Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing a core group of the Betaproteobacterial genus Limnohabitans

. 2010 Feb ; 76 (3) : 631-9. [epub] 20091130

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19948856

Grantová podpora
P 19853 Austrian Science Fund FWF - Austria

The distribution of the phylogenetically narrow R-BT065 cluster (Betaproteobacteria) in 102 freshwater lakes, reservoirs, and various ponds located in central Europe (a total of 122 samples) was examined by using a cluster-specific fluorescence in situ hybridization probe. These habitats differ markedly in pH, conductivity, trophic status, surface area, altitude, bedrock type, and other limnological characteristics. Despite the broad ecological diversity of the habitats investigated, the cluster was detected in 96.7% of the systems, and its occurrence was not restricted to a certain habitat type. However, the relative proportions of the cluster in the total bacterioplankton were significantly lower in humic and acidified lakes than in pH-neutral or alkaline habitats. On average, the cluster accounted for 9.4% of the total bacterioplankton (range, 0 to 29%). The relative abundance and absolute abundance of these bacteria were significantly and positively related to higher pH, conductivity, and the proportion of low-molecular-weight compounds in dissolved organic carbon (DOC) and negatively related to the total DOC and dissolved aromatic carbon contents. Together, these parameters explained 55.3% of the variability in the occurrence of the cluster. Surprisingly, no clear relationship of the R-BT065 bacteria to factors indicating the trophic status of habitats (i.e., different forms of phosphorus and chlorophyll a content) was found. Based on our results and previously published data, we concluded that the R-BT065 cluster represents a ubiquitous, highly active segment of bacterioplankton in nonacidic lakes and ponds and that alga-derived substrates likely form the main pool of substrates responsible for its high growth potential and broad distribution in freshwater habitats.

Erratum v

Appl Environ Microbiol. 2010 Jun;76(11):3763 PubMed

Zobrazit více v PubMed

Allgaier, M., and H.-P. Grossart. 2006. Diversity and seasonal dynamics of Actinobacteria in four lakes in Northeastern Germany. Appl. Environ. Microbiol. 72:3489-3497. PubMed PMC

Alonso, C., M. Zeder, C. Piccini, D. Conde, and J. Pernthaler. 2009. Ecophysiological differences of betaproteobacterial populations in two hydrochemically distinct compartments of a subtropical lagoon. Environ. Microbiol. 11:867-876. PubMed

Baines, S. B., and M. L. Pace. 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol. Oceanogr. 36:1078-1090.

Buck, U., H.-P. Grossart, R. Amann, and J. Pernthaler. 2009. Substrate incorporation patterns of bacterioplankton populations in stratified and mixed waters of a humic lake. Environ. Microbiol. 11:1854-1865. PubMed

Crump, B. C., E. V. Armbrust, and J. A. Baross. 1999. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Appl. Environ. Microbiol. 65:3192-3204. PubMed PMC

del Giorgio, P. A., and J. Davis. 2003. Patterns in dissolved organic matter lability and consumption across aquatic ecosystems, p. 399-424. In S. E. Findlay and R. L. Sinsabaugh (ed.). Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, New York, NY.

Eiler, A., and S. Bertilsson. 2004. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ. Microbiol. 6:1228-1243. PubMed

Giroldo, D., P. I. C. Ortolano, and A. A. H. Vieira. 2007. Bacteria-algae association in batch cultures of phytoplankton from a tropical reservoir: the significance of algal carbohydrates. Freshw. Biol. 52:1281-1289.

Glöckner, F. O., B. M. Fuchs, and R. Amann. 1999. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65:3721-3726. PubMed PMC

Glöckner, F. O., E. Zaichikov, N. Belkova, L. Denissova, J. Pernthaler, A. Pernthaler, and R. Amann. 2000. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl. Environ. Microbiol. 66:5053-5065. PubMed PMC

Hahn, M. W., V. Kasalický, J. Jezbera, U. Brandt, J. Jezberová, and K. Šimek. 11 August 2009. Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from a freshwater lake. Int. J. Syst. Evol. Microbiol. doi:10.1099/ijs.0.013292-0. PubMed DOI PMC

Horňák, K., J. Jezbera, J. Nedoma, J. Gasol, and K. Šimek. 2006. Effects of resource availability and bacterivory on leucine incorporation in different groups of freshwater bacterioplankton, assessed using microautoradiography. Aquat. Microb. Ecol. 45:277-289.

