Analysis of Whole-Body Coordination Patterning in Successful and Faulty Spikes Using Self-Organising Map-Based Cluster Analysis: A Secondary Analysis

. 2021 Feb 14 ; 21 (4) : . [epub] 20210214

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33672802

Grantová podpora
IGA_FTK_2019_008 Univerzita Palackého v Olomouci

This study investigated the whole-body coordination patterning in successful and faulty spikes using self-organising map-based cluster analysis. Ten young, elite volleyball players (aged 15.5 ± 0.7 years) performed 60 volleyball spikes in a real-game environment. Adopting the cluster analysis, based on a self-organising map, whole-body coordination patterning was explored between successful and faulty spikes of individual players. The self-organising maps (SOMs) portrayed whole body, lower and upper limb coordination dissimilarities during the jump phase and the ball impact phases between the successful and faulty spikes. The cluster analysis illustrated that the whole body, upper limb and lower limb coordination patterning of each individual's successful spikes were similar to their faulty spikes. Range of motion patterning also demonstrated no differences in kinematics between spike outcomes. Further, the upper limb angular velocity patterning of the players' successful/faulty spikes were similar. The SPM analysis portrayed significant differences between the normalized upper limb angular velocities from 35% to 45% and from 76% to 100% of the spike movement. Although the lower limb angular velocities are vital for achieving higher jumps in volleyball spikes, the results of this study portrayed that the upper limb angular velocities distinguish the differences between successful and faulty spikes among the attackers. This confirms the fact that volleyball coaches should shift their focus toward the upper limb velocity and coordination training for higher success rates in spiking for volleyball attackers.

Zobrazit více v PubMed

Sarvestan J., Svoboda Z., Linduška P. Kinematic differences between successful and faulty spikes in young volleyball players. J. Sports Sci. 2020;38:1–7. doi: 10.1080/02640414.2020.1782008. PubMed DOI

Serrien B., Ooijen J., Goossens M., Baeyens J.-P. A Motion analysis in the volleyball spike—Part 2: Coordination and performance variability. Int. J. Hum. Mov. Sports Sci. 2016;4:83–90. doi: 10.13189/saj.2016.040404. DOI

Oliveira L., Moura T., Rodacki A., Tilp M., Okazaki V. A systematic review of volleyball spike kinematics: Implications for practice and research. Int. J. Sports Sci. Coach. 2020;15:239–255. doi: 10.1177/1747954119899881. DOI

Sattler T., Hadžić V., Dervišević S., Markovic G. Vertical jump performance of professional male and female volleyball players: Effects of playing position and competition level. J. Strength Cond. Res. 2015;29:1486–1493. doi: 10.1519/JSC.0000000000000781. PubMed DOI

Güldenpenning I., Steinke A., Koester D., Schack T. Athletes and novices are differently capable to recognize feint and non-feint actions. Exp. Brain Res. 2013;230:333–343. doi: 10.1007/s00221-013-3658-2. PubMed DOI

Fuchs P.X., Menzel H.-J.K., Guidotti F., Bell J., Von Duvillard S.P., Wagner H. Spike jump biomechanics in male versus female elite volleyball players. J. Sports Sci. 2019;37:2411–2419. doi: 10.1080/02640414.2019.1639437. PubMed DOI

Coleman S., Benham A., Northcott S. A three-dimensional cinematographical analysis of the volleyball spike. J. Sports Sci. 1993;11:295–302. doi: 10.1080/02640419308729999. PubMed DOI

Reeser J.C., Fleisig G.S., Bolt B., Ruan M. Upper limb biomechanics during the volleyball serve and spike. Sports Health. 2010;2:368–374. doi: 10.1177/1941738110374624. PubMed DOI PMC

Tilp M. The Biomechanics of Volleyball. Handbook of Sports Medicine and Science: Volleyball. 2nd ed. John Wiley & Sons; Hoboken, NJ, USA: 2017. pp. 29–37.

