Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing a core group of the Betaproteobacterial genus Limnohabitans
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 19853
Austrian Science Fund FWF - Austria
PubMed
19948856
PubMed Central
PMC2812994
DOI
10.1128/aem.02203-09
PII: AEM.02203-09
Knihovny.cz E-zdroje
- MeSH
- Betaproteobacteria klasifikace genetika izolace a purifikace MeSH
- chlorofyl a MeSH
- chlorofyl analýza MeSH
- DNA bakterií chemie MeSH
- ekosystém * MeSH
- Eukaryota genetika MeSH
- fosfor analýza MeSH
- fylogeneze MeSH
- genetická variace MeSH
- hybridizace in situ fluorescenční MeSH
- mikrobiologie vody MeSH
- nadmořská výška MeSH
- počet mikrobiálních kolonií MeSH
- ribozomální DNA genetika MeSH
- RNA ribozomální 16S genetika MeSH
- RNA ribozomální 18S genetika MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- skleníkový efekt MeSH
- sladká voda chemie mikrobiologie MeSH
- uhlík analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- chlorofyl a MeSH
- chlorofyl MeSH
- DNA bakterií MeSH
- fosfor MeSH
- ribozomální DNA MeSH
- RNA ribozomální 16S MeSH
- RNA ribozomální 18S MeSH
- uhlík MeSH
The distribution of the phylogenetically narrow R-BT065 cluster (Betaproteobacteria) in 102 freshwater lakes, reservoirs, and various ponds located in central Europe (a total of 122 samples) was examined by using a cluster-specific fluorescence in situ hybridization probe. These habitats differ markedly in pH, conductivity, trophic status, surface area, altitude, bedrock type, and other limnological characteristics. Despite the broad ecological diversity of the habitats investigated, the cluster was detected in 96.7% of the systems, and its occurrence was not restricted to a certain habitat type. However, the relative proportions of the cluster in the total bacterioplankton were significantly lower in humic and acidified lakes than in pH-neutral or alkaline habitats. On average, the cluster accounted for 9.4% of the total bacterioplankton (range, 0 to 29%). The relative abundance and absolute abundance of these bacteria were significantly and positively related to higher pH, conductivity, and the proportion of low-molecular-weight compounds in dissolved organic carbon (DOC) and negatively related to the total DOC and dissolved aromatic carbon contents. Together, these parameters explained 55.3% of the variability in the occurrence of the cluster. Surprisingly, no clear relationship of the R-BT065 bacteria to factors indicating the trophic status of habitats (i.e., different forms of phosphorus and chlorophyll a content) was found. Based on our results and previously published data, we concluded that the R-BT065 cluster represents a ubiquitous, highly active segment of bacterioplankton in nonacidic lakes and ponds and that alga-derived substrates likely form the main pool of substrates responsible for its high growth potential and broad distribution in freshwater habitats.
Appl Environ Microbiol. 2010 Jun;76(11):3763 PubMed
Zobrazit více v PubMed
Allgaier, M., and H.-P. Grossart. 2006. Diversity and seasonal dynamics of Actinobacteria in four lakes in Northeastern Germany. Appl. Environ. Microbiol. 72:3489-3497. PubMed PMC
Alonso, C., M. Zeder, C. Piccini, D. Conde, and J. Pernthaler. 2009. Ecophysiological differences of betaproteobacterial populations in two hydrochemically distinct compartments of a subtropical lagoon. Environ. Microbiol. 11:867-876. PubMed
Baines, S. B., and M. L. Pace. 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol. Oceanogr. 36:1078-1090.
Buck, U., H.-P. Grossart, R. Amann, and J. Pernthaler. 2009. Substrate incorporation patterns of bacterioplankton populations in stratified and mixed waters of a humic lake. Environ. Microbiol. 11:1854-1865. PubMed
Crump, B. C., E. V. Armbrust, and J. A. Baross. 1999. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Appl. Environ. Microbiol. 65:3192-3204. PubMed PMC
del Giorgio, P. A., and J. Davis. 2003. Patterns in dissolved organic matter lability and consumption across aquatic ecosystems, p. 399-424. In S. E. Findlay and R. L. Sinsabaugh (ed.). Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, New York, NY.