Horňák, K., J. Jezbera, and K. Šimek. 2008. Impact of Microcystis aeruginosa and flagellates on bacterial growth and activity in a eutrophic reservoir. Aquat. Microb. Ecol. 52:107-117.

Jezbera, J., K. Horňák, and K. Šimek. 2005. Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microbiol. Ecol. 52:351-363. PubMed

Jones, S. E., R. J. Newton, and K. D. McMahon. 2009. Evidence for structuring of bacterial community composition by organic carbon source in temperate lakes. Environ. Microbiol. 11:2463-2472. PubMed

Kopáček, J., and J. Hejzlar. 1993. Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int. J. Environ. Anal. Chem. 53:173-183.

Lindström, E. S., M. P. Kamst-Van Agterveld, and G. Zwart. 2005. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl. Environ. Microbiol. 71:8201-8206. PubMed PMC

Mueller-Spitz, S. R., G. W. Goetz, and S. L. McLellan. 2009. Temporal and spatial variability in nearshore bacterioplankton communities of Lake Michigan. FEMS Microbiol. Ecol. 67:511-522. PubMed

Murphy, J., and J. P. Riley. 1962. A modified single-solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27:31.-36.

Myklestad, S., O. Holm-Hansen, K. M. Vårum, and B. E. Volcani. 1989. Rate of release of extracellular amino acids and carbohydrates from the marine diatom Chaetoceros affinis. J. Plankton Res. 11:763-773.

Newton, R. J., S. E. Jones, M. R. Helmus, and K. D. McMahon. 2007. The phylogenetic ecology of the freshwater acI lineage. Appl. Environ. Microbiol. 73:7169-7176. PubMed PMC

Pages, J., and F. Gadel. 1990. Dissolved organic matter and UV absorption in a tropical hyperhaline estuary. Sci. Total Environ. 99:173-204.

Percent, S. F., M. E. Frischer, P. A. Vescio, E. B. Duffy, V. Milano, M. McLellan, B. M., Stevens, C. W. Boylen, and S. A. Nierzwicki-Bauer. 2008. Bacterial community structure of acid-impacted lakes: what controls diversity? Appl. Environ. Microbiol. 74:1856-1868. PubMed PMC

Pérez, M. T., and R. Sommaruga. 2006. Differential effect of algal- and soil-derived dissolved organic matter on alpine lake bacterial community composition and activity. Limnol. Oceanogr. 51:2527-2537.

Pérez, M. T., and R. Sommaruga. 2007. Interactive effects of solar radiation and dissolved organic matter on bacterial activity and community structure. Environ. Microbiol. 9:2200-2210. PubMed PMC

Pernthaler, A., J. Pernthaler, and R. Amann. 2002. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68:3094-3101. PubMed PMC

Salcher, M. M., J. Pernthaler, M. Zeder, R. Psenner, and T. Posch. 2008. Spatio-temporal niche separation of planktonic Betaproteobacteria in an oligo-mesotrophic lake. Environ. Microbiol. 10:2074-2086. PubMed

Schwarz, J. N., P. Kowalczuk, S. Kaczmarek, G. F. Cota, B. G. Mitchel, M. Kahru, and F. P. Chavez. 2002. Two models for absorption by coloured dissolved organic matter (CDOM). Oceanologia 44:209-241.

Sekar, R., A. Pernthaler, J. Pernthaler, F. Warnecke, T. Posch, and R. Amann. 2003. An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl. Environ. Microbiol. 69:2928-2935. PubMed PMC

Shaw, A. K., A. L. Halpern, K. Beeson, B. Tran, J. C. Venter, and J. B. Martiny. 2008. It's all relative: ranking the diversity of aquatic bacterial. Environ. Microbiol. 10:2200-2210. PubMed

Šimek, K., K. Horňák, J. Jezbera, M. Mašín, J. Nedoma, J. M. Gasol, and M. Schauer. 2005. Influence of top-down and bottom-up manipulation on the R-BT065 subcluster of beta-proteobacteria, an abundant group in bacterioplankton of a freshwater reservoir. Appl. Environ. Microbiol. 71:2381-2390. PubMed PMC

Šimek, K., K. Horňák, J. Jezbera, J. Nedoma, J. Vrba, V. Straškrabová, M. Macek, J. R. Dolan, and M. W. Hahn. 2006. Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ. Microbiol. 8:1613-1624. PubMed

Šimek, K., K. Horňák, J. Jezbera, J. Nedoma, P. Znachor, J. Hejzlar, and J. Sed'a. 2008. Spatio-temporal patterns of bacterioplankton production and community composition related to phytoplankton composition and protistan bacterivory in a dam reservoir. Aquat. Microb. Ecol. 51:249-262.

