Analysis of Whole-Body Coordination Patterning in Successful and Faulty Spikes Using Self-Organising Map-Based Cluster Analysis: A Secondary Analysis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_FTK_2019_008
Univerzita Palackého v Olomouci
PubMed
33672802
PubMed Central
PMC7917820
DOI
10.3390/s21041345
PII: s21041345
Knihovny.cz E-zdroje
- Klíčová slova
- SOM, angular velocity, coordination, unsupervised machine learning, volleyball spike,
- MeSH
- biomechanika MeSH
- dolní končetina MeSH
- lidé MeSH
- mladiství MeSH
- pohyb MeSH
- rozsah kloubních pohybů MeSH
- shluková analýza MeSH
- sportovní výkon * MeSH
- volejbal * MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- Publikační typ
- časopisecké články MeSH
This study investigated the whole-body coordination patterning in successful and faulty spikes using self-organising map-based cluster analysis. Ten young, elite volleyball players (aged 15.5 ± 0.7 years) performed 60 volleyball spikes in a real-game environment. Adopting the cluster analysis, based on a self-organising map, whole-body coordination patterning was explored between successful and faulty spikes of individual players. The self-organising maps (SOMs) portrayed whole body, lower and upper limb coordination dissimilarities during the jump phase and the ball impact phases between the successful and faulty spikes. The cluster analysis illustrated that the whole body, upper limb and lower limb coordination patterning of each individual's successful spikes were similar to their faulty spikes. Range of motion patterning also demonstrated no differences in kinematics between spike outcomes. Further, the upper limb angular velocity patterning of the players' successful/faulty spikes were similar. The SPM analysis portrayed significant differences between the normalized upper limb angular velocities from 35% to 45% and from 76% to 100% of the spike movement. Although the lower limb angular velocities are vital for achieving higher jumps in volleyball spikes, the results of this study portrayed that the upper limb angular velocities distinguish the differences between successful and faulty spikes among the attackers. This confirms the fact that volleyball coaches should shift their focus toward the upper limb velocity and coordination training for higher success rates in spiking for volleyball attackers.
Zobrazit více v PubMed
Sarvestan J., Svoboda Z., Linduška P. Kinematic differences between successful and faulty spikes in young volleyball players. J. Sports Sci. 2020;38:1–7. doi: 10.1080/02640414.2020.1782008. PubMed DOI
Serrien B., Ooijen J., Goossens M., Baeyens J.-P. A Motion analysis in the volleyball spike—Part 2: Coordination and performance variability. Int. J. Hum. Mov. Sports Sci. 2016;4:83–90. doi: 10.13189/saj.2016.040404. DOI
Oliveira L., Moura T., Rodacki A., Tilp M., Okazaki V. A systematic review of volleyball spike kinematics: Implications for practice and research. Int. J. Sports Sci. Coach. 2020;15:239–255. doi: 10.1177/1747954119899881. DOI
Sattler T., Hadžić V., Dervišević S., Markovic G. Vertical jump performance of professional male and female volleyball players: Effects of playing position and competition level. J. Strength Cond. Res. 2015;29:1486–1493. doi: 10.1519/JSC.0000000000000781. PubMed DOI
Güldenpenning I., Steinke A., Koester D., Schack T. Athletes and novices are differently capable to recognize feint and non-feint actions. Exp. Brain Res. 2013;230:333–343. doi: 10.1007/s00221-013-3658-2. PubMed DOI
Fuchs P.X., Menzel H.-J.K., Guidotti F., Bell J., Von Duvillard S.P., Wagner H. Spike jump biomechanics in male versus female elite volleyball players. J. Sports Sci. 2019;37:2411–2419. doi: 10.1080/02640414.2019.1639437. PubMed DOI
Coleman S., Benham A., Northcott S. A three-dimensional cinematographical analysis of the volleyball spike. J. Sports Sci. 1993;11:295–302. doi: 10.1080/02640419308729999. PubMed DOI
Reeser J.C., Fleisig G.S., Bolt B., Ruan M. Upper limb biomechanics during the volleyball serve and spike. Sports Health. 2010;2:368–374. doi: 10.1177/1941738110374624. PubMed DOI PMC
Tilp M. The Biomechanics of Volleyball. Handbook of Sports Medicine and Science: Volleyball. 2nd ed. John Wiley & Sons; Hoboken, NJ, USA: 2017. pp. 29–37.