Kumar R., Kumar A. Biomechanical analysis of take-off in spiking technique of volleyball based on anthropometric and kinematic variables. Int. J. Res. Appl. Sci. Biotechnol. 2020;7:92–101. doi: 10.31033/ijrasb.7.4.11. DOI

Wagner H., Tilp M., Von Duvillard S.P., Mueller E. Kinematic analysis of volleyball spike jump. Int. J. Sports Med. 2009;30:760–765. doi: 10.1055/s-0029-1224177. PubMed DOI

Serrien B., Ooijen J., Goossens M., Baeyens J.-P. A motion analysis in the volleyball spike—Part 1: Three-dimensional kinematics and performance. Int. J. Hum. Mov. Sports Sci. 2016;4:70–82. doi: 10.13189/saj.2016.040403. DOI

Stergiou N., Decker L.M. Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Hum. Mov. Sci. 2011;30:869–888. doi: 10.1016/j.humov.2011.06.002. PubMed DOI PMC

Serrien B., Goossens M., Baeyens J.-P. Proximal-to-distal sequencing and coordination variability in the volleyball spike of elite youth players: Effects of gender and growth. J. Mot. Learn. Dev. 2018;6:250–266. doi: 10.1123/jmld.2017-0049. DOI

Serrien B., Goossens M., Baeyens J.-P. Issues in using self-organizing maps in human movement and sport science. Int. J. Comput. Sci. Sport. 2017;16:1–17. doi: 10.1515/ijcss-2017-0001. DOI

Sarvestan J., Svoboda Z., Baeyens J.-P., Serrien B. Whole body coordination patterning in volleyball spikes under various task constraints: Exploratory cluster analysis based on self-organising maps. Sports Biomech. 2020:1–15. doi: 10.1080/14763141.2020.1788132. PubMed DOI

Skogstad S.A.v.D., Nymoen K., Hovin M., Holm S. Filtering motion capture data for real-time applications; Proceedings of the International Conference on New Interfaces for Musical Expression (NIME); Seoul, Korea. 27–30 May 2013.

Kainz H., Graham D., Edwards J., Walsh H.P., Maine S., Boyd R.N., Lloyd D.G., Modenese L., Carty C.P. Reliability of four models for clinical gait analysis. Gait Posture. 2017;54:325–331. doi: 10.1016/j.gaitpost.2017.04.001. PubMed DOI

Ploof G., Alqahtani B., Alghamdi F., Flynn G., Yang C.X. Center of mass estimation using motion capture system; Proceedings of the 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing, 15th International Conference on Pervasive Intelligence and Computing, 3rd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech); Orlando, FL, USA. 6–10 November 2017; pp. 287–292. DOI

Wagner H., Pfusterschmied J., Tilp M., Landlinger J., Von Duvillard S.P., Müller E. Upper-body kinematics in team-handball throw, tennis serve, and volleyball spike. Scand. J. Med. Sci. Sports. 2014;24:345–354. doi: 10.1111/j.1600-0838.2012.01503.x. PubMed DOI

Kohonen T. Self-Organizing Maps. Volume 30. Springer; Berlin/Heidelberg, Germany: 2001. An overview of SOM literature; pp. 347–371.

Wang X., O’Dwyer N., Halaki M. A review on the coordinative structure of human walking and the application of principal component analysis. Neural Regen. Res. 2013;8:662–670. PubMed PMC

Chang M., O’Dwyer N., Adams R., Cobley S., Lee K.-Y., Halaki M. Whole-body kinematics and coordination in a complex dance sequence: Differences across skill levels. Hum. Mov. Sci. 2020;69:102564. doi: 10.1016/j.humov.2019.102564. PubMed DOI

Schmidt R., Lee T. Motor Control and Learning: A Behavioral Emphasis. 5th ed. Human Kinetics; Champaign, IL, USA: 2011.

Verrel J., Pologe S., Manselle W., Lindenberger U., Woollacott M. Coordination of degrees of freedom and stabilization of task variables in a complex motor skill: Expertise-related differences in cello bowing. Exp. Brain Res. 2013;224:323–334. doi: 10.1007/s00221-012-3314-2. PubMed DOI

Sarvestan J., Svoboda Z., Claudino J.G.D.O. Force-time curve variables of countermovement jump as predictors of volleyball spike jump height. Ger. J. Exerc. Sport Res. 2020:1–7. doi: 10.1007/s12662-020-00676-5. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...