Perivascular adipocyte size is related to the lipid profile and inflammatory changes in a healthy population
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40406925
PubMed Central
PMC12118406
DOI
10.1080/21623945.2025.2499500
Knihovny.cz E-zdroje
- Klíčová slova
- Perivascular adipose tissue, adipocyte size, cardiovascular risk factors, inflammation, macrophages,
- MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- lipidy * MeSH
- makrofágy metabolismus MeSH
- metabolismus lipidů MeSH
- průřezové studie MeSH
- tuková tkáň metabolismus MeSH
- tukové buňky * metabolismus cytologie MeSH
- velikost buňky MeSH
- zánět * metabolismus patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lipidy * MeSH
Inflammatory changes in perivascular adipose tissue are associated with atherosclerotic lesions in the adjacent artery and can also be used as a marker in patient workup. While adipocyte size is known to be closely related to adipose tissue dysfunction and inflammation, it has not been widely studied in perivascular adipose tissue obtained from healthy human subjects without clinical atherosclerosis. In this cross-sectional study, we addressed this issue by measuring adipocyte size and defining its relationship to cardiovascular risk factors in a healthy cohort of living kidney donors. The presence of cardiovascular risk factors was established by a standardized questionnaire, clinical measurements and body composition analyses. Adipocyte size was measured in the perivascular depot. The proportions of various macrophage subtypes were determined by flow cytometry. To confirm the results, the proportion of CD68 + macrophages was additionally assessed by immunohistochemistry. A correlation and principal component analyses were performed to explore associations. Adipocyte size in perivascular adipose tissue correlated with markers of lipid metabolism, inflammation, and glucose metabolism. Further, the positive correlation with the pro-inflammatory subpopulation of macrophages suggests a strong local effect of perivascular adipose tissue. Perivascular adipocyte size was associated with cardiovascular risk factors and markers of inflammation in a healthy cohort of living kidney donors. This further supports the local role of adipose tissue dysfunction and inflammation in early atherosclerosis development and detection.
Zobrazit více v PubMed
Xu H, Jin CD, Guan QB.. Causal effects of overall and abdominal obesity on insulin resistance and the risk of type 2 diabetes mellitus: a two-sample Mendelian randomization study. Front Genet. 2020;11:9. doi: 10.3389/fgene.2020.00603 PubMed DOI PMC
Mandviwala T, Khalid U, Deswal A. Obesity and cardiovascular disease: a risk factor or a risk marker? Curr Atheroscler Rep. 2016;18(5):10. doi: 10.1007/s11883-016-0575-4 PubMed DOI
Baldini F, Fabbri R, Eberhagen C, et al. Adipocyte hypertrophy parallels alterations of mitochondrial status in a cell model for adipose tissue dysfunction in obesity. Life Sci. 2021;265:118812. doi: 10.1016/j.lfs.2020.118812 PubMed DOI
Gornicka A, Fettig J, Eguchi A, et al. Adipocyte hypertrophy is associated with lysosomal permeability both in vivo and in vitro: role in adipose tissue inflammation. Am J Physiol-Endocrinol Metab. 2012;303(5):E597–E606. doi: 10.1152/ajpendo.00022.2012 PubMed DOI PMC
Franck N, Stenkula KG, Ost A, et al. Insulin-induced GLUT4 translocation to the plasma membrane is blunted in large compared with small primary fat cells isolated from the same individual. Diabetologia. 2007;50(8):1716–12. doi: 10.1007/s00125-007-0713-1 PubMed DOI
