Decision making on vestibular schwannoma treatment: predictions based on machine-learning analysis
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34526580
PubMed Central
PMC8443556
DOI
10.1038/s41598-021-97819-x
PII: 10.1038/s41598-021-97819-x
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- klinické rozhodování * MeSH
- lidé středního věku MeSH
- lidé MeSH
- management nemoci * MeSH
- reprodukovatelnost výsledků MeSH
- řízené strojové učení MeSH
- ROC křivka MeSH
- rozhodovací stromy MeSH
- senioři MeSH
- sluch MeSH
- sluchové testy MeSH
- strojové učení * MeSH
- určení symptomu MeSH
- vestibulární schwannom diagnóza terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Decision making on the treatment of vestibular schwannoma (VS) is mainly based on the symptoms, tumor size, patient's preference, and experience of the medical team. Here we provide objective tools to support the decision process by answering two questions: can a single checkup predict the need of active treatment?, and which attributes of VS development are important in decision making on active treatment? Using a machine-learning analysis of medical records of 93 patients, the objectives were addressed using two classification tasks: a time-independent case-based reasoning (CBR), where each medical record was treated as independent, and a personalized dynamic analysis (PDA), during which we analyzed the individual development of each patient's state in time. Using the CBR method we found that Koos classification of tumor size, speech reception threshold, and pure tone audiometry, collectively predict the need for active treatment with approximately 90% accuracy; in the PDA task, only the increase of Koos classification and VS size were sufficient. Our results indicate that VS treatment may be reliably predicted using only a small set of basic parameters, even without the knowledge of individual development, which may help to simplify VS treatment strategies, reduce the number of examinations, and increase cause effectiveness.
Zobrazit více v PubMed
Springborg JB, Poulsgaard L, Thomsen J. Nonvestibular schwannoma tumors in the cerebellopontine angle: A structured approach and management guidelines. Skull Base. 2008;18:217–227. doi: 10.1055/s-2007-1016959. PubMed DOI PMC
Halliday J, Rutherford SA, McCabe MG, Evans DG. An update on the diagnosis and treatment of vestibular schwannoma. Expert Rev. Neurother. 2018;18:29–39. doi: 10.1080/14737175.2018.1399795. PubMed DOI
Lee JD, Lee BD, Hwang SC. Vestibular schwannoma in patients with sudden sensorineural hearing loss. Skull Base. 2011;21:75–78. doi: 10.1055/s-0030-1261257. PubMed DOI PMC
Chovanec M, et al. Does attempt at hearing preservation microsurgery of vestibular schwannoma affect postoperative tinnitus? BioMed Res. Int. 2015;2015:783169. doi: 10.1155/2015/783169. PubMed DOI PMC
Čada Z, et al. Vertigo perception and quality of life in patients after surgical treatment of vestibular schwannoma with pretreatment prehabituation by chemical vestibular ablation. BioMed Res. Int. 2016;2016:11. doi: 10.1155/2016/6767216. PubMed DOI PMC
Betka J, et al. Complications of microsurgery of vestibular schwannoma. BioMed Res. Int. 2014;2014:315952. doi: 10.1155/2014/315952. PubMed DOI PMC
Darrouzet V, Martel J, Enée V, Bébéar J-P, Guérin J. Vestibular schwannoma surgery outcomes: Our multidisciplinary experience in 400 cases over 17 years. Laryngoscope. 2004;114:681–688. doi: 10.1097/00005537-200404000-00016. PubMed DOI
Starnoni D, et al. Surgical management for large vestibular schwannomas: A systematic review, meta-analysis, and consensus statement on behalf of the EANS skull base section. Acta Neurochir. (Wien) 2020;162:2595–2617. doi: 10.1007/s00701-020-04491-7. PubMed DOI PMC
Prasad SC, et al. Decision making in the wait-and-scan approach for vestibular schwannomas: Is there a price to pay in terms of hearing, facial nerve, and overall outcomes? Neurosurgery. 2018;83:858–870. doi: 10.1093/neuros/nyx568. PubMed DOI
Cha D, Shin SH, Kim SH, Choi JY, Moon IS. Machine learning approach for prediction of hearing preservation in vestibular schwannoma surgery. Sci. Rep. 2020;10:7136. doi: 10.1038/s41598-020-64175-1. PubMed DOI PMC
Fayyad U, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery in databases. AI Mag. 1996;17:37–37.
