Aerobic Anoxygenic Photosynthesis Is Commonly Present within the Genus Limnohabitans
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články
PubMed
29030444
PubMed Central
PMC5734016
DOI
10.1128/aem.02116-17
PII: AEM.02116-17
Knihovny.cz E-zdroje
- Klíčová slova
- FISH, IR microscopy, Limnohabitans, bacteriochlorophyll, bchY, freshwater Betaproteobacteria, photosynthetic bacteria, pufM,
- MeSH
- aerobióza MeSH
- bakteriální geny fyziologie MeSH
- bakteriální proteiny genetika metabolismus MeSH
- Comamonadaceae genetika metabolismus MeSH
- fotosyntéza genetika MeSH
- fylogeneze MeSH
- multigenová rodina fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
The genus Limnohabitans (Comamonadaceae, Betaproteobacteria) is a common and a highly active component of freshwater bacterioplanktonic communities. To date, the genus has been considered to contain only heterotrophic species. In this study, we detected the photosynthesis genes pufLM and bchY in 28 of 46 strains from three Limnohabitans lineages. The pufM sequences obtained are very closely related to environmental pufM sequences detected in various freshwater habitats, indicating the ubiquity and potential importance of photoheterotrophic Limnohabitans in nature. Additionally, we sequenced and analyzed the genomes of 5 potentially photoheterotrophic Limnohabitans strains, to gain further insights into their phototrophic capacity. The structure of the photosynthesis gene cluster turned out to be highly conserved within the genus Limnohabitans and also among all potentially photosynthetic Betaproteobacteria strains. The expression of photosynthetic complexes was detected in a culture of Limnohabitans planktonicus II-D5T using spectroscopic and pigment analyses. This was further verified by a novel combination of infrared microscopy and fluorescent in situ hybridization.IMPORTANCE The data presented document that the capacity to perform anoxygenic photosynthesis is common among the members of the genus Limnohabitans, indicating that they may have a novel role in freshwater habitats.
Aarhus Institute of Advanced Studies Aarhus University Aarhus Denmark
Biology Centre CAS Institute of Hydrobiology České Budějovice Czech Republic
Institute of Microbiology CAS Centre Algatech Třeboň Czech Republic
University of South Bohemia Faculty of Science České Budějovice Czech Republic
Zobrazit více v PubMed
Yurkov V, Csotonyi JT. 2009. New light on aerobic anoxygenic phototrophs, p 31–55. In Hunter CN, Daldal F, Thurnauer MC, Beatty JT (ed), Advances in photosynthesis and respiration, vol 28 The purple phototrophic bacteria. Springer, Dordrecht, Netherlands.
Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblizek M, Rathgeber C, Falkowski PG. 2001. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495. doi:10.1126/science.1059707. PubMed DOI
Sieracki ME, Gilg IC, Thier EC, Poulton NJ, Goericke R. 2006. Distribution of planktonic aerobic anoxygenic photoheterotrophic bacteria in the northwest Atlantic. Limnol Oceanogr 51:38–46. doi:10.4319/lo.2006.51.1.0038. DOI
Jiao N, Zhang Y, Zeng Y, Hong N, Liu R, Chen F, Wang P. 2007. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol 9:3091–3099. doi:10.1111/j.1462-2920.2007.01419.x. PubMed DOI
Cottrell MT, Waidner LA, Yu L, Kirchman DL. 2005. Bacterial diversity of metagenomic and PCR libraries from the Delaware River. Environ Microbiol 7:1883–1895. doi:10.1111/j.1462-2920.2005.00762.x. PubMed DOI