Eiler, A., and S. Bertilsson. 2004. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ. Microbiol. 6:1228-1243. PubMed
Giroldo, D., P. I. C. Ortolano, and A. A. H. Vieira. 2007. Bacteria-algae association in batch cultures of phytoplankton from a tropical reservoir: the significance of algal carbohydrates. Freshw. Biol. 52:1281-1289.
Glöckner, F. O., B. M. Fuchs, and R. Amann. 1999. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65:3721-3726. PubMed PMC
Glöckner, F. O., E. Zaichikov, N. Belkova, L. Denissova, J. Pernthaler, A. Pernthaler, and R. Amann. 2000. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl. Environ. Microbiol. 66:5053-5065. PubMed PMC
Hahn, M. W., V. Kasalický, J. Jezbera, U. Brandt, J. Jezberová, and K. Šimek. 11 August 2009. Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from a freshwater lake. Int. J. Syst. Evol. Microbiol. doi:10.1099/ijs.0.013292-0. PubMed DOI PMC
Horňák, K., J. Jezbera, J. Nedoma, J. Gasol, and K. Šimek. 2006. Effects of resource availability and bacterivory on leucine incorporation in different groups of freshwater bacterioplankton, assessed using microautoradiography. Aquat. Microb. Ecol. 45:277-289.
Horňák, K., J. Jezbera, and K. Šimek. 2008. Impact of Microcystis aeruginosa and flagellates on bacterial growth and activity in a eutrophic reservoir. Aquat. Microb. Ecol. 52:107-117.
Jezbera, J., K. Horňák, and K. Šimek. 2005. Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microbiol. Ecol. 52:351-363. PubMed
Jones, S. E., R. J. Newton, and K. D. McMahon. 2009. Evidence for structuring of bacterial community composition by organic carbon source in temperate lakes. Environ. Microbiol. 11:2463-2472. PubMed
Kopáček, J., and J. Hejzlar. 1993. Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int. J. Environ. Anal. Chem. 53:173-183.
Lindström, E. S., M. P. Kamst-Van Agterveld, and G. Zwart. 2005. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl. Environ. Microbiol. 71:8201-8206. PubMed PMC
Mueller-Spitz, S. R., G. W. Goetz, and S. L. McLellan. 2009. Temporal and spatial variability in nearshore bacterioplankton communities of Lake Michigan. FEMS Microbiol. Ecol. 67:511-522. PubMed
Murphy, J., and J. P. Riley. 1962. A modified single-solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27:31.-36.
Myklestad, S., O. Holm-Hansen, K. M. Vårum, and B. E. Volcani. 1989. Rate of release of extracellular amino acids and carbohydrates from the marine diatom Chaetoceros affinis. J. Plankton Res. 11:763-773.
Newton, R. J., S. E. Jones, M. R. Helmus, and K. D. McMahon. 2007. The phylogenetic ecology of the freshwater acI lineage. Appl. Environ. Microbiol. 73:7169-7176. PubMed PMC
Pages, J., and F. Gadel. 1990. Dissolved organic matter and UV absorption in a tropical hyperhaline estuary. Sci. Total Environ. 99:173-204.
Percent, S. F., M. E. Frischer, P. A. Vescio, E. B. Duffy, V. Milano, M. McLellan, B. M., Stevens, C. W. Boylen, and S. A. Nierzwicki-Bauer. 2008. Bacterial community structure of acid-impacted lakes: what controls diversity? Appl. Environ. Microbiol. 74:1856-1868. PubMed PMC
Pérez, M. T., and R. Sommaruga. 2006. Differential effect of algal- and soil-derived dissolved organic matter on alpine lake bacterial community composition and activity. Limnol. Oceanogr. 51:2527-2537.
