Patterns of Limnohabitans microdiversity across a large set of freshwater habitats as revealed by Reverse Line Blot Hybridization
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23554898
PubMed Central
PMC3595293
DOI
10.1371/journal.pone.0058527
PII: PONE-D-12-35994
Knihovny.cz E-zdroje
- MeSH
- bakteriální RNA genetika MeSH
- biodiverzita * MeSH
- Comamonadaceae fyziologie MeSH
- fyziologická adaptace fyziologie MeSH
- hybridizace in situ fluorescenční MeSH
- koncentrace vodíkových iontů MeSH
- mikrobiologie vody * MeSH
- RNA ribozomální 16S genetika MeSH
- sladká voda mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální RNA MeSH
- RNA ribozomální 16S MeSH
Among abundant freshwater Betaproteobacteria, only few groups are considered to be of central ecological importance. One of them is the well-studied genus Limnohabitans and mainly its R-BT subcluster, investigated previously mainly by fluorescence in situ hybridization methods. We designed, based on sequences from a large Limnohabitans culture collection, 18 RLBH (Reverse Line Blot Hybridization) probes specific for different groups within the genus Limnohabitans by targeting diagnostic sequences on their 16 S-23 S rRNA ITS regions. The developed probes covered in sum 92% of the available isolates. This set of probes was applied to environmental DNA originating from 161 different European standing freshwater habitats to reveal the microdiversity (intra-genus) patterns of the Limnohabitans genus along a pH gradient. Investigated habitats differed in various physicochemical parameters, and represented a very broad range of standing freshwater habitats. The Limnohabitans microdiversity, assessed as number of RLBH-defined groups detected, increased significantly along the gradient of rising pH of habitats. 14 out of 18 probes returned detection signals that allowed predictions on the distribution of distinct Limnohabitans groups. Most probe-defined Limnohabitans groups showed preferences for alkaline habitats, one for acidic, and some seemed to lack preferences. Complete niche-separation was indicated for some of the probe-targeted groups. Moreover, bimodal distributions observed for some groups of Limnohabitans, suggested further niche separation between genotypes within the same probe-defined group. Statistical analyses suggested that different environmental parameters such as pH, conductivity, oxygen and altitude influenced the distribution of distinct groups. The results of our study do not support the hypothesis that the wide ecological distribution of Limnohabitans bacteria in standing freshwater habitats results from generalist adaptations of these bacteria. Instead, our observations suggest that the genus Limnohabitans, as well as its R-BT subgroup, represent ecologically heterogeneous taxa, which underwent pronounced ecological diversification.
Zobrazit více v PubMed
Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microb Mol Biol Rev 75: 14–49. PubMed PMC
Jezbera J, Jezberová J, Koll U, Horňák K, Šimek K, et al. (2012) Contrasting trends in distribution of four major planktonic betaproteobacterial groups along a pH gradient of epilimnia of 72 freshwater habitats. FEMS Microb Ecol 81: 467–479. PubMed PMC
Hahn MW, Kasalický V, Jezbera J, Brandt U, Jezberová J, et al. (2010a) Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from a freshwater lake. Int J Syst Evol Microbiol 60: 1358–1365. PubMed PMC
Hahn MW, Kasalický V, Jezbera J, Brandt U, Šimek K (2010b) Limnohabitans australis sp. nov., isolated from a freshwater pond, and emended description of the genus Limnohabitans . Int J Syst Evol Microbiol 60: 2946–2950. PubMed PMC
Kasalický V, Jezbera J, Šimek K, Hahn MW (2010) Limnohabitans planktonicus sp. nov. and Limnohabitans parvus sp. nov., planktonic Betaproteobacteria isolated from a freshwater reservoir, and emended description of the genus Limnohabitans. . Int J Syst Evol Microbiol 60: 2710–2714. PubMed PMC
Kasalický V, Jezbera J, Hahn MW, Šimek K (2013) Unveiling the diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS ONE, In press. PubMed PMC
