Global population trends in shorebirds: migratory behaviour makes species at risk

. 2021 Feb 12 ; 108 (2) : 9. [epub] 20210212

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33580336

Grantová podpora
20-00648S Grantová Agentura České Republiky (CZ)
PRIMUS/17/SCI/16 Univerzita Karlova v Praze
UNCE/SCI/005 Univerzita Karlova v Praze
LH13278 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.2.69/0.0/0.0/19_074/0014459 Ministerstvo Školství, Mládeže a Tělovýchovy
ÉLVONAL-KKP 126949 Hungary

Odkazy

PubMed 33580336
DOI 10.1007/s00114-021-01717-1
PII: 10.1007/s00114-021-01717-1
Knihovny.cz E-zdroje

Linking population trends to species' traits is informative for the detection of the most important threatening factors and for assessing the effectiveness of conservation measures. Although some previous studies performed such an analysis at local to continental scales, the global-scale focus is the most relevant for conservation of the entire species. Here we evaluate information on global population trends of shorebirds, a widely distributed and ecologically diversified group, where some species connect different parts of the world by migration, while others are residents. Nowadays, shorebirds face rapid environmental changes caused by various human activities and climate change. Numerous signs of regional population declines have been recently reported in response to these threats. The aim of our study was to test whether breeding and non-breeding habitats, migratory behaviour (migrants vs. residents) and migration distance, breeding latitude, generation time and breeding range size mirror species' global population trends. We found that a majority of shorebird species have declined globally. After accounting for the influence of traits and species taxonomy, linear mixed-effects models showed that populations of migratory shorebirds decreased more than populations of residents. Besides that, declines were more frequent for species breeding at high latitudes of the Northern Hemisphere, but these patterns did not hold after excluding the non-migratory species. Our findings suggest that factors linked to migration, such as habitat loss as well as deterioration at stop-over or wintering sites and a pronounced climate change impact at high latitudes, are possible drivers of the observed worldwide population decreases.

Zobrazit více v PubMed

Aharon-Rotman Y, Soloviev M, Minton C, Tomkovich P, Hassell C, Klaassen M (2014) Loss of periodicity in breeding success of waders links to changes in lemming cycles in Arctic ecosystems. Oikos 124:861–870. https://doi.org/10.1111/oik.01730 DOI

Amano T, Szekely T, Sandel B, Nagy S, Mundkur T, Langendoen T, Blanco D, Soykan CU, Sutherland WJ (2018) Successful conservation of global waterbird populations depends on effective governance. Nature 553:199–202. https://doi.org/10.1038/nature25139 PubMed DOI

Andres BA, Smith PA, Morrison RG, Gratto-Trevor CL, Brown SC, Friis CA (2012) Population estimates of North American shorebirds, 2012. Wader Study Group Bull 119:178–194

Bartoń K (2018) MuMIn, multi-model inference. R package version 1.42.1. https://CRAN.R-project.org/package=MuMIn

Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48 DOI

Battley PF, Warnock N, Tibbitts TL, Gill RE, Piersma T, Hassell CJ, Douglas DC, Mulcahy DM, Gartell BD, Schuckard R, Melville DS, Riegen AC (2012) Contrasting extreme long-distance migration patterns in bar-tailed godwits Limosa lapponica. J Avian Biol 43:21–32. https://doi.org/10.1111/j.1600-048X.2011.05473.x DOI

Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x PubMed DOI PMC

BirdLife International (2020) IUCN Red List for birds. http://www.birdlife.org/datazone/species .

BirdLife International, NatureServe (2014) Bird species distribution maps of the world. Bird Life International and Nature Serve

Boyd C, DeMaster DP, Waples RS, Ward EJ, Taylor BL (2017) Consistent extinction risk assessment under the US Endangered Species Act. Conserv Lett 10:328–336. https://doi.org/10.1111/conl.12269 DOI

Burnham KP, Anderson DM (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

Butler SJ, Boccaccio L, Gregory RD, Vorisek P, Norris K (2010) Quantifying the impact of land-use change to European farmland bird populations. Agric Ecosyst Environ 137:348–357. https://doi.org/10.1016/j.agee.2010.03.005 DOI