Chen M-S, Han J, Yu PS. Data mining: An overview from a database perspective. IEEE Trans. Knowl. Data Eng. 1996;8:866–883. doi: 10.1109/69.553155. DOI
Patel H, Prajapati P. Study and analysis of decision tree based classification algorithms. Int. J. Comput. Sci. Eng. 2018;6:74–78.
Quinlan JR. Induction of decision trees. Mach. Learn. 1986;1:81–106.
Sharma H, Kumar S. A survey on decision tree algorithms of classification in data mining. Int. J. Sci. Res. IJSR. 2016;5:2094.
Jin, X., Xu, A., Bie, R. & Guo, P. Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles. in Data Mining for Biomedical Applications (eds. Li, J., Yang, Q. & Tan, A.-H.) 106–115. 10.1007/11691730_11 (Springer, 2006).
Ren Q, Cheng H, Han H. Research on machine learning framework based on random forest algorithm. AIP Conf. Proc. 2017;1820:080020. doi: 10.1063/1.4977376. DOI
Tin Kam Ho. Random decision forests. in Proceedings of 3rd International Conference on Document Analysis and Recognition. Vol. 1. 278–282 (1995).
Laber E, Murtinho L. Minimization of Gini impurity: NP-completeness and approximation algorithm via connections with the k-means problem. Electron. Notes Theor. Comput. Sci. 2019;346:567–576. doi: 10.1016/j.entcs.2019.08.050. DOI
Raileanu L, Stoffel K. Theoretical comparison between the Gini index and information gain criteria. Ann. Math. Artif. Intell. 2004;41:77–93. doi: 10.1023/B:AMAI.0000018580.96245.c6. DOI
Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013;7:11. doi: 10.3389/fnbot.2013.00021. PubMed DOI PMC
Zhang Z, Zhao Y, Canes A, Steinberg D, Lyashevska O. Predictive analytics with gradient boosting in clinical medicine. Ann. Transl. Med. 2019;7:7. doi: 10.21037/atm.2018.12.26. PubMed DOI PMC
Levy JJ, O’Malley AJ. Don’t dismiss logistic regression: The case for sensible extraction of interactions in the era of machine learning. BMC Med. Res. Methodol. 2020;20:1–15. doi: 10.1186/s12874-020-01046-3. PubMed DOI PMC
Menard, S. W. Logistic Regression: From Introductory to Advanced Concepts and Applications. (SAGE, 2010).
Peng J, Lee K, Ingersoll G. An introduction to logistic regression analysis and reporting. J. Educ. Res. 2002;96:3–14. doi: 10.1080/00220670209598786. DOI
Draper, N. R. & Smith, H. Applied Regression Analysis. (Wiley-Interscience, 1998).
Chordia T, Goyal A, Tong Q. Pairwise correlations. SSRN Electron. J. 2011 doi: 10.2139/ssrn.1785390. DOI
Meng J, et al. Prognostic value of an immunohistochemical signature in patients with esophageal squamous cell carcinoma undergoing radical esophagectomy. Mol. Oncol. 2017;12:196. doi: 10.1002/1878-0261.12158. PubMed DOI PMC
Muthukrishnan, R. & Rohini, R. LASSO: A feature selection technique in predictive modeling for machine learning. in 2016 IEEE International Conference on Advances in Computer Applications (ICACA). 18–20. 10.1109/ICACA.2016.7887916 (2016).
Battineni G, Chintalapudi N, Amenta F. Machine learning in medicine: Performance calculation of dementia prediction by support vector machines (SVM) Inform. Med. Unlocked. 2019;16:100200. doi: 10.1016/j.imu.2019.100200. DOI
Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, Lopez A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing. 2020;408:189–215. doi: 10.1016/j.neucom.2019.10.118. DOI
Cortes C, Vapnik V. Support-vector networks. Mach. Learn. 1995;20:273–297.
