Cholesterol efflux and macrophage polarization in human adipose tissue

. 2022 Dec 16 ; 71 (6) : 859-868. [epub] 20221125

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36426890

The pro-inflammatory status of adipose tissue (AT) has been found to be related to reverse cholesterol transport (RCT) from peritoneal macrophages. However, this finding was made in experimental models using induced peritonitis and isolated peritoneal macrophages of animals. This experimental relationship is in agreement with RCT changes in man in two extreme situations, sepsis or cardiovascular complications. Given the above, we sought to test RTC in relationship to macrophage polarization in the visceral AT (VAT) of living kidney donors (LKDs) and the effect of conditioned media obtained from their AT. The influence of ATCM on CE capacity was first assessed in an experiment where standard plasma was used as cholesterol acceptor from [14C] cholesterol labeled THP-1. Conditioned media as a product of LKDs' incubated AT showed no effect on CE. Likewise, we did not find any effect of individual plasma of LKDs on CE when individual plasma of LKDs were used as acceptors. On the other hand, we documented an effect of LKDs' adipose cell size on CE. Our results indicate that the pro-inflammatory status of human AT is not likely induced by disrupted RCT but might be influenced by the metabolic status of LKDs' adipose tissue.

Zobrazit více v PubMed

Jokinen E. Obesity and cardiovascular disease. Minerva pediatr. 2015;67:25–32. PubMed

Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat Rev Immunol. 2015;15:104–116. doi: 10.1038/nri3793. PubMed DOI PMC

Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145:341–355. doi: 10.1016/j.cell.2011.04.005. PubMed DOI PMC

Von Eckardstein A, Nofer JR, Assmann G. High density lipoproteins and arteriosclerosis role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 2001;21:13–27. doi: 10.1161/01.ATV.21.1.13. PubMed DOI

Murphy AJ, Woollard KJ, Hoang A, Mukhamedova N, Stirzaker RA, McCormick SPA, Remaley AT, Sviridov D, Chin-Dusting J. High-density lipoprotein reduces the human monocyte inflammatory response. Arterioscler Thromb Vasc Biol. 2008;28:2071–2077. doi: 10.1161/ATVBAHA.108.168690. PubMed DOI

Sviridov D, Nestel P. Dynamics of reverse cholesterol transport: Protection against atherosclerosis. Atherosclerosis. 2002;161:245–254. doi: 10.1016/S0021-9150(01)00677-3. PubMed DOI

Catalano G, Duchene E, Julia Z, Le Goff W, Bruckert E, Chapman MJ, Guerin M. Cellular SR-BI and ABCA1-mediated cholesterol efflux are gender-specific in healthy subjects. J Lipid Res. 2008;49:635–643. doi: 10.1194/jlr.M700510-JLR200. PubMed DOI

Aiello RJ, Brees D, Bourassa PA, Royer L, Lindsey S, Coskran T, Haghpassand M, Francone OL. Increased atherosclerosis in hyperlipidemic mice with inactivation of ABCA1 in macrophages. Arterioscler Thromb Vasc Biol. 2002;22:630–637. doi: 10.1161/01.ATV.0000014804.35824.DA. PubMed DOI

Jessup W, Gelissen IC, Gaus K, Kritharides L. Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr Opin Lipidol. 2006;17:247–257. doi: 10.1097/01.mol.0000226116.35555.eb. PubMed DOI

Glomset JA. The plasma lecithins:cholesterol acyltransferase reaction. J Lipid Res. 1968;9:155–167. doi: 10.1016/S0022-2275(20)43114-1. PubMed DOI

Feingold KR, Grunfeld C. The acute phase response inhibits reverse cholesterol transport. J Lipid Res. 2010;51:682–684. doi: 10.1194/jlr.E005454. PubMed DOI PMC

Duong MN, Uno K, Nankivell V, Bursill C, Nicholls SJ. Induction of obesity impairs reverse cholesterol transport in ob/ob mice. PLoS One. 2018;13:e0202102. doi: 10.1371/journal.pone.0202102. PubMed DOI PMC