Pérez, M. T., and R. Sommaruga. 2007. Interactive effects of solar radiation and dissolved organic matter on bacterial activity and community structure. Environ. Microbiol. 9:2200-2210. PubMed PMC
Pernthaler, A., J. Pernthaler, and R. Amann. 2002. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68:3094-3101. PubMed PMC
Salcher, M. M., J. Pernthaler, M. Zeder, R. Psenner, and T. Posch. 2008. Spatio-temporal niche separation of planktonic Betaproteobacteria in an oligo-mesotrophic lake. Environ. Microbiol. 10:2074-2086. PubMed
Schwarz, J. N., P. Kowalczuk, S. Kaczmarek, G. F. Cota, B. G. Mitchel, M. Kahru, and F. P. Chavez. 2002. Two models for absorption by coloured dissolved organic matter (CDOM). Oceanologia 44:209-241.
Sekar, R., A. Pernthaler, J. Pernthaler, F. Warnecke, T. Posch, and R. Amann. 2003. An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl. Environ. Microbiol. 69:2928-2935. PubMed PMC
Shaw, A. K., A. L. Halpern, K. Beeson, B. Tran, J. C. Venter, and J. B. Martiny. 2008. It's all relative: ranking the diversity of aquatic bacterial. Environ. Microbiol. 10:2200-2210. PubMed
Šimek, K., K. Horňák, J. Jezbera, M. Mašín, J. Nedoma, J. M. Gasol, and M. Schauer. 2005. Influence of top-down and bottom-up manipulation on the R-BT065 subcluster of beta-proteobacteria, an abundant group in bacterioplankton of a freshwater reservoir. Appl. Environ. Microbiol. 71:2381-2390. PubMed PMC
Šimek, K., K. Horňák, J. Jezbera, J. Nedoma, J. Vrba, V. Straškrabová, M. Macek, J. R. Dolan, and M. W. Hahn. 2006. Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ. Microbiol. 8:1613-1624. PubMed
Šimek, K., K. Horňák, J. Jezbera, J. Nedoma, P. Znachor, J. Hejzlar, and J. Sed'a. 2008. Spatio-temporal patterns of bacterioplankton production and community composition related to phytoplankton composition and protistan bacterivory in a dam reservoir. Aquat. Microb. Ecol. 51:249-262.
Šimek, K., J. Pernthaler, M. G. Weinbauer, K. Horňák, J. R. Dolan, J. Nedoma, M. Mašín, and R. Amann. 2001. Changes in bacterial community composition, dynamics, and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl. Environ. Microbiol. 67:2723-2733. PubMed PMC
Šimek, K., M. G. Weinbauer, K. Horňák, J. Jezbera, J. Nedoma, and J. Dolan. 2007. Grazer and virus-induced mortality of bacterioplankton accelerates development of Flectobacillus populations in a freshwater community. Environ. Microbiol. 9:789-800. PubMed
Søndergaard, M., and M. Middelboe. 1995. A cross-system analysis of labile dissolved organic carbon. Mar. Ecol. Prog. Ser. 118:283-294.
Sundh, I. 1992. Biochemical composition of dissolved organic carbon derived from phytoplankton and used by heterotrophic bacteria. Appl. Environ. Microbiol. 58:2938-2947. PubMed PMC
Ter Braak, C. J. F., and P. Šmilauer. 1998. CANOCO for Windows, version 4.02. Centre for Biometry Wageningen, CPRO-DLO, Wageningen, the Netherlands.
Weishaar, J. L., G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii, and K. Mopper. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37:4702-4708. PubMed
Wu, Q. L., M. Schauer, M. P. Kamst-Van Agterveld, G. Zwart, and M. W. Hahn. 2006. Bacterioplankton community composition along a salinity gradient of sixteen high mountain lakes located on the Tibetan Plateau, China. Appl. Environ. Microbiol. 72:5478-5485. PubMed PMC
Yannarell, A. C., and E. W. Triplett. 2005. Geographic and environmental sources of variation in lake bacterial community composition. Appl. Environ. Microbiol. 71:227-239. PubMed PMC
Zwart, G., B. C. Crump, M. Agterveld, F. Hagen, and S. K. Han. 2002. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat. Microb. Ecol. 28:141-155.
Aerobic Anoxygenic Photosynthesis Is Commonly Present within the Genus Limnohabitans