Clemens RS, Rogers DI, Hansen BD, Gosbell K, Minton CDT, Straw P, Bamford M, Woehler EJ, Milton DA, Weston MA, Venables W, Weller D, Hassell C, Rutherford W, Onton K, Herrod A, Studds CE, Choi C-Y, Dhanjal-Adams KL, Skilleter G, Fuller RA (2016) Continental-scale decreases in shorebird populations in Australia. Emu 116:119–135. https://doi.org/10.1071/MU15056 DOI

Colwell MA (2010) Shorebird ecology: conservation and management. University of California Press, Berkeley DOI

Cresswell W, Kazeh NW, Patchett R (2020) Local human population increase in the non-breeding areas of long-distance migrant bird species is only weakly associated with their declines, even for synanthropic species. Divers Distrib 26:340–351. https://doi.org/10.1111/ddi.13006 DOI

del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E (2018) Handbook of the birds of the world alive. Lynx Edicions, Barcelona

Delany S, Scott D, Dodman T, Stroud D (2009) An atlas of wader populations in Africa and Western Eurasia. Wetlands International. Wageningen

Descamps S, Aars J, Fuglei E, Kovacs KM, Lydersen C, Pavlova O, Pedersen AO, Ravolainen V, Strom H (2017) Climate change impacts on wildlife in a High Arctic archipelago – Svalbard, Norway. Glob Chang Biol 23:490–502. https://doi.org/10.1111/gcb.13381 PubMed DOI

Dokter AM, Farnsworth A, Fink D, Ruiz-Gutierrez V, Hochachka WM, La Sorte FA, Robinson OJ, Rosenberg KV, Kelling S (2018) Seasonal abundance and survival of North America’s migratory avifauna determined by weather radar. Nat Ecol Evol 2:1603–1609. https://doi.org/10.1038/s41559-018-0666-4 PubMed DOI

Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, García Marquéz JM, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x DOI

Ducatez S, Shine R (2017) Drivers of extinction risk in terrestrial vertebrates. Conserv Lett 10:186–194. https://doi.org/10.1111/conl.12258 DOI

Duijns S, Niles LJ, Dey A, Aubry Y, Friis C, Koch S, Anderson AM, Smith PA (2017) Body condition explains migratory performance of a long-distance migrant. Proc R Soc B Biol Sci 284:20171374. https://doi.org/10.1098/rspb.2017.1374 DOI

Finch T, Butler SJ, Franco AMA, Cresswell W (2017) Low migratory connectivity is common in long-distance migrant birds. J Anim Ecol 86:662–673. https://doi.org/10.1111/1365-2656.12635 PubMed DOI

Galbraith H, DesRochers DW, Brown S, Reed JM (2014) Predicting vulnerabilities of North American shorebirds to climate change. PLoS ONE 9:e108899. https://doi.org/10.1371/journal.pone.0108899 PubMed DOI PMC

Gamero A, Brotons L, Brunner A, Foppen R, Fornasari L, Gregory RD, Herrando S, Hořák D, Jiguet F, Kmecl P, Lehikoinen A, Lindström Å, Paquet J-Y, Reif J, Sirkiä PM, Škorpilová J, van Strien A, Szép T, Telenský T, Teufelbauer N, Trautmann S, van Turnhout CAM, Vermouzek Z, Vikstrøm T, Voříšek P (2017) Tracking progress toward EU biodiversity strategy targets: EU policy effects in preserving its common farmland birds. Conserv Lett 10:395–402. https://doi.org/10.1111/conl.12292

Gaston KJ, Blackburn TM, Lawton JH (1997) Interspecific abundance–range size relationships: an appraisal of mechanisms. J Anim Ecol 66:579–601. https://doi.org/10.2307/5951 DOI

Gill RE, Tibbitts TL, Douglas DC, Handel CM, Mulcahy DM, Gottschalck JC, Warnock N, McCaffery BJ, Battley PF, Piersma T (2009) Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? Proc R Soc B Biol Sci 276:447–457. https://doi.org/10.1098/rspb.2008.1142 DOI