Hames KC, Koutsari C, Santosa S, et al. Adipose tissue fatty acid storage factors: effects of depot, sex and fat cell size. Int J Obes. 2015;39(6):884–887. doi: 10.1038/ijo.2015.10 PubMed DOI PMC
Skurk T, Alberti-Huber C, Herder C, et al. Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab. 2007;92(3):1023–1033. doi: 10.1210/jc.2006-1055 PubMed DOI
McLaughlin T, Craig C, Liu LF, et al. Adipose cell size and regional fat deposition as predictors of metabolic response to overfeeding in insulin-resistant and insulin-sensitive humans. Diabetes. 2016;65(5):1245–1254. doi: 10.2337/db15-1213 PubMed DOI PMC
McLaughlin T, Abbasi F, Lamendola C, et al. Dietary weight loss in insulin-resistant non-obese humans: metabolic benefits and relationship to adipose cell size. Nutr Metab Cardiovasc Dis. 2019;29(1):62–68. doi: 10.1016/j.numecd.2018.09.014 PubMed DOI PMC
Vianello E, Dozio E, Arnaboldi F, et al. Epicardial adipocyte hypertrophy: association with M1-polarization and toll-like receptor pathways in coronary artery disease patients. Nutr, Metab Cardiovasc Dis. 2016;26(3):246–253. doi: 10.1016/j.numecd.2015.12.005 PubMed DOI
Laforest S, Labrecque J, Michaud A, et al. Adipocyte size as a determinant of metabolic disease and adipose tissue dysfunction. Crit Rev Clin Lab Sci. 2015;52(6):301–313. doi: 10.3109/10408363.2015.1041582 PubMed DOI
Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):2347–2355. doi: 10.1194/jlr.M500294-JLR200 PubMed DOI
Michaud A, Drolet R, Noël S, et al. Visceral fat accumulation is an indicator of adipose tissue macrophage infiltration in women. Metabolism. 2012;61(5):689–698. doi: 10.1016/j.metabol.2011.10.004 PubMed DOI
Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–1808. doi: 10.1172/JCI200319246 PubMed DOI PMC
Hotamisligil GS, Arner P, Caro JF, et al. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995;95(5):2409–2415. doi: 10.1172/JCI117936 PubMed DOI PMC
Cejkova S, Kubatova H, Thieme F, et al. The effect of cytokines produced by human adipose tissue on monocyte adhesion to the endothelium. Cell Adhes Migr. 2019;13(1):293–302. doi: 10.1080/19336918.2019.1644856 PubMed DOI PMC
Lesna IK, Petras M, Cejkova S, et al. Cardiovascular disease predictors and adipose tissue macrophage polarization: Is there a link? Eur J Prev Cardiol. 2018;25(3):328–334. doi: 10.1177/2047487317743355 PubMed DOI
Poledne R, Lesna IK, Kralova A, et al. The relationship between non-HDL cholesterol and macrophage phenotypes in human adipose tissue. J Lipid Res. 2016;57(10):1899–1905. doi: 10.1194/jlr.P068015 PubMed DOI PMC
Rajsheker S, Manka D, Blomkalns AL, et al. Crosstalk between perivascular adipose tissue and blood vessels. Curr Opin Pharmacol. 2010;10(2):191–196. doi: 10.1016/j.coph.2009.11.005 PubMed DOI PMC
Greenstein AS, Khavandi K, Withers SB, et al. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation. 2009;119(12):1661–1670. doi: 10.1161/CIRCULATIONAHA.108.821181 PubMed DOI
Farias-Itao DS, Pasqualucci CA, de Andrade RA, et al. Macrophage polarization in the perivascular fat was associated with coronary atherosclerosis. J Am Heart Assoc. 2022;11(6):30. doi: 10.1161/JAHA.121.023274 PubMed DOI PMC
Withers SB, Agabiti-Rosei C, Livingstone DM, et al. Macrophage activation is responsible for loss of anticontractile function in inflamed perivascular fat. Arterioscler Thromb Vasc Biol. 2011;31(4):908–913. doi: 10.1161/ATVBAHA.110.221705 PubMed DOI
Takaoka M, Suzuki H, Shioda S, et al. Endovascular injury induces rapid phenotypic changes in perivascular adipose tissue, Arterioscler. Thromb Vasc Biol. 2010;30(8):1576–1582. doi: 10.1161/ATVBAHA.110.207175 PubMed DOI
Antonopoulos AS, Sanna F, Sabharwal N, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017;9(398):12. doi: 10.1126/scitranslmed.aal2658 PubMed DOI