Khovidhunkit W, Kim MS, Memon RA, Shigenaga JK, Moser AH, Feingold KR, Grunfeld C. Effects of infection and inflammation on lipid and lipoprotein metabolism: Mechanisms and consequences to the host. J Lipid Res. 2004;45:1169–1196. doi: 10.1194/jlr.R300019-JLR200. PubMed DOI

Annema W, Nijstad N, Tölle M, Freark de Boer J, Buijs RVC, Heeringa P, van der Giet M, Tietge UJF. Myeloperoxidase and serum amyloid A contribute to impaired in vivo reverse cholesterol transport during the acute phase response but not group IIA secretory phospholipase A2. J Lipid Res. 2010;51:743–754. doi: 10.1194/jlr.M000323. PubMed DOI PMC

Sherer Y, Shoenfeld Y. Mechanisms of disease: Atherosclerosis in autoimmune diseases. Nat Clin Pract Rheumatol. 2006;2:99–106. doi: 10.1038/ncprheum0092. PubMed DOI

Post WS, Budoff M, Kingsley L, Palella FJ, Jr, Witt MD, Li X, George RT, Brown TT, Jacobson LP. Associations between HIV infection and subclinical coronary atherosclerosis. Ann Intern Med. 2014;160:458–467. doi: 10.7326/M13-1754. PubMed DOI PMC

Zhao GJ, Tang SL, Lv YC, Ouyang XP, He PP, Yao F, Chen WJ, Lu Q, Tang YY, Zhang M, Fu Y, Zhang DW, Yin K, Tang CK. Antagonism of Betulinic Acid on LPS-Mediated Inhibition of ABCA1 and Cholesterol Efflux through Inhibiting Nuclear Factor-kappaB Signaling Pathway and miR-33 Expression. PLoS One. 2013;8:e74782. doi: 10.1371/journal.pone.0074782. PubMed DOI PMC

Westerterp M, Murphy AJ, Wang M, Pagler TA, Vengrenyuk Y, Kappus MS, Gorman DJ, Nagareddy PR, Zhu X, Abramowicz S, Parks JS, Welch C, Fisher EA, Wang N, Yvan-Charvet L, Tall AR. Deficiency of ATP-binding cassette transporters a1 and g1 in macrophages increases inflammation and accelerates atherosclerosis in mice. Circ Res. 2013;112:1456–1465. doi: 10.1161/CIRCRESAHA.113.301086. PubMed DOI PMC

Cahill LE, Sacks FM, Rimm EB, Jensen MK. Cholesterol efflux capacity, HDL cholesterol, and risk of coronary heart disease: A nested case-control study in men. J Lipid Res. 2019;60:1457–1464. doi: 10.1194/jlr.P093823. PubMed DOI PMC

Kralova Lesna I, Cejkova S, Kralova A, Fronek J, Petras M, Sekerkova A, Thieme F, Janousek L, Poledne R. Human adipose tissue accumulation is associated with pro-inflammatory changes in subcutaneous rather than visceral adipose tissue. Nutr Diabetes. 2017;7:e264. doi: 10.1038/nutd.2017.15. PubMed DOI PMC

Monteiro L, Da S, Pereira JA, Palhinha L, Moraes-Vieira PMM. Leptin in the regulation of the immunometabolism of adipose tissue-macrophages. J Leukoc Biol. 2019;106:703–716. doi: 10.1002/JLB.MR1218-478R. PubMed DOI

Kohlgruber AC, Lamarche NM, Lynch L. Adipose tissue at the nexus of systemic and cellularimmunometabolism. Semin Immunol. 2016;28:431–440. doi: 10.1016/j.smim.2016.09.005. PubMed DOI

Schipper HS, Prakken B, Kalkhoven E, Boes M. Adipose tissue-resident immune cells: Key players in immunometabolism. Trends Endocrinol Metab. 2012;23:407–415. doi: 10.1016/j.tem.2012.05.011. PubMed DOI

Engin AB. Adipocyte-macrophage cross-talk in obesity. Adv Exp Med Biol. 2017;960:327–343. doi: 10.1007/978-3-319-48382-5_14. PubMed DOI

