The relationship between non-HDL cholesterol and macrophage phenotypes in human adipose tissue
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27481939
PubMed Central
PMC5036370
DOI
10.1194/jlr.p068015
PII: S0022-2275(20)35398-0
Knihovny.cz E-zdroje
- Klíčová slova
- atherosclerosis, high density lipoprotein, inflammation, macrophage/monocyte, membrane receptors,
- MeSH
- CD antigeny metabolismus MeSH
- cholesterol metabolismus MeSH
- dospělí MeSH
- ledviny MeSH
- lidé středního věku MeSH
- lidé MeSH
- makrofágy cytologie metabolismus MeSH
- nitrobřišní tuk cytologie metabolismus MeSH
- transplantace ledvin MeSH
- žijící dárci * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CD antigeny MeSH
- cholesterol MeSH
Data from experimental animal models and in vitro studies suggest that both hyperlipoproteinemia and obesity predispose to development of proinflammatory pathways of macrophages within adipose tissue. The aim of this study was to analyze whether non-HDL cholesterol concentration in healthy living kidney donors (LKDs) is related to the number and phenotype of proinflammatory macrophages in visceral and subcutaneous adipose tissue. Adipose tissue samples were collected by cleansing the kidney grafts of LKDs obtained peroperatively. The stromal vascular fractions of these tissues were analyzed by flow cytometry. Proinflammatory macrophages were defined as CD14+ cells coexpressing CD16+ and high-expression CD36 as well (CD14+CD16+CD36+++), while CD16 negativity and CD163 positivity identified alternatively stimulated, anti-inflammatory macrophages. Non-HDL cholesterol concentration positively correlated to proinflammatory macrophages within visceral adipose tissue, with increased strength with more precise phenotype determination. On the contrary, the proportion of alternatively stimulated macrophages correlated negatively with non-HDL cholesterol. The present study suggests a relationship of non-HDL cholesterol concentration to the number and phenotype proportion of macrophages in visceral adipose tissue of healthy humans.
Transplant Surgery Department Institute for Clinical and Experimental Medicine Prague Czech Republic
Zobrazit více v PubMed
Keys A., Aravanis C., Blackburn H. W., Van Buchem F. S., Buzina R., Djordjević B. D., Dontas A. S., Fidanza F., Karvonen M. J., Kimura N., et al. . 1966. Epidemiological studies related to coronary heart disease: characteristics of men aged 40–59 in seven countries. Acta Med. Scand. Suppl. 460: 1–392. PubMed
Goldstein J. L., and Brown M. S.. 1973. Familial hypercholesterolemia: identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity associated with overproduction of cholesterol. Proc. Natl. Acad. Sci. USA. 70: 2804–2808. PubMed PMC
Ridker P. M., Cushman M., Stampfer M. J., Tracy R. P., and Hennekens C. H. H.. 1997. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 336: 973–979. PubMed
Guilherme A., Virbasius J. V. , V. Puri, and M. P. Czech. 2008. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9: 367–377. PubMed PMC
Blüher M. 2009. Adipose tissue dysfunction in obesity. Exp. Clin. Endocrinol. Diabetes. 117: 241–250. PubMed
Medbury H. J., Willliams H., Li S., and Fletcher J. P.. 2015. The bidirectional relationship between cholesterol and macrophage polarization. J. Clin. Cell. Immunol. 6: 1–7.
Yvan-Charvet L., Welch C., Pagler T. A., Ranalletta M., Lamkanfi M., Han S., Ishibashi M., Li R., Wang N., and Tall A. R.. 2008. Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation. 118: 1837–1847. PubMed PMC
Tall A. R., and Yvan-Charvet L.. 2015. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 15: 104–116. PubMed PMC
Peled M., and Fisher E. A.. 2014. Dynamic aspects of macrophage polarization during atherosclerosis progression and regression. Front. Immunol. 5: 579. PubMed PMC
Subramanian S., and Chait A.. 2009. The effect of dietary cholesterol on macrophage accumulation in adipose tissue: implications for systemic inflammation and atherosclerosis. Curr. Opin. Lipidol. 20: 39–44. PubMed
Aguilar D., and Fernandez M. L.. 2014. Hypercholesterolemia induces adipose dysfunction in conditions of obesity and nonobesity. Adv. Nutr. 5: 497–502. PubMed PMC
Subramanian S., Han C. Y., Chiba T., McMillen T. S., Wang S. A., Haw A. III, Kirk E. A., O’Brien K. D., and Chait A.. 2008. Dietary cholesterol worsens adipose tissue macrophage accumulation and atherosclerosis in obese LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 28: 685–691. PubMed PMC
