE, Knopman DS, et al.: The Mayo Clinic Study of Aging: design and sampling, participation, baseline measures and sample characteristics. Neuroepidemiology 2008; 30:58–69 PubMed PMC
Kokmen E, Smith GE, Petersen RC, et al.: The Short Test of Mental Status: Correlations With Standardized Psychometric Testing. Archives of Neurology 1991; 48:725–728 PubMed
Morris JC: The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 1993; 43:2412–2414 PubMed
Rey A: L’examen clinique en psychologie, Paris, Presses Universitaires de France, 1964
Wechsler D: Wechsler Memory Scale-Revised, New York, The Psychological Corporation, 1987
Kaplan E, Goodglass H,Weintraub S: Boston Naming Test, 2nd Philadelphia, Lippincott Williams & Wilkins, 2001
Lucas JA, Ivnik RJ, Smith GE, et al.: Mayo’s Older Americans Normative Studies: category fluency norms. J Clin Exp Neuropsychol 1998; 20:194–200 PubMed
Wechsler D: Wechsler Adult Intelligence Scale-Revised, New York, Psychological Corporation, 1981
Reitan RM: Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills 1958; 8:271–276
Petersen RC: Mild cognitive impairment as a diagnostic entity. J Intern Med 2004; 256:183–194 PubMed
Jack CR Jr., Lowe VJ, Senjem ML, et al.: 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain 2008; 131:665–680 PubMed PMC
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002; 15:273–289 PubMed
Jagust WJ, Bandy D, Chen K, et al.: The Alzheimer’s Disease Neuroimaging Initiative positron emission tomography core. Alzheimers Dement 2010; 6:221–229 PubMed PMC
Minoshima S, Frey KA, Foster NL, et al.: Preserved pontine glucose metabolism in Alzheimer disease: a reference region for functional brain image (PET) analysis. J Comput Assist Tomogr 1995; 19:541–547 PubMed
Jack CR Jr., Wiste HJ, Weigand SD, et al.: Defining imaging biomarker cut points for brain aging and Alzheimer’s disease. Alzheimers Dement 2017; 13:205–216 PubMed PMC
Charlson ME, Pompei P, Ales KL, et al.: A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987; 40:373–383 PubMed
Hixson JE,Vernier DT: Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 1990; 31:545–548 PubMed
Geda YE, Roberts RO, Mielke MM, et al.: Baseline neuropsychiatric symptoms and the risk of incident mild cognitive impairment: a population-based study. Am J Psychiatry 2014; 171:572–581 PubMed PMC
Richard E, Reitz C, Honig LH, et al.: Late-life depression, mild cognitive impairment, and dementia. JAMA Neurol 2013; 70:374–382 PubMed PMC
Steenland K, Karnes C, Seals R, et al.: Late-life depression as a risk factor for mild cognitive impairment or Alzheimer’s disease in 30 US Alzheimer’s disease centers. J Alzheimers Dis 2012; 31:265–275 PubMed PMC
Wilson RS, Schneider JA, Boyle PA, et al.: Chronic distress and incidence of mild cognitive impairment. Neurology 2007; 68:2085–2092 PubMed
Delrieu J, Desmidt T, Camus V, et al.: Apathy as a feature of prodromal Alzheimer’s disease: an FDG-PET ADNI study. Int J Geriatr Psychiatry 2015; 30:470–477 PubMed
Lee DY, Choo IH, Jhoo JH, et al.: Frontal dysfunction underlies depressive syndrome in Alzheimer disease: a FDG-PET study. Am J Geriatr Psychiatry 2006; 14:625–628 PubMed
Holthoff VA, Beuthien-Baumann B, Kalbe E, et al.: Regional cerebral metabolism in early Alzheimer’s disease with clinically significant apathy or depression. Biol Psychiatry 2005; 57:412–421 PubMed
Weissberger GH, Melrose RJ, Narvaez TA, et al.: (18)F-Fluorodeoxyglucose Positron Emission Tomography Cortical Metabolic Activity Associated with Distinct Agitation Behaviors in Alzheimer Disease. Am J Geriatr Psychiatry 2017; 25:569–579 PubMed
Su L, Cai Y, Xu Y, et al.: Cerebral metabolism in major depressive disorder: a voxel-based meta-analysis of positron emission tomography studies. BMC Psychiatry 2014; 14:321. PubMed PMC
St Sauver JL, Grossardt BR, Leibson CL, et al.: Generalizability of epidemiological findings and public health decisions: an illustration from the Rochester Epidemiology Project. Mayo Clinic proceedings 2012; 87:151–160 PubMed PMC