Cifkova R, Bruthans J, Wohlfahrt P, et al. The prevalence of major cardiovascular risk factors in the Czech population in 2015–2018. Czech Post-MONICA Study Cor Vasa. 2020;62(1):6–15. doi: 10.33678/cor.2020.010 DOI
Aitken-Buck HM, Babakr AA, Coffey S, et al. Epicardial adipocyte size does not correlate with body mass index, Cardiovasc. Cardiovasc Pathol. 2019;43:6. doi: 10.1016/j.carpath.2019.07.003 PubMed DOI
Mikami T, Furuhashi M, Sakai A, et al. Antiatherosclerotic phenotype of perivascular adipose tissue surrounding the saphenous vein in coronary artery bypass grafting. J Am Heart Assoc. 2021;10(7):16. doi: 10.1161/JAHA.120.018905 PubMed DOI PMC
Numaguchi R, Furuhashi M, Matsumoto M, et al. Differential phenotypes in perivascular adipose tissue surrounding the internal thoracic artery and diseased coronary artery. J Am Heart Assoc. 2019;8(2):11. doi: 10.1161/JAHA.118.011147 PubMed DOI PMC
Mikami T, Furuhashi M, Numaguchi R, et al. Comparison of phenotypes in subcutaneous fat and perivascular adipose tissue surrounding the saphenous vein in coronary artery bypass grafting, Circ J. 2023;87(6):791–798. doi: 10.1253/circj.CJ-22-0740 PubMed DOI
Kranendonk MEG, van Herwaarden JA, Stupkova T, et al. Inflammatory characteristics of distinct abdominal adipose tissue depots relate differently to metabolic risk factors for cardiovascular disease distinct fat depots and vascular risk factors. Atherosclerosis. 2015;239(2):419–427. doi: 10.1016/j.atherosclerosis.2015.01.035 PubMed DOI
Verboven K, Wouters K, Gaens K, et al. Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans. Sci Rep. 2018;8(1):8. doi: 10.1038/s41598-018-22962-x PubMed DOI PMC
Laforest S, Michaud A, Paris G, et al. Comparative analysis of three human adipocyte size measurement methods and their relevance for cardiometabolic risk. Obesity (Silver Spring). 2017;25(1):122–131. doi: 10.1002/oby.21697 PubMed DOI
Honecker J, Weidlich D, Heisz S, et al. A distribution-centered approach for analyzing human adipocyte size estimates and their association with obesity-related traits and mitochondrial function. Int J Obes. 2021;45(9):2108–2117. doi: 10.1038/s41366-021-00883-6 PubMed DOI PMC
Mundi MS, Karpyak MV, Koutsari C, et al. Body fat distribution, Adipocyte Size, and metabolic characteristics of nondiabetic adults. J Clin Endocrinol Metab. 2010;95(1):67–73. doi: 10.1210/jc.2009-1353 PubMed DOI PMC
Fang LL, Guo FJ, Zhou LH, et al. The cell size and distribution of adipocytes from subcutaneous and visceral fat is associated with type 2 diabetes mellitus in humans. Adipocyte. 2015;4(4):273–279. doi: 10.1080/21623945.2015.1034920 PubMed DOI PMC
Varbo A, Nordestgaard BG. Remnant lipoproteins. Curr Opin Lipidol. 2017;28(4):300–307. doi: 10.1097/MOL.0000000000000429 PubMed DOI
O’Connell J, Lynch L, Cawood TJ, et al. The relationship of Omental and subcutaneous adipocyte size to metabolic disease in severe obesity. PLOS ONE. 2010;5(4):9. doi: 10.1371/journal.pone.0009997 PubMed DOI PMC
Jaitin DA, Adlung L, Thaiss CA, et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell. 2019;178(3):686–698.e14. doi: 10.1016/j.cell.2019.05.054 PubMed DOI PMC
Kunz HE, Hart CR, Gries KJ, et al. Adipose tissue macrophage populations and inflammation are associated with systemic inflammation and insulin resistance in obesity. Am J Physiol-Endocrinol Metab. 2021;321(1):E105–E121. doi: 10.1152/ajpendo.00070.2021 PubMed DOI PMC
Landgraf K, Rockstroh D, Wagner IV, et al. Evidence of early alterations in adipose tissue biology and function and its association with obesity-related inflammation and insulin resistance in children. Diabetes. 2015;64(4):1249–1261. doi: 10.2337/db14-0744 PubMed DOI