Greenwood JJD (2003) The monitoring of British breeding birds: a success story for conservation science? Sci Total Environ 310:221–230. https://doi.org/10.1016/S0048-9697(02)00642-3 PubMed DOI

Hanzelka J, Horká P, Reif J (2019) Spatial gradients in country-level population trends of European birds. Divers Distrib 25:1527–1536. https://doi.org/10.1111/ddi.12945 DOI

Jiguet F, Devictor V, Ottvall R, Van Turnhout C, Van der Jeugd H, Lindström Å (2010a) Bird population trends are linearly affected by climate change along species thermal ranges. Proc R Soc B Biol Sci 277:3601–3608. https://doi.org/10.1098/rspb.2010.0796 DOI

Jiguet F, Gregory RD, Devictor V, Green RE, Vorisek P, Van Strien A, Couvet D (2010b) Population trends of European common birds are predicted by characteristics of their climatic niche. Glob Chang Biol 16:497–505. https://doi.org/10.1111/j.1365-2486.2009.01963.x DOI

Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108. https://doi.org/10.1016/j.tree.2003.10.013 DOI

Jørgensen PS, Böhning-Gaese K, Thorup K, Tøttrup AP, Chylarecki P, Jiguet F, Lehikoinen A, Noble DG, Reif J, Schmid H, Van Turnhout CAM, Burfield IJ, Foppen R, Vorisek P, Van Strien A, Gregory RD, Rahbek K (2016) Continent-scale global change attribution in European birds-combining annual and decadal time scales. Glob Chang Biol 22:530-543. https://doi.org/10.1111/gcb.13097

Kausrud KL, Mysterud A, Steen H, Vik JO, Østbye E, Cazelles B, Framstad E, Eikeset AM, Mysterud I, Solhøy T, Stenseth NC (2008) Linking climate change to lemming cycles. Nature 456:93–98. https://doi.org/10.1038/nature07442 PubMed DOI

Kleijn D, Schekkerman H, Dimmers WJ, Van Kats RJM, Melman D, Teunissen WA (2010) Adverse effects of agricultural intensification and climate change on breeding habitat quality of Black-tailed Godwits Limosa l. limosa in the Netherlands. Ibis 152:475–486. https://doi.org/10.1111/j.1474-919X.2010.01025.x

Koleček J, Procházka P, Ieronymidou C, Burfield IJ, Reif J (2018) Non-breeding range size predicts the magnitude of population trends in trans-Saharan migratory passerine birds. Oikos 127:599–606. https://doi.org/10.1111/oik.04549 DOI

Kubelka V (2018) Significance of predation for breeding ecology and conservation in shorebirds. Dissertation, Charles University

Kubelka V, Šálek M, Tomkovich P, Végvári Z, Freckleton RP, Székely T (2018) Global pattern of nest predation is disrupted by climate change in shorebirds. Science 362:680–683. https://doi.org/10.1126/science.aat8695 PubMed DOI

Kwon E, Weiser EL, Lanctot RB, Brown SC, Gates HR, Gilchrist G, Lank DB, Liebezeit JR, Mckinnon L, Nol E, Payer DC, Rausch J, Rinella DJ, Saalfeld ST, Senner NR, Smith PA, Ward D, Wisseman RW, Sandercock BK (2019) Geographic variation in the intensity of warming and phenological mismatch between Arctic shorebirds and invertebrates. Ecol Monogr 89:e01383. https://doi.org/10.1002/ecm.1383 DOI

Lank DB, Butler RW, Ireland J, Ydenberg RC (2003) Effects of predation danger on migration strategies of sandpipers. Oikos 103:303–319. https://doi.org/10.1034/j.1600-0706.2003.12314.x DOI

Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055. https://doi.org/10.1038/nature08649 PubMed DOI

Loboda S, Savage J, Buddle CM, Schmidt NM, Hoye TT (2018) Declining diversity and abundance of High Arctic fly assemblages over two decades of rapid climate warming. Ecography 41:265–277. https://doi.org/10.1111/ecog.02747 DOI

Lockwood JL, Russell GJ, Gittleman JL, Daehler CC, McKinney ML, Purvis A (2002) A metric for analyzing taxonomic patterns of extinction risk. Conserv Biol 16:1137–1142. https://doi.org/10.1046/j.1523-1739.2002.01152.x DOI

