The Limnohabitans Genus Harbors Generalistic and Opportunistic Subtypes: Evidence from Spatiotemporal Succession in a Canyon-Shaped Reservoir
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28842542
PubMed Central
PMC5648909
DOI
10.1128/aem.01530-17
PII: AEM.01530-17
Knihovny.cz E-zdroje
- Klíčová slova
- ITS, Limnohabitans, bacterial diversity, canyon-shaped freshwater reservoir, reverse line blot hybridization, subtypes,
- MeSH
- Comamonadaceae klasifikace genetika izolace a purifikace MeSH
- Cryptophyta růst a vývoj MeSH
- ekosystém MeSH
- eutrofizace MeSH
- fytoplankton růst a vývoj MeSH
- roční období MeSH
- sinice růst a vývoj MeSH
- sladká voda mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
We studied the diversity of Limnohabitans using reverse line blot hybridization with Limnohabitans lineage-specific probes in the freshwater canyon-shaped