Zhang Y, McGillicuddy FC, Hinkle CC, O’Neill S, Glick JM, Rothblat GH, eilly MP. Adipocyte modulation of high-density lipoprotein cholesterol. Circulation. 2010;121:1347–1355. doi: 10.1161/CIRCULATIONAHA.109.897330. PubMed DOI PMC

Gao JH, Zeng MY, Yu XH, Zeng GF, He LH, Zheng XL, Zhang DW, Ouyang XP, Tang CK. Visceral adipose tissue-derived serine protease inhibitor accelerates cholesterol efflux by up-regulating ABCA1 expression via the NF-κB/miR-33a pathway in THP-1 macropahge-derived foam cells. Biochem Biophys Res Commun. 2018;500:318–324. doi: 10.1016/j.bbrc.2018.04.066. PubMed DOI

Laforest S, Michaud A, Paris G, Pelletier M, Vidal H, Géloën A, Tchernof A. Comparative Analysis of Three Human Adipocyte Size Measurement Methods and Their Relevance for Cardiometabolic Risk. Obesity. 2017;25:122–131. doi: 10.1002/oby.21697. PubMed DOI

Honecker J, Weidlich D, Heisz S, Lindgren CM, Karampinos DC, Claussnitzer M, Hauner H. A distribution-centered approach for analyzing human adipocyte size estimates and their association with obesity-related traits and mitochondrial function. International Journal of Obesity. 2021;45(9):2108–2117. doi: 10.1038/s41366-021-00883-6. PubMed DOI PMC

Jacobsson Bo, Smith Ulf. Effect of cell size on lipolysis and antilipolytic action of insulin in human fat cells. Journal of Lipid Research. 1972;13(5):651–656. doi: 10.1016/S0022-2275(20)39370-6. PubMed DOI

Poledne R, Malinska H, Kubatova H, Fronek J, Thieme F, Kauerova S, Kralova Lesna I. Polarization of macrophages in human adipose tissue is related to the fatty acid spectrum in membrane phospholipids. Nutrients. 2020;12:8. doi: 10.3390/nu12010008. PubMed DOI PMC

Poledne R, Kralova Lesna I. Adipose tissue macrophages and atherogenesis - a synergy with cholesterolaemia. Physiol Res. 2021;70(Suppl4):S535–S549. doi: 10.33549//physiolres.934745. PubMed DOI PMC

Kralova Lesna I, Kralova A, Cejkova S, Fronek J, Petras M, Sekerkova A, Thieme F, Janousek L, Poledne R. Characterisation and comparison of adipose tissue macrophages from human subcutaneous, visceral and perivascular adipose tissue. J Transl Med. 2016;14:208. doi: 10.1186/s12967-016-0962-1. PubMed DOI PMC

Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E, Schoenfelt KQ, Kuzma JN, Larson I, Billing PS, Landerholm RW, Crouthamel M, Gozal D, Hwang S, Singh PK, Becker L. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 2014;20:614–625. doi: 10.1016/j.cmet.2014.08.010. PubMed DOI PMC

Cejkova S, Kubatova H, Thieme F, Janousek L, Fronek J, Poledne R, Kralova Lesna I. The effect of cytokines produced by human adipose tissue on monocyte adhesion to the endothelium. Cell Adhes Migr. 2019;13:293–302. doi: 10.1080/19336918.2019.1644856. PubMed DOI PMC

Kralova Lesna I, Suchanek P, Kovar J, Stavek P, Poledne R. Replacement of dietary saturated FAs by PUFAs in diet and reverse cholesterol transport. J Lipid Res. 2008;49:2414–2418. doi: 10.1194/jlr.M800271-JLR200. PubMed DOI

Cifkova R, Skodova Z, Bruthans J, Adamkova V, Jozifova M, Galovcova M, Wohlfahrt P, Krajcoviechova A, Poledne R, Stavek P, Lanská V. Longitudinal trends in major cardiovascular risk factors in the Czech population between 1985 and 2007/8. Czech MONICA and Czech post-MONICA. Atherosclerosis. 2010;211:676–681. doi: 10.1016/j.atherosclerosis.2010.04.007. PubMed DOI