Šimek K, Pernthaler J, Weinbauer MG, Horňák K, Dolan JR, et al. (2001) Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl Environ Microbiol 67: 2723–2733. PubMed PMC
Buck U, Grossart HP, Amann R, Pernthaler J (2009) Substrate incorporation patterns of bacterioplankton populations in stratified and mixed waters of a humic lake. Environ Microbiol 11: 1854–1865. PubMed
Šimek K, Kasalický V, Jezbera J, Jezberová J, Hejzlar J, et al. (2010a) Broad habitat range of the phylogenetically narrow R-BT065 cluster representing a core group of the betaproteobacterial genus Limnohabitans . Appl Environ Microbiol 76: 631–639. PubMed PMC
Jezbera J, Horňák K, Šimek K (2005) Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microb Ecol 52: 351–363. PubMed
Šimek K, Kasalický V, Horňák K, Hahn MW, Weinbauer MG (2010b) Assessing niche separation among coexisting Limnohabitans strains through interactions with a competitor, viruses, and a bacterivore. Appl Environ Microbiol 11: 3762–3762. PubMed PMC
Šimek K, Horňák K, Jezbera J, Nedoma J, Vrba J, et al. (2006) Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ Microbiol 8: 1613–1624. PubMed
Shaw AK, Halpern AL, Beeson K, Tran B, Venter JC, et al. (2008) It's all relative: ranking the diversity of aquatic bacterial communities. Environ Microbiol 10: 2200–2210. PubMed
Crump BC, Kling GW, Bahr M, Hobbie JE (2003) Bacterioplankton community shifts in an Arctic lake correlate with seasonal changes in organic matter source. Appl Environ Microbiol 69: 2253–2268. PubMed PMC
Liao PC, Huang BH, Huang S (2007) Microbial community composition of the Danshui river estuary of Northern Taiwan and the practicality of the phylogenetic method in microbial barcoding. Microb Ecol 54: 497–507. PubMed
Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han SK (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28: 141–155.
Crump BC, Hobbie JE (2005) Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnol Oceanogr 50: 1718–1729.
Jezbera J, Jezberová J, Brandt U, Hahn MW (2011) Ubiquity of Polynucleobacter necessarius subspecies asymbioticus results from ecological diversification. Environ Microbiol 13: 922–931. PubMed PMC
Jezberová J, Jezbera J, Brandt U, Lindström ES, Langenheder S, et al. (2010) Ubiquity of Polynucleobacter necessarius subsp. asymbioticus in lentic freshwater habitats of a heterogenous 2000 km2 area. Environ Microbiol 12: 658–669. PubMed PMC
Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296: 1061–1063. PubMed
Whitfield J (2005) Biogeography: is everything everywhere? Science 310: 960–961. PubMed
O’Malley MA (2008) ‘Everything is everywhere: but the environment selects’: ubiquitous distribution and ecological determinism in microbial biogeography. Stud Hist Phil Biol Biomed Sci 39: 314–325. PubMed
Lindström ES, Östman Ö (2011) The importance of dispersal for bacterial community composition and functioning. PLoSOne 6(10) e25883. PubMed PMC
Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, et al. (2011) Global patterns in the biogeography of bacterial taxa. Environ Microbiol 1: 135–144. PubMed PMC
Hahn MW, Stadler P, Wu QL, Pöckl M (2004) The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57: 379–390. PubMed
Hahn MW, Pöckl M (2005) Ecotypes of planktonic Actinobacteria with identical 16 S rRNA genes adapted to thermal niches in temperate, subtropical, and tropical freshwater habitats. Appl Environ Microbiol 2: 766–773. PubMed PMC
Zwart G, van Hannen EJ, Kamst-van Agterveld MP, van der Gucht K, Lindström ES, et al. (2003) Rapid screening for freshwater bacterial groups by using reverse line blot hybridization. Appl Environ Microbiol 69: 5875–5883. PubMed PMC
Ter Braak CJF, Šmilauer P (1998) CANOCO for Windows Version 4.02. Wageningen, The Netherlands: Centre for Biometry Wageningen, CPRO-DLO.
Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genetics 6 13: v.3.23. PubMed PMC
Cohan FM, Perry EB (2007) A systematics for discovering the fundamental units of bacterial diversity. Current Biol 10: 373–386. PubMed
Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15: 237–240.
Hanski IA, Gilpin ME (1997) Metapopulation Biology: Ecology, Genetics and Evolution. Burlington, MA, USA: Elsevier.