Šimek, K., J. Pernthaler, M. G. Weinbauer, K. Horňák, J. R. Dolan, J. Nedoma, M. Mašín, and R. Amann. 2001. Changes in bacterial community composition, dynamics, and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl. Environ. Microbiol. 67:2723-2733. PubMed PMC

Šimek, K., M. G. Weinbauer, K. Horňák, J. Jezbera, J. Nedoma, and J. Dolan. 2007. Grazer and virus-induced mortality of bacterioplankton accelerates development of Flectobacillus populations in a freshwater community. Environ. Microbiol. 9:789-800. PubMed

Søndergaard, M., and M. Middelboe. 1995. A cross-system analysis of labile dissolved organic carbon. Mar. Ecol. Prog. Ser. 118:283-294.

Sundh, I. 1992. Biochemical composition of dissolved organic carbon derived from phytoplankton and used by heterotrophic bacteria. Appl. Environ. Microbiol. 58:2938-2947. PubMed PMC

Ter Braak, C. J. F., and P. Šmilauer. 1998. CANOCO for Windows, version 4.02. Centre for Biometry Wageningen, CPRO-DLO, Wageningen, the Netherlands.

Weishaar, J. L., G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii, and K. Mopper. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37:4702-4708. PubMed

Wu, Q. L., M. Schauer, M. P. Kamst-Van Agterveld, G. Zwart, and M. W. Hahn. 2006. Bacterioplankton community composition along a salinity gradient of sixteen high mountain lakes located on the Tibetan Plateau, China. Appl. Environ. Microbiol. 72:5478-5485. PubMed PMC

Yannarell, A. C., and E. W. Triplett. 2005. Geographic and environmental sources of variation in lake bacterial community composition. Appl. Environ. Microbiol. 71:227-239. PubMed PMC

Zwart, G., B. C. Crump, M. Agterveld, F. Hagen, and S. K. Han. 2002. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat. Microb. Ecol. 28:141-155.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Diel changes and diversity of pufM expression in freshwater communities of anoxygenic phototrophic bacteria

. 2019 Dec 10 ; 9 (1) : 18766. [epub] 20191210

Determining lineage-specific bacterial growth curves with a novel approach based on amplicon reads normalization using internal standard (ARNIS)

. 2018 Nov ; 12 (11) : 2640-2654. [epub] 20180706

Aerobic Anoxygenic Photosynthesis Is Commonly Present within the Genus Limnohabitans

. 2018 Jan 01 ; 84 (1) : . [epub] 20171215

The Limnohabitans Genus Harbors Generalistic and Opportunistic Subtypes: Evidence from Spatiotemporal Succession in a Canyon-Shaped Reservoir

. 2017 Nov 01 ; 83 (21) : . [epub] 20171017

Prey-Specific Growth Responses of Freshwater Flagellate Communities Induced by Morphologically Distinct Bacteria from the Genus Limnohabitans

. 2015 Aug ; 81 (15) : 4993-5002. [epub] 20150515

Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria

. 2013 Aug ; 7 (8) : 1519-30. [epub] 20130404

Patterns of Limnohabitans microdiversity across a large set of freshwater habitats as revealed by Reverse Line Blot Hybridization

. 2013 ; 8 (3) : e58527. [epub] 20130312

The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains

. 2013 ; 8 (3) : e58209. [epub] 20130307

Every coin has a back side: invasion by Limnohabitans planktonicus promotes the maintenance of species diversity in bacterial communities

. 2012 ; 7 (12) : e51576. [epub] 20121212

Genome sequences of two freshwater betaproteobacterial isolates, Limnohabitans species strains Rim28 and Rim47, indicate their capabilities as both photoautotrophs and ammonia oxidizers

. 2012 Nov ; 194 (22) : 6302-3.

Alga-derived substrates select for distinct Betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains

. 2011 Oct ; 77 (20) : 7307-15. [epub] 20110826

Limnohabitans australis sp. nov., isolated from a freshwater pond, and emended description of the genus Limnohabitans

. 2010 Dec ; 60 (Pt 12) : 2946-2950. [epub] 20100129

Assessing niche separation among coexisting Limnohabitans strains through interactions with a competitor, viruses, and a bacterivore

. 2010 Mar ; 76 (5) : 1406-16. [epub] 20091228

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...