The effect of cytokines produced by human adipose tissue on monocyte adhesion to the endothelium
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31331230
PubMed Central
PMC6650200
DOI
10.1080/19336918.2019.1644856
Knihovny.cz E-zdroje
- Klíčová slova
- Atherosclerosis, adipose tissue, cytokines, endothelium, inflammation,
- MeSH
- ateroskleróza patologie MeSH
- buněčná adheze fyziologie MeSH
- cévní buněčněadhezivní molekula-1 metabolismus MeSH
- cévní endotel metabolismus MeSH
- cytokiny metabolismus MeSH
- dospělí MeSH
- endoteliální buňky metabolismus MeSH
- kultivační média speciální farmakologie MeSH
- kultivované buňky MeSH
- lidé středního věku MeSH
- lidé MeSH
- mezibuněčná adhezivní molekula-1 metabolismus MeSH
- monocyty metabolismus MeSH
- nitrobřišní tuk metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cévní buněčněadhezivní molekula-1 MeSH
- cytokiny MeSH
- ICAM1 protein, human MeSH Prohlížeč
- kultivační média speciální MeSH
- mezibuněčná adhezivní molekula-1 MeSH
Visceral adipose tissue (VAT) may play a critical role in atherosclerotic cardiovascular disease. The goal of this study was to determine the effect of human VAT-released pro‑inflammatory cytokines on monocyte adhesion to the endothelium. The cytokine effects on monocyte adhesion to the endothelial cells (ECs) were tested using adipose tissue-conditioned media (ATCM) prepared by culturing human VAT. The cytokines concentrations in ATCM, the cytokines expression and adhesion molecules in stimulated ECs were measured. The concentrations of IL-1β,TNF-α,MCP-1,IL-10,and RANTES measured in ATCM correlated positively with monocyte adhesiveness to ECs. Additionally, ATCM increased the adhesion molecules (ICAM-1, VCAM-1) gene expression. Selective inhibitors highlighted the importance of IL-1β and TNF-α in the process by a significant decrease in monocyte adhesion compared to ATCM preconditioning without inhibitors. Human VAT significantly increased monocyte adhesion to ECs. It was significantly influenced by IL-1β, TNF-α, MCP-1, IL-10, and RANTES, with IL-1β and TNF‑α having the strongest impact.
Zobrazit více v PubMed
Alexopoulos N, Katritsis D, Raggi P.. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis. Atherosclerosis. 2014. March;233(1):104–112. PubMed
Gustafson B. Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb. 2010;17(4):332–341. PubMed
Libby P. Inflammation in atherosclerosis. Nature. 2002. December 26;420(6917):868–874. PubMed
Gradinaru D, Borsa C, Ionescu C, et al. Oxidized LDL and NO synthesis-biomarkers of endothelial dysfunction and ageing. Mech Ageing Dev. 2015November;151:101–113. PubMed
Morishita R, Ishii J, Kusumi Y, et al. Association of serum oxidized lipoprotein(a) concentration with coronary artery disease: potential role of oxidized lipoprotein(a) in the vasucular wall. J Atheroscler Thromb. 2009;16(4):410–418. PubMed
Zhao WW, Wu CH, Chen XP. Cryptotanshinone inhibits oxidized LDL-induced adhesion molecule expression via ROS dependent NF-B pathways. Cell Adhes Migr. 2016;10(3):248–258. PubMed PMC
Liao JK. Linking endothelial dysfunction with endothelial cell activation. J Clin Invest. 2013. February;123(2):540–541. . PubMed PMC
Gast KB, Den Heijer M, Smit JWA, et al. Individual contributions of visceral fat and total body fat to subclinical atherosclerosis: the NEO study. Atherosclerosis. 2015. August;241(2):547–554. PubMed
Kranendonk ME, van Herwaarden JA, Stupkova T, et al. Inflammatory characteristics of distinct abdominal adipose tissue depots relate differently to metabolic risk factors for cardiovascular disease: distinct fat depots and vascular risk factors. Atherosclerosis. 2015. April;239(2):419–427. PubMed
Kralova Lesna I, Kralova A, Cejkova S, et al. Characterisation and comparison of adipose tissue macrophages from human subcutaneous, visceral and perivascular adipose tissue. J Transl Med. 2016. July 11;14(1):208. PubMed PMC
Cifkova R, Skodova Z, Bruthans J, et al. Longitudinal trends in major cardiovascular risk factors in the Czech population between 1985 and 2007/8. Czech MONICA and Czech post-MONICA. Atherosclerosis. 2010. August;211(2):676–681. . PubMed
Ait-Oufella H, Taleb S, Mallat Z, et al. Recent advances on the role of cytokines in atherosclerosis. Arterioscl Throm Vas. 2011. May;31(5):969–979. PubMed
Lin JT, Kakkar V, Lu XJ. Impact of MCP-1 in atherosclerosis. Curr Pharm Design. 2014;20(28):4580–4588. PubMed
Virani SS, Nambi V, Hoogeveen R, et al. Relationship between circulating levels of RANTES (regulated on activation, normal T-cell expressed, and secreted) and carotid plaque characteristics: the Atherosclerosis Risk in Communities (ARIC) carotid MRI study. Eur Heart J. 2011. February;32(4):459–468. PubMed PMC
Henrichot E, Juge-Aubry CE, Pernin AS, et al. Production of chemokines by perivascular adipose tissue - A role in the pathogenesis of atherosclerosis? Arterioscl Throm Vas. 2005. December;25(12):2594–2599. PubMed