Yvan-Charvet L, Ranalletta M, Wang N, Han S, Terasaka N, Li R, Welch C, Tall AR. Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest. 2007;117:3900–3908. doi: 10.1172/JCI33372. PubMed DOI PMC

Shao B, Tang Ch, Sinha A, Mayer PS, Davenport GD, Brot N, Oda MN, Zhao XQ, Heinecke JW. Humans with atherosclerosis have impaired ABCA1 cholesterol efflux and enhanced high-density lipoprotein oxidation by myeloperoxidase. Circ Res. 2014;114(11):1733–1742. doi: 10.1161/CIRCRESAHA.114.303454. PubMed DOI PMC

Mweva S, Paul JL, Cambillau M, Goudouneche D, Beaune P, Simon A, Fournier N. Comparison of different cellular models measuring in vitro the whole human serum cholesterol efflux capacity. Eur J Clin Invest. 2006;36:552–559. doi: 10.1111/j.1365-2362.2006.01673.x. PubMed DOI

Kralova Lesna IK, Suchanek P, Stavek P, Poledne R. May alcohol-induced increase of HDL be considered as atheroprotective? Physiol Res. 2010;59:407–413. doi: 10.33549/physiolres.931769. PubMed DOI

Marshall JD, Courage ER, Elliott RF, Fitzpatrick MN, Kim AD, Lopez-Clavijo AF, Woolfrey BA, Ouimet M, Wakelam MJO, Brown RJ. THP-1 macrophage cholesterol efflux is impaired by palmitoleate through Akt activation. PLoS One. 2020;15:e0233180. doi: 10.1371/journal.pone.0233180. PubMed DOI PMC

Motte A, Gall J, Salem JE, Dasque E, Lebot M, Frisdal E, Galier S, Villard EF, Bouaziz-Amar E, Lacorte JM, Charbit B, Goff WL, Lesnik P, Guerin M. Reduced reverse cholesterol transport efficacy in healthy men with undesirable postprandial triglyceride response. Biomolecules. 2020;10:810. doi: 10.3390/biom10050810. PubMed DOI PMC

Rohatgi A. High-Density Lipoprotein Function Measurement in Human Studies: Focus on Cholesterol Efflux Capacity. Prog Cardiovasc Dis. 2015;58:32–40. doi: 10.1016/j.pcad.2015.05.004. PubMed DOI PMC

Laforest S, Labrecque J, Michaud A, Cianflone K, Tchernof A. Adipocyte size as a determinant of metabolic disease and adipose tissue dysfunction. Crit Rev Clin Lab Sci. 2015;52(6):301–313. doi: 10.3109/10408363.2015.1041582. PubMed DOI

Skurk T, Alberti-Huber C, Herder Ch, Hauner H. Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab. 2007;92(3):1023–1033. doi: 10.1210/jc.2006-1055. PubMed DOI

De Naeyer H, Ouwens DM, Van Nieuwenhove Y, Pattyn P, Hart LM, Kaufman JM, Sell H, Eckel J, Cuvelier C, Taes YE, Ruige JB. Combined Gene and Protein Expression of Hormone-Sensitive Lipase and Adipose Triglyceride Lipase, Mitochondrial Content, and Adipocyte Size in Subcutaneous and Visceral Adipose Tissue of Morbidly Obese Men. Obes Facts. 2011;4:407–416. doi: 10.1159/000333445. PubMed DOI PMC

Poledne R, Zicha J. Human genome evolution and development of cardiovascular risk factors through natural selection. Physiol Res. 2018;67(2):155–163. doi: 10.33549/physiolres.933885. PubMed DOI

Veilleux A, Caron-Jobin M, Noël S, Laberge PY, Tchernof A. Visceral adipocyte hypertrophy is associated with dyslipidemia independent of body composition and fat distribution in women. Diabetes. 2011;60(5):1504–1511. doi: 10.2337/db10-1039. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...