Martin TG, Chadès I, Arcese P, Marra PP, Possingham HP, Norris DR (2007) Optimal conservation of migratory species. PLoS One 2:e751. https://doi.org/10.1371/journal.pone.0000751 PubMed DOI PMC

McKinnon L, Berteaux D, Bêty J (2014) Predator-mediated interactions between lemmings and shorebirds: a test of the alternative prey hypothesis. Auk 131:619–628. https://doi.org/10.1642/AUK-13-154.1 DOI

Meltofte H, Piersma T, Boyd H, McCaffery B, Ganter B, Golovnyuk VV, Graham K, GrattoTrevor CL, Morrison RIG, Nol E, Rösner HU, Schamel D, Schekkerman H, Soloviev MY, Tomkovich PS, Tracy DM, Tulp I, Wennerberg L (2007) Effects of climate variation on the breeding ecology of Arctic shorebirds. Meddelelser om Grønland Biosci 59:1–48

Meltofte H, Durinck J, Jakobsen B, Nordstrøm C, Rigét FF (2019) Trends in the autumn passage numbers of Arctic and boreal waders in W Denmark 1964–2017 as a contribution to East Atlantic Flyway population trends. Ardea 107:1–15. https://doi.org/10.5253/arde.v107i2.a7 DOI

Moores N, Rogers D, Kim R-H, Hassell C, Gosbell K, Kim S-A, Park M-N (2008) The 2006–2008 Saemangeum shorebird monitoring program report, Birds Korea, Busan. https://awsg.org.au/pdfs/Saemangeum-Report.pdf . Accessed 1 July 2020

Mortensen LO, Schmidt NM, Hoye TT, Damgaard C, Forchhammer MC (2016) Analysis of trophic interactions reveals highly plastic response to climate change in a tri-trophic High-Arctic ecosystem. Polar Biol 39:1467–1478. https://doi.org/10.1007/s00300-015-1872-z DOI

Munro BYM (2017) What’s killing the world’s shorebirds? Nature 541:16–20. https://doi.org/10.1038/541016a PubMed DOI

Murray NJ, Clemens RS, Phinn SR, Possingham HP, Fuller RA (2014) Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front Ecol Environ 12:267–272. https://doi.org/10.1890/130260 DOI

Murray NJ, Marra PP, Fuller RA, Clemens RS, Dhanjal-Adams K, Gosbell KB, Hassell CJ, Iwamura T, Melville D, Minton CDT, Riegen AC, Rogers DI, Woehler EJ, Studds CE (2017) The large-scale drivers of population declines in a long-distance migratory shorebird. Ecography 41:867–876. https://doi.org/10.1111/ecog.02957 DOI

Owens IP, Bennett PM (2000) Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. Proc Natl Acad Sci 97:12144–12148. https://doi.org/10.1073/pnas.200223397 PubMed DOI

Pearce-Higgins JW, Brown DJ, Douglas DJT, Alves JA, Bellio M, Bocher P, Buchanan GM, Clay RP, Conklin J, Crockford N, Dann P, Elts J, Friis C, Fuller RA, Gill JA, Gosbell K, Johnson JA, Marquez-Ferrando R, Masero JA, Melville DS, Millington S, Minton C, Mundkur T, Nol E, Pehlak H, Piersma T, Robin F, Rogers DI, Ruthrauff DR, Senner NR, Shah JN, Sheldon RD, Soloviev SA, Tomkovich PS, Verkuil YI (2017) A global threats overview for Numeniini populations: synthesising expert knowledge for a group of declining migratory birds. Bird Conserv Int 27:6–34. https://doi.org/10.1017/S0959270916000678 DOI

Piersma T, Lok T, Chen Y, Hassell CJ, Yang HY, Boyle A, Slaymaker M, Chan YC, Melville DS, Zhang ZW, Ma Z (2016) Simultaneous declines in summer survival of three shorebird species signals a flyway at risk. J Appl Ecol 55:479–490. https://doi.org/10.1111/1365-2664.12582 DOI

QGIS Development Team (2016) QGIS geographic information system. Open Source Geospatial Foundation