Kumar R., Kumar A. Biomechanical analysis of take-off in spiking technique of volleyball based on anthropometric and kinematic variables. Int. J. Res. Appl. Sci. Biotechnol. 2020;7:92–101. doi: 10.31033/ijrasb.7.4.11. DOI
Wagner H., Tilp M., Von Duvillard S.P., Mueller E. Kinematic analysis of volleyball spike jump. Int. J. Sports Med. 2009;30:760–765. doi: 10.1055/s-0029-1224177. PubMed DOI
Serrien B., Ooijen J., Goossens M., Baeyens J.-P. A motion analysis in the volleyball spike—Part 1: Three-dimensional kinematics and performance. Int. J. Hum. Mov. Sports Sci. 2016;4:70–82. doi: 10.13189/saj.2016.040403. DOI
Stergiou N., Decker L.M. Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Hum. Mov. Sci. 2011;30:869–888. doi: 10.1016/j.humov.2011.06.002. PubMed DOI PMC
Serrien B., Goossens M., Baeyens J.-P. Proximal-to-distal sequencing and coordination variability in the volleyball spike of elite youth players: Effects of gender and growth. J. Mot. Learn. Dev. 2018;6:250–266. doi: 10.1123/jmld.2017-0049. DOI
Serrien B., Goossens M., Baeyens J.-P. Issues in using self-organizing maps in human movement and sport science. Int. J. Comput. Sci. Sport. 2017;16:1–17. doi: 10.1515/ijcss-2017-0001. DOI
Sarvestan J., Svoboda Z., Baeyens J.-P., Serrien B. Whole body coordination patterning in volleyball spikes under various task constraints: Exploratory cluster analysis based on self-organising maps. Sports Biomech. 2020:1–15. doi: 10.1080/14763141.2020.1788132. PubMed DOI
Skogstad S.A.v.D., Nymoen K., Hovin M., Holm S. Filtering motion capture data for real-time applications; Proceedings of the International Conference on New Interfaces for Musical Expression (NIME); Seoul, Korea. 27–30 May 2013.
Kainz H., Graham D., Edwards J., Walsh H.P., Maine S., Boyd R.N., Lloyd D.G., Modenese L., Carty C.P. Reliability of four models for clinical gait analysis. Gait Posture. 2017;54:325–331. doi: 10.1016/j.gaitpost.2017.04.001. PubMed DOI
Ploof G., Alqahtani B., Alghamdi F., Flynn G., Yang C.X. Center of mass estimation using motion capture system; Proceedings of the 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing, 15th International Conference on Pervasive Intelligence and Computing, 3rd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech); Orlando, FL, USA. 6–10 November 2017; pp. 287–292. DOI
Wagner H., Pfusterschmied J., Tilp M., Landlinger J., Von Duvillard S.P., Müller E. Upper-body kinematics in team-handball throw, tennis serve, and volleyball spike. Scand. J. Med. Sci. Sports. 2014;24:345–354. doi: 10.1111/j.1600-0838.2012.01503.x. PubMed DOI
Kohonen T. Self-Organizing Maps. Volume 30. Springer; Berlin/Heidelberg, Germany: 2001. An overview of SOM literature; pp. 347–371.
Wang X., O’Dwyer N., Halaki M. A review on the coordinative structure of human walking and the application of principal component analysis. Neural Regen. Res. 2013;8:662–670. PubMed PMC
Chang M., O’Dwyer N., Adams R., Cobley S., Lee K.-Y., Halaki M. Whole-body kinematics and coordination in a complex dance sequence: Differences across skill levels. Hum. Mov. Sci. 2020;69:102564. doi: 10.1016/j.humov.2019.102564. PubMed DOI
Schmidt R., Lee T. Motor Control and Learning: A Behavioral Emphasis. 5th ed. Human Kinetics; Champaign, IL, USA: 2011.
Verrel J., Pologe S., Manselle W., Lindenberger U., Woollacott M. Coordination of degrees of freedom and stabilization of task variables in a complex motor skill: Expertise-related differences in cello bowing. Exp. Brain Res. 2013;224:323–334. doi: 10.1007/s00221-012-3314-2. PubMed DOI
Sarvestan J., Svoboda Z., Claudino J.G.D.O. Force-time curve variables of countermovement jump as predictors of volleyball spike jump height. Ger. J. Exerc. Sport Res. 2020:1–7. doi: 10.1007/s12662-020-00676-5. DOI