Amato F, et al. Artificial neural networks in medical diagnosis. J. Appl. Biomed. 2013;11:47–58. doi: 10.2478/v10136-012-0031-x. DOI
Shahid N, Rappon T, Berta W. Applications of artificial neural networks in health care organizational decision-making: A scoping review. PLoS ONE. 2019;14:e212356. PubMed PMC
Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp. J. Intern. Med. 2013;4:627–635. PubMed PMC
ZouKelly H, James OA, Laura M. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation. 2007;115:654–657. doi: 10.1161/CIRCULATIONAHA.105.594929. PubMed DOI
Ebenuwa SH, Sharif MS, Alazab M, Al-Nemrat A. Variance ranking attributes selection techniques for binary classification problem in imbalance data. IEEE Access. 2019;7:24649–24666. doi: 10.1109/ACCESS.2019.2899578. DOI
Beenstock M. Predicting the stability and growth of acoustic neuromas. Otol. Neurotol. 2002;23:542–549. doi: 10.1097/00129492-200207000-00025. PubMed DOI
Artz JCJM, Timmer FCA, Mulder JJS, Cremers CWRJ, Graamans K. Predictors of future growth of sporadic vestibular schwannomas obtained by history and radiologic assessment of the tumor. Eur. Arch. Otorhinolaryngol. 2009;266:641–646. doi: 10.1007/s00405-008-0791-9. PubMed DOI
Malhotra PS, et al. Clinical, radiographic, and audiometric predictors in conservative management of vestibular schwannoma. Otol. Neurotol. 2009;30:507–514. doi: 10.1097/MAO.0b013e31819d3465. PubMed DOI
Agrawal Y, Clark JH, Limb CJ, Niparko JK, Francis HW. Predictors of vestibular schwannoma growth and clinical implications. Otol. Neurotol. 2010;31:807–812. doi: 10.1097/MAO.0b013e3181de46ae. PubMed DOI
Timmer FCA, et al. Prediction of vestibular schwannoma growth: A novel rule based on clinical symptomatology. Ann. Otol. Rhinol. Laryngol. 2011;120:807–813. doi: 10.1177/000348941112001206. PubMed DOI
Jethanamest D, et al. Conservative management of vestibular schwannoma: Predictors of growth and hearing. Laryngoscope. 2015;125:2163–2168. doi: 10.1002/lary.25159. PubMed DOI
Hunter JB, et al. Single institutional experience with observing 564 vestibular schwannomas: Factors associated with tumor growth. Otol. Neurotol. 2016;37:1630–1636. doi: 10.1097/MAO.0000000000001219. PubMed DOI PMC
D’Haese S, et al. Vestibular schwannoma: Natural growth and possible predictive factors. Acta Otolaryngol. (Stockh.) 2019;139:753–758. doi: 10.1080/00016489.2019.1635268. PubMed DOI
Fieux M, et al. MRI monitoring of small and medium-sized vestibular schwannomas: Predictors of growth. Acta Otolaryngol. (Stockh.) 2020;140:361–365. doi: 10.1080/00016489.2020.1717608. PubMed DOI
Kleijwegt M, Bettink F, Malessy M, Putter H, Vandermey A. Clinical predictors leading to change of initial conservative treatment of 836 vestibular schwannomas. J. Neurol. Surg. Part B Skull Base. 2020;81:15–21. doi: 10.1055/s-0039-1678708. PubMed DOI PMC
Hentschel MA, et al. Development of a model to predict vestibular schwannoma growth: An opportunity to introduce new wait and scan strategies. Clin. Otolaryngol. 2021;46:273–283. doi: 10.1111/coa.13661. PubMed DOI PMC
Herwadker A, Vokurka EA, Evans DGR, Ramsden RT, Jackson A. Size and growth rate of sporadic vestibular schwannoma: Predictive value of information available at presentation. Otol. Neurotol. 2005;26:86–92. doi: 10.1097/00129492-200501000-00015. PubMed DOI
Wolbers JG, et al. Identifying at diagnosis the vestibular schwannomas at low risk of growth in a long-term retrospective cohort. Clin. Otolaryngol. 2016;41:788–792. doi: 10.1111/coa.12661. PubMed DOI
Bellman, R. E. Dynamic Programming. (Princeton University Press, 1957).
Keogh, E. & Mueen, A. Curse of dimensionality. in Encyclopedia of Machine Learning and Data Mining (eds. Sammut, C. & Webb, G. I.) 314–315. 10.1007/978-1-4899-7687-1_192 (Springer, 2017).
Venkat, N. The Curse of Dimensionality: Inside Out. 10.13140/RG.2.2.29631.36006 (2018).
Verleysen, M. & François, D. The curse of dimensionality in data mining and time series prediction. in Computational Intelligence and Bioinspired Systems (eds. Cabestany, J., Prieto, A. & Sandoval, F.) Vol. 3512. 758–770 (Springer, 2005).
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444. doi: 10.1038/nature14539. PubMed DOI