Santiago-Fernandez C, Perez-Belmonte LM, Millan-Gomez M, et al. Overexpression of scavenger receptor and infiltration of macrophage in epicardial adipose tissue of patients with ischemic heart disease and diabetes. J Transl Med. 2019;17(1):10. doi: 10.1186/s12967-019-1842-2 PubMed DOI PMC
Bahceci M, Gokalp D, Bahceci S, et al. The correlation between adiposity and adiponectin, tumor necrosis factor α, interleukin-6 and high sensitivity C-reactive protein levels. Is adipocyte size associated with inflammation in adults? J Endocrinol Invest. 2007;30(3):210–214. doi: 10.1007/BF03347427 PubMed DOI
Meyer LK, Ciaraldi TP, Henry RR, et al. Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity. Adipocyte. 2013;2(4):217–226. doi: 10.4161/adip.24953 PubMed DOI PMC
Sharma G, Tao M, Ding K, et al. Perivascular adipose adiponectin correlates with symptom status of patients undergoing carotid endarterectomy. Stroke. 2015;46(6):1696–1699. doi: 10.1161/STROKEAHA.114.008468 PubMed DOI PMC
Dwaib HS, Ajouz G, AlZaim I, et al. Phosphorus supplementation mitigates perivascular adipose inflammation–induced cardiovascular consequences in early metabolic impairment. J Am Heart Assoc. 2021;10(24):30. doi: 10.1161/JAHA.121.023227 PubMed DOI PMC
Sasoh T, Kugo H, Kondo Y, et al. Different effects of high-fat and high-sucrose diets on the physiology of perivascular adipose tissues of the thoracic and abdominal aorta. Adipocyte. 2021;10(1):412–423. doi: 10.1080/21623945.2021.1965333 PubMed DOI PMC
Horimatsu T, Patel AS, Prasad R, et al. Remote effects of transplanted perivascular adipose tissue on endothelial function and atherosclerosis, Cardiovasc. Drugs Ther. 2018;32(5):503–510. doi: 10.1007/s10557-018-6821-y PubMed DOI PMC
Bussey CE, Withers SB, Aldous RG, et al. Obesity-related perivascular adipose tissue damage is reversed by sustained weight loss in the rat, Arterioscler. Thromb Vasc Biol. 2016;36(7):1377–1385. doi: 10.1161/ATVBAHA.116.307210 PubMed DOI
Jia Q, Morgan-Bathke ME, Jensen MD. Adipose tissue macrophage burden, systemic inflammation, and insulin resistance. Am J Physiol-Endocrinol Metab. 2020;319(2):E254–E264. doi: 10.1152/ajpendo.00109.2020 PubMed DOI PMC
Nosalski R, Guzik TJ. Perivascular adipose tissue inflammation in vascular disease. Br J Pharmacol. 2017;174(20):3496–3513. doi: 10.1111/bph.13705 PubMed DOI PMC
Oikonomou EK, Marwan M, Desai MY, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet. 2018;392(10151):929–939. doi: 10.1016/S0140-6736(18)31114-0 PubMed DOI PMC
Bartuskova H, Kauerova S, Petras M, et al. Links between macrophages in perivascular adipose tissue and arterial wall: a role in atherosclerosis initiation?, Int Angiol. Int Angiology. 2022;41(5). doi: 10.23736/S0392-9590.22.04916-1 PubMed DOI
Bartuskova H. Perivascular adipocyte size is related to the lipid profile and inflammatory changes in a healthy population. 2024. PubMed PMC
Martin SS, Blaha MJ, Elshazly MB, et al. Comparison of a novel method vs the friedewald equation for estimating low-density lipoprotein cholesterol levels from the standard lipid profile. J Am Med Assoc. 2013;310(19):2061–2068. doi: 10.1001/jama.2013.280532 PubMed DOI PMC
Varbo A, Nordestgaard BG. Directly measured vs. calculated remnant cholesterol identifies additional overlooked individuals in the general population at higher risk of myocardial infarction. Eur Heart J. 2021;42(47):4833–4843. doi: 10.1093/eurheartj/ehab293 PubMed DOI
Amato MC, Giordano C, Galia M, et al. Visceral adiposity index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010;33(4):920–922. doi: 10.2337/dc09-1825 PubMed DOI PMC