Busnelli M., Manzini S., Froio A., Vargiolu A., Cerrito M. G., Smolenski R. T., Giunti M., Cinti A., Zannoni A., Leone B. E., et al. . 2013. Diet induced mild hypercholesterolemia in pigs: local and systemic inflammation, effects on vascular injury-rescue by high-dose statin treatment. PLoS One. 8: e80588. PubMed PMC
Goossens G. H. 2008. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol. Behav. 94: 206–218. PubMed
Baker A. R., Silva N. F., Quinn D. W., Harte A. L., Pagano D., Bonser R. S., Kumar S., and McTernan P. G.. 2006. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc. Diabetol. 5: 1. PubMed PMC
Hill A. A., Reid Bolus W., and Hasty A. H.. 2014. A decade of progress in adipose tissue macrophage biology. Immunol. Rev. 262: 134–152. PubMed PMC
Nielsen M. H., Irvine H., Vedel S., Raungaard B., Beck-Nielsen H., and Handberg A.. 2015. Elevated atherosclerosis-related gene expression, monocyte activation and microparticle-release are related to increased lipoprotein-associated oxidative stress in familial hypercholesterolemia. PLoS One 10: e0121516. PubMed PMC
Rogacev K. S., Zawada A. M., Emrich I., Seiler S., Böhm M., Fliser D., Woollard K. J., and Heine G. H.. 2014. Lower apoA1 and lower HDL-C levels are associated with higher intermediate CD14++CD16+ monocyte counts that predict cardiovascular events in chronic kidney disease. Arterioscler. Thromb. Vasc. Biol. 34: 2120–2127. PubMed
Krychtiuk K. A., Kastl S. P., Pfaffenberger S., Pongratz T., Hofbauer S. L., Wonnerth A., Katsaros K. M., Goliasch G., Gaspar L., Huber K., et al. . 2014. Small high-density lipoprotein is associated with monocyte subsets in stable coronary artery disease. Atherosclerosis. 237: 589–596. PubMed PMC
Aron-Wisnewsky J., Tordjman J., Poitou C., Darakhshan F., Hugol D., Basdevant A., Aissat A., Guerre-Millo M., and Clément K.. 2009. Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J. Clin. Endocrinol. Metab. 94: 4619–4623. PubMed
Barros M. H., Hauck F., Dreyer J. H., Kempkes B., and Niedobitek G.. 2013. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS One. 8: e80908. PubMed PMC
Králová Lesná I., Poledne R., Fronek J., Králová A., Sekerková A., Thieme F., and Pitha J.. 2015. Macrophage subsets in the adipose tissue could be modified by sex and the reproductive age of women. Atherosclerosis. 241: 255–258. PubMed
Sheedy F. J., Grebe A., Rayner K. J., Kalantari P., Ramkhelawon B., Carpenter S. B., Becker C. E., Ediriweera H. N., Mullick A. E., Golenbock D. T., et al. . 2013. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol. 14: 812–820. PubMed PMC
Buechler C., Eisinger K., and Krautbauer S.. 2013. Diagnostic and prognostic potential of the macrophage specific receptor CD163 in inflammatory diseases. Inflamm. Allergy Drug Targets. 12: 391–402. PubMed
Cífková R., Skodová Z., Bruthans J., Adámková V., Jozífová M., Galovcová M., Wohlfahrt P., Krajcoviechová A., Poledne R., Stávek P., et al. . 2010. Longitudinal trends in major cardiovascular risk factors in the Czech population between 1985 and 2007/8. Czech MONICA and Czech post-MONICA. Atherosclerosis. 211: 676–681. PubMed
Coen P. M., Flynn M. G., Markofski M. M., Pene B. R., and Hannemann R. E.. 2010. Adding exercise to rosuvastatin treatment: influence on C-reactive protein, monocyte toll-like receptor 4 expression, and inflammatory monocyte (CD14+CD16+) population. Metabolism. 59: 1775–1783. PubMed
Fjeldborg K., Pedersen S. B., Møller H. J., Christiansen T., Bennetzen M., and Richelsen B.. 2014. Human adipose tissue macrophages are enhanced but changed to anti-inflammatory profile in obesity. J. Immunol. Res. 2014: 309548. PubMed PMC
Kralova Lesna I., Suchanek P., Kovar J., Stavek P., and Poledne R.. 2008. Replacement of dietary saturated FSAs by PUFAs in diet and reverse cholesterol transport. J. Lipid Res. 49: 2414–2418. PubMed
Kong L. C., Holmes B. A., Cotillard A., Habi-Rachedi F., Brazeilles R., Gougis S., Gausserès N., Cani P. D., Fellahi S., Bastard J. P., et al. . 2014. Dietary patterns differently associate with inflammation and gut microbiota in overweight and obese subjects. PLoS One. 9: e109434. PubMed PMC
Rapid Drop in Coronary Heart Disease Mortality in Czech Male Population-What Was Actually behind It?
Adipose tissue macrophages and atherogenesis - a synergy with cholesterolaemia