R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

Reed ET, Kardynal KJ, Horrocks JA, Hobson KA (2018) Shorebird hunting in Barbados: using stable isotopes to link the harvest at a migratory stopover site with sources of production. Condor 120:357–370. https://doi.org/10.1650/CONDOR-17-127.1 DOI

Reif J (2013) Long-term trends in bird populations: a review of patterns and potential drivers in North America and Europe. Acta Ornithol 48:1–16. https://doi.org/10.3161/000164513X669955 DOI

Roodbergen M, van der Werf B, Hötker H (2012) Revealing the contributions of reproduction and survival to the Europe-wide decline in meadow birds: review and meta-analysis. J Ornithol 153:53–74. https://doi.org/10.1007/s10336-011-0733-y

Rosenberg KV, Dokter AM, Blancher PJ, Sauer JR, Smith AC, Smith PA, Stanton JC, Panjabi A, Helft L, Parr M, Marra PP (2019) Decline of the North American avifauna. Science 366:120–124. https://doi.org/10.1126/science.aaw1313 PubMed DOI

Runge CA, Martin TG, Possingham HP, Willis SG, Fuller RA (2014) Conserving mobile species. Front Ecol Environ 12:395–402. https://doi.org/10.1890/130237 DOI

Sæther BE, Bakke Ø (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642–653. https://doi.org/10.1890/0012-9658(2000)081[0642:ALHVAC]2.0.CO;2 DOI

Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113. https://doi.org/10.1111/j.2041-210X.2010.00012.x DOI

Schipper AM, Belmaker J, de Miranda MD, Navarro LM, Bohning-Gaese K, Costello MJ, Dornelas M, Foppen R, Hortal J, Huijbregts MAJ, Martin-Lopez B, Pettorelli N, Queiroz C, Rossberg AG, Santini L, Schiffers K, Steinmann ZJN, Visconti P, Rondinini C, Pereira HM (2016) Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Glob Chang Biol 22:3948–3959. https://doi.org/10.1111/gcb.13292

Smith PA, McKinnon L, Meltofte H, Lanctot RB, Fox AD, Leafloor JO, Soloviev M, Franke A, Falk K, Golovatin M, Sokolov V, Sokolov A, Smith AC (2020) Status and trends of tundra birds across the circumpolar Arctic. Ambio 49:732–748. https://doi.org/10.1007/s13280-019-01308-5 PubMed DOI PMC

Studds CE, Kendall BE, Murray NJ, Wilson HB, Rogers DI, Clemens RS, Gosbell K, Hassell CJ, Jessop R, Melville DS, Milton DA, Minton CDT, Possingham HP, Riegen AC, Straw P, Woehler EJ, Fuller RA (2017) Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat Commun 8:1e7. https://doi.org/10.1038/ncomms14895 DOI

Thomas GH, Lanctot RB, Szekely T (2006) Can intrinsic factors explain population declines in North American breeding shorebirds? A comparative analysis. Anim Conserv 9:252–258. https://doi.org/10.1111/j.1469-1795.2006.00029.x DOI

van Gils JA, Lisovski S, Lok T, Meissner W, Ožarowska A, de Fouw J, Rakhimberdiev E, Soloviev MY, Piersma T, Klaassen M (2016) Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range. Science 352:819–821. https://doi.org/10.1126/science.aad6351 PubMed DOI

Vickery JA, Ewing SR, Smith KW, Pain DJ, Bairlein F, Skorpilova J, Gregory RD (2014) The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156:1–22. https://doi.org/10.1111/ibi.12118 DOI

Wauchope HS, Shaw JD, Varpe Ø, Lappo EG, Boertmann D, Lanctot RB, Fuller RA (2017) Rapid climate-driven loss of breeding habitat for Arctic migratory birds. Glob Chang Biol 23:1085–1094. https://doi.org/10.1111/gcb.13404 PubMed DOI

Zurell D, Graham CH, Gallien L, Thuiller W, Zimmermann NE (2018) Long-distance migratory birds threatened by multiple independent risks from global change. Nat Clim Chang 8:992–996. https://doi.org/10.1038/s41558-018-0312-9 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...