Hajer GR, van Haeften TW, Visseren FLJ. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J. 2008. December;29(24):2959–2971. . PubMed
Caer C, Rouault C, Le Roy T, et al. Immune cell-derived cytokines contribute to obesity-related inflammation, fibrogenesis and metabolic deregulation in human adipose tissue. Sci Rep-Uk. 2017. June 7;7. doi:10.1038/s41598-017-02660-w PubMed DOI PMC
Braunersreuther V, Steffens S, Arnaud C, et al. A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice. Arterioscl Throm Vas. 2008. June;28(6):1090–1096. PubMed
Dalmas E, Venteclef N, Caer C, et al. T cell-derived IL-22 amplifies IL-1 beta-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes. 2014. June;63(6):1966–1977. PubMed
Hivert MF, Sullivan LM, Fox CS, et al. Associations of adiponectin, resistin, and tumor necrosis factor-alpha with insulin resistance. J Clin Endocr Metab. 2008. August;93(8):3165–3172. PubMed PMC
Mtairag E, Chollet-Martin S, Oudghiri M, et al. Effects of interleukin-10 on monocyte/endothelial cell adhesion and MMP-9/TIMP-1 secretion. Cardiovasc Res. 2001. March;49(4):882–890. PubMed
Verma SK, Garikipati VNS, Krishnamurthy P, et al. IL-10 accelerates re-endothelialization and inhibits post-injury intimal hyperplasia following carotid artery denudation. Plos One. 2016. 25;11(1):Jan. PubMed PMC
Gimeno MJ, Pascual G, Garcia-Honduvilla N, et al. Modulatory role of IL10 in endothelial cell damage and platelet adhesion. Histol Histopathol. 2003. July;18(3):695–702. PubMed
Galkina E, Ley K. Vascular adhesion molecules in atherosclerosis. Arterioscl Throm Vas. 2007. November;27(11):2292–2301. PubMed
Sans M, Panes J, Ardite E, et al. VCAM-1 and ICAM-1 mediate leukocyte-endothelial cell adhesion in rat experimental colitis. Gastroenterology. 1999. April;116(4):874–883. PubMed
Hung MJ, Cherng WJ, Hung MY, et al. Interleukin-6 inhibits endothelial nitric oxide synthase activation and increases endothelial nitric oxide synthase binding to stabilized caveolin-1 in human vascular endothelial cells. J Hypertens. 2010. May;28(5):940–951. PubMed
Sena CM, Pereira AM, Seica R. Endothelial dysfunction - A major mediator of diabetic vascular disease. Bba-Mol Basis Dis. 2013. December;1832(12):2216–2231. PubMed
Gamble JR, Khewgoodall Y, Vadas MA. Transforming growth-factor-beta inhibits E-selectin expression on human endothelial-cells. J Immunol. 1993. May 15;150(10):4494–4503. PubMed
Walshe TE, Dole VS, Maharaj ASR, et al. Inhibition of VEGF or TGF-beta signaling activates endothelium and increases leukocyte rolling. Arterioscl Throm Vas. 2009. August;29(8):1185–U70. . PubMed PMC
Watson C, Whittaker S, Smith N, et al. IL-6 acts on endothelial cells to preferentially increase their adherence for lymphocytes. Clin Exp Immunol. 1996. July;105(1):112–119. . PubMed PMC
Bozic M, Alvarez A, de Pablo C, et al. Impaired vitamin D signaling in endothelial cell leads to an enhanced leukocyte-endothelium interplay: implications for atherosclerosis development. Plos One. 2015. August 31;10(8). DOI:10.1371/journal.pone.0136863 PubMed DOI PMC
Luckett-Chastain L, Calhoun K, Schartz T, et al. IL-6 influences the balance between M1 and M2 macrophages in a mouse model of irritant contact dermatitis. J Immunol. 2016. May 1;196:17.
Kitagawa T, Yamamoto H, Hattori T, et al. Tumor necrosis factor-alpha gene expression in epicardial adipose tissue is related to coronary atherosclerosis assessed by computed tomography. J Atheroscler Thromb. 2018;25(3):269–280. PubMed PMC
Bing C. Is interleukin-1 beta a culprit in macrophage-adipocyte crosstalk in obesity? Adipocyte. 2015. April 3;4(2):149–152. PubMed PMC
Vicennati V, Vottero A, Friedman C, et al. Hormonal regulation of interleukin-6 production in human adipocytes. Int J Obesity. 2002. July;26(7):905–911. PubMed
Sims JE, Smith DE. The IL-1 family: regulators of immunity. Nat Rev Immunol. 2010. February;10(2):89–102. PubMed
Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003. December;112(12):1796–1808. PubMed PMC
Kralova Lesna I, Petras M, Cejkova S, et al. Cardiovascular disease predictors and adipose tissue macrophage polarization: is there a link? Eur J Prev Cardiol. 2018. February;25(3):328–334. PubMed
Cejkova S, Kralova Lesna I, Fronek J, et al. Pro-inflammatory gene expression in adipose tissue of patients with atherosclerosis. Physiol Res. 2017. September 22;66(4):633–640. PubMed
Bae JS, Kim YU, Park MK, et al. Concentration dependent dual effect of thrombin in endothelial cells via Par-1 and Pi3 kinase. J Cell Physiol. 2009. June;219(3):744–751. PubMed PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9). DOI:10.1093/nar/29.9.e45. PubMed DOI PMC
Physiology and Pathobiology of Perivascular Adipose Tissue: Inflammation-based Atherogenesis
Cholesterol efflux and macrophage polarization in human adipose tissue
Cholesterol in the Cell Membrane-An Emerging Player in Atherogenesis