Mašín M, Zdun A, Stoń-Egiert J, Nausch M, Labrenz M, Moulisová V, Koblížek M. 2006. Seasonal changes and diversity of aerobic anoxygenic phototrophs in the Baltic Sea. Aquat Microb Ecol 45:247–254. doi:10.3354/ame045247. DOI
Mašín M, Nedoma J, Pechar L, Koblížek M. 2008. Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ Microbiol 10:1988–1996. doi:10.1111/j.1462-2920.2008.01615.x. PubMed DOI
Masin M, Cuperova Z, Hojerova E, Salka I, Grossart H-P, Koblížek M. 2012. Distribution of aerobic anoxygenic phototrophic bacteria in glacial lakes of northern Europe. Aquat Microb Ecol 66:77–86. doi:10.3354/ame01558. DOI
Fauteux L, Cottrell MT, Kirchman DL, Borrego CM, Garcia-Chaves MC, Del Giorgio PA. 2015. Patterns in abundance, cell size and pigment content of aerobic anoxygenic phototrophic bacteria along environmental gradients in northern lakes. PLoS One 10:e0124035. doi:10.1371/journal.pone.0124035. PubMed DOI PMC
Lew S, Koblížek M, Lew M, Medová H, Glińska-Lewczuk K, Owsianny PM. 2015. Seasonal changes of microbial communities in two shallow peat bog lakes. Folia Microbiol (Praha) 60:165–175. doi:10.1007/s12223-014-0352-0. PubMed DOI
Ruiz-González C, Proia L, Ferrera I, Gasol JM, Sabater S. 2013. Effects of large river dam regulation on bacterioplankton community structure. FEMS Microbiol Ecol 84:316–331. doi:10.1111/1574-6941.12063. PubMed DOI
Koblížek M. 2015. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 39:854–870. doi:10.1093/femsre/fuv032. PubMed DOI
Béjà O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM, Hamada T, Eisen JA, Fraser CM, DeLong EF. 2002. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415:630–633. doi:10.1038/415630a. PubMed DOI
Yutin N, Suzuki MT, Teeling H, Weber M, Venter JC, Rusch DB, Béjà O. 2007. Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling Expedition metagenomes. Environ Microbiol 9:1464–1475. doi:10.1111/j.1462-2920.2007.01265.x. PubMed DOI
Waidner LA, Kirchman DL. 2008. Diversity and distribution of ecotypes of the aerobic anoxygenic phototrophy gene pufM in the Delaware estuary. Appl Environ Microbiol 74:4012–4021. doi:10.1128/AEM.02324-07. PubMed DOI PMC
Jiang H, Dong H, Yu B, Lv G, Deng S, Wu Y, Dai M, Jiao N. 2009. Abundance and diversity of aerobic anoxygenic phototrophic bacteria in saline lakes on the Tibetan plateau. FEMS Microbiol Ecol 67:268–278. doi:10.1111/j.1574-6941.2008.00616.x. PubMed DOI
Salka I, Čuperová Z, Mašín M, Koblížek M, Grossart H-PP. 2011. Rhodoferax-related pufM gene cluster dominates the aerobic anoxygenic phototrophic communities in German freshwater lakes. Environ Microbiol 13:2865–2875. doi:10.1111/j.1462-2920.2011.02562.x. PubMed DOI
Caliz J, Casamayor EO. 2014. Environmental controls and composition of anoxygenic photoheterotrophs in ultraoligotrophic high-altitude lakes (central Pyrenees). Environ Microbiol Rep 6:145–151. doi:10.1111/1758-2229.12142. PubMed DOI
Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. 2011. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49. doi:10.1128/MMBR.00028-10. PubMed DOI PMC
Šimek K, Kasalický V, Jezbera J, Jezberová J, Hejzlar J, Hahn MW. 2010. Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing a core group of the betaproteobacterial genus Limnohabitans. Appl Environ Microbiol 76:631–639. doi:10.1128/AEM.02203-09. PubMed DOI PMC
Kasalický V, Jezbera J, Hahn MW, Šimek K. 2013. The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS One 8:e58209. doi:10.1371/journal.pone.0058209. PubMed DOI PMC
Šimek K, Pernthaler J, Weinbauer MG, Horňák K, Dolan JR, Nedoma J, Mašín M, Amann R. 2001. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl Environ Microbiol 67:2723–2733. doi:10.1128/AEM.67.6.2723-2733.2001. PubMed DOI PMC
Šimek K, Horňák K, Jezbera J, Nedoma J, Vrba J, Straškrábová V, Macek M, Dolan JR, Hahn MW. 2006. Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ Microbiol 8:1613–1624. doi:10.1111/j.1462-2920.2006.01053.x. PubMed DOI
Jezbera J, Horňák K, Šimek K. 2006. Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients. Environ Microbiol 8:1330–1339. doi:10.1111/j.1462-2920.2006.01026.x. PubMed DOI
Šimek K, Kasalický V, Jezbera J, Horňák K, Nedoma J, Hahn MW, Bass D, Jost S, Boenigk J. 2013. Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria. ISME J 7:1519–1530. doi:10.1038/ismej.2013.57. PubMed DOI PMC
Hahn MW, Kasalický V, Jezbera J, Brandt U, Jezberová J, Šimek K. 2010. Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from a freshwater lake. Int J Syst Evol Microbiol 60:1358–1365. doi:10.1099/ijs.0.013292-0. PubMed DOI PMC
Hahn MW, Kasalický V, Jezbera J, Brandt U, Šimek K. 2010. Limnohabitans australis sp. nov., isolated from a freshwater pond, and emended description of the genus Limnohabitans. Int J Syst Evol Microbiol 60:2946–2950. doi:10.1099/ijs.0.022384-0. PubMed DOI PMC
Kasalický V, Jezbera J, Šimek K, Hahn MW. 2010. Limnohabitans planktonicus sp. nov. and Limnohabitans parvus sp. nov., planktonic betaproteobacteria isolated from a freshwater reservoir, and emended description of the genus Limnohabitans. Int J Syst Evol Microbiol 60:2710–2714. doi:10.1099/ijs.0.018952-0. PubMed DOI PMC
Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han S-K. 2002. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155. doi:10.3354/ame028141. DOI
Yutin N, Suzuki MT, Rosenberg M, Rotem D, Madigan MT, Süling J, Imhoff JF, Béjà O. 2009. BchY-based degenerate primers target all types of anoxygenic photosynthetic bacteria in a single PCR. Appl Environ Microbiol 75:7556–7559. doi:10.1128/AEM.01014-09. PubMed DOI PMC
Imhoff J. 2016. New dimensions in microbial ecology: functional genes in studies to unravel the biodiversity and role of functional microbial groups in the environment. Microorganisms 4:19. doi:10.3390/microorganisms4020019. PubMed DOI PMC
Pernthaler A, Pernthaler J, Amann R. 2004. Sensitive multi-color fluorescence in situ hybridization for the identification of environmental microorganisms, p 711–726. In Kowalchuk GA, de Bruijn F, Head IM, Van der Zijpp AJ, van Elsas JD (ed), Molecular microbial ecology manual, 2nd ed Springer, Dordrecht, Netherlands.
Yurkov V, Beatty JT. 1998. Isolation of aerobic anoxygenic photosynthetic bacteria from black smoker plume waters of the Juan de Fuca Ridge in the Pacific Ocean. Appl Environ Microbiol 64:337–341. PubMed PMC
Zheng Q, Koblížek M, Beatty JT, Jiao N. 2013. Evolutionary divergence of marine aerobic anoxygenic phototrophic bacteria as seen from diverse organisations of their photosynthesis gene clusters. Adv Bot Res 66:359–383. doi:10.1016/B978-0-12-397923-0.00012-6. DOI
Zheng Q, Zhang R, Koblížek M, Boldareva EN, Yurkov V, Yan S, Jiao N. 2011. Diverse arrangement of photosynthetic gene clusters in aerobic anoxygenic phototrophic bacteria. PLoS One 6:e25050. doi:10.1371/journal.pone.0025050. PubMed DOI PMC
Tomasch J, Gohl R, Bunk B, Diez MS, Wagner-Doebler I. 2011. Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes. ISME J 5:1957–1968. doi:10.1038/ismej.2011.68. PubMed DOI PMC
Čuperová Z, Holzer E, Salka I, Sommarug R, Koblížek M. 2013. Temporal changes and altitudinal distribution of aerobic anoxygenic phototrophs in mountain lakes. Appl Environ Microbiol 79:6439–6446. doi:10.1128/AEM.01526-13. PubMed DOI PMC
Waidner LA, Kirchman DL. 2005. Aerobic anoxygenic photosynthesis genes and operons in uncultured bacteria in the Delaware River. Environ Microbiol 7:1896–1908. doi:10.1111/j.1462-2920.2005.00883.x. PubMed DOI
Piwosz K, Salcher MM, Zeder M, Ameryk A, Pernthaler J. 2013. Seasonal dynamics and activity of typical freshwater bacteria in brackish waters of the Gulf of Gdansk. Limnol Oceanogr 58:817–826. doi:10.4319/lo.2013.58.3.0817. DOI
Salcher MM, Posch T, Pernthaler J. 2013. In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. ISME J 7:896–907. doi:10.1038/ismej.2012.162. PubMed DOI PMC
Hahn MW, Schmidt J, Pitt A, Taipale SJ, Lang E. 2016. Reclassification of four Polynucleobacter necessarius strains as representatives of Polynucleobacter asymbioticus comb. nov., Polynucleobacter duraquae sp. nov., Polynucleobacter yangtzensis sp. nov. and Polynucleobacter sinensis sp. nov., and emended description of Polynucleobacter necessarius. Int J Syst Evol Microbiol 66:2883–2892. doi:10.1099/ijsem.0.001073. PubMed DOI PMC
Boldareva-Nuianzina EN, Bláhová Z, Sobotka R, Koblížek M. 2013. Distribution and origin of oxygen-dependent and oxygen-independent forms of Mg-protoporphyrin monomethylester cyclase among phototrophic proteobacteria. Appl Environ Microbiol 79:2596–2604. doi:10.1128/AEM.00104-13. PubMed DOI PMC
Kaschner M, Loeschcke A, Krause J, Minh BQ, Heck A, Endres S, Svensson V, Wirtz A, von Haeseler A, Jaeger KE, Drepper T, Krauss U. 2014. Discovery of the first light-dependent protochlorophyllide oxidoreductase in anoxygenic phototrophic bacteria. Mol Microbiol 93:1066–1078. doi:10.1111/mmi.12719. PubMed DOI
Luo H, Moran MA. 2014. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev 78:573–587. doi:10.1128/MMBR.00020-14. PubMed DOI PMC
Koblížek M, Zeng Y, Horák A, Oborník M, Beatty JT. 2013. Regressive evolution of photosynthesis in the Roseobacter clade. Adv Bot Res 66:385–405. doi:10.1016/B978-0-12-397923-0.00013-8. DOI
Logares R, Bråte J, Heinrich F, Shalchian-Tabrizi K, Bertilsson S. 2010. Infrequent transitions between saline and fresh waters in one of the most abundant microbial lineages (SAR11). Mol Biol Evol 27:347–357. doi:10.1093/molbev/msp239. PubMed DOI
Brinkhoff T, Giebel H-A, Simon M. 2008. Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 189:531–539. doi:10.1007/s00203-008-0353-y. PubMed DOI
Alonso C, Pernthaler J. 2006. Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters. Environ Microbiol 8:2022–2030. doi:10.1111/j.1462-2920.2006.01082.x. PubMed DOI
Salcher MM, Pernthaler J, Posch T. 2010. Spatiotemporal distribution and activity patterns of bacteria from three phylogenetic groups in an oligomesotrophic lake. Limnol Oceanogr 55:846–856. doi:10.4319/lo.2010.55.2.0846. DOI
Simek K, Nedoma J, Znachor P, Kasalický V, Jezbera J, Hornák K, Sed'a J. 2014. A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr 59:1477–1492. doi:10.4319/lo.2014.59.5.1477. DOI
Alonso-Sáez L, Unanue M, Latatu A, Azua I, Ayo B, Artolozaga I, Iriberri J. 2009. Changes in marine prokaryotic community induced by varying types of dissolved organic matter and subsequent grazing pressure. J Plankton Res 31:1373–1383. doi:10.1093/plankt/fbp081. DOI
Allgaier M, Uphoff H, Felske A, Wagner-Döbler I. 2003. Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69:5051–5059. doi:10.1128/AEM.69.9.5051-5059.2003. PubMed DOI PMC
Šimek K, Kasalický V, Zapomělová E, Horňák K. 2011. Alga-derived substrates select for distinct betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains. Appl Environ Microbiol 77:7307–7315. doi:10.1128/AEM.05107-11. PubMed DOI PMC
Wagner-Döbler I, Ballhausen B, Berger M, Brinkhoff T, Buchholz I, Bunk B, Cypionka H, Daniel R, Drepper T, Gerdts G, Hahnke S, Han C, Jahn D, Kalhoefer D, Kiss H, Klenk H-P, Kyrpides N, Liebl W, Liesegang H, Meincke L, Pati A, Petersen J, Piekarski T, Pommerenke C, Pradella S, Pukall R, Rabus R, Stackebrandt E, Thole S, Thompson L, Tielen P, Tomasch J, Von Jan M, Wanphrut N, Wichels A, Zech H, Simon M. 2010. The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker's guide to life in the sea. ISME J 4:61–77. doi:10.1038/ismej.2009.94. PubMed DOI
Igarashi N, Harada J, Nagashima S, Matsuura K, Shimada K, Nagashima KVP. 2001. Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J Mol Evol 52:333–341. doi:10.1007/s002390010163. PubMed DOI
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi:10.1089/cmb.2012.0021. PubMed DOI PMC
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2004. Versatile and open software for comparing large genomes. Genome Biol 5:R12. doi:10.1186/gb-2004-5-2-r12. PubMed DOI PMC
Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The SEED and the Rapid Annotation of Microbial Genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206–D214. doi:10.1093/nar/gkt1226. PubMed DOI PMC
Zeng Y, Kasalický V, Šimek K, Koblížek M. 2012. Genome sequences of two freshwater betaproteobacterial isolates, Limnohabitans species strains Rim28 and Rim47, indicate their capabilities as both photoautotrophs and ammonia oxidizers. J Bacteriol 194:6302–6303. doi:10.1128/JB.01481-12. PubMed DOI PMC
Sander J, Dahl C. 2009. Metabolism of inorganic sulfur compounds in purple bacteria, p 595–622. In Hunter CN, Daldal F, Thurnauer MC, Beatty JT (ed), Advances in photosynthesis and respiration, vol 28 The purple phototrophic bacteria. Springer, Dordrecht, Netherlands.
Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. doi:10.1186/1471-2105-5-113. PubMed DOI PMC
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010. PubMed DOI
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi:10.1093/sysbio/sys029. PubMed DOI PMC
Selyanin V, Hauruseu D, Koblížek M. 2016. The variability of light-harvesting complexes in aerobic anoxygenic phototrophs. Photosynth Res 128:35–43. doi:10.1007/s11120-015-0197-7. PubMed DOI
Atamna-Ismaeel N, Finkel O, Glaser F, von Mering C, Vorholt JA, Koblížek M, Belkin S, Béjà O. 2012. Bacterial anoxygenic photosynthesis on plant leaf surfaces. Environ Microbiol Rep 4:209–216. doi:10.1111/j.1758-2229.2011.00323.x. PubMed DOI
Koblížek M, Moulisová V, Muroňová M, Oborník M. 2015. Horizontal transfers of two types of puf operons among phototrophic members of the Roseobacter clade. Folia Microbiol (Praha) 60:37–43. doi:10.1007/s12223-014-0337-z. PubMed DOI
Chen Y, Zhang Y, Jiao N. 2011. Responses of aerobic anoxygenic phototrophic bacteria to algal blooms in the East China Sea. Hydrobiologia 661:435–443. doi:10.1007/s10750-010-0553-8. DOI
Phenology and ecological role of aerobic anoxygenic phototrophs in freshwaters
Diversity dynamics of aerobic anoxygenic phototrophic bacteria in a freshwater lake
Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake
Simultaneous Presence of Bacteriochlorophyll and Xanthorhodopsin Genes in a Freshwater Bacterium
Cryptophyta as major bacterivores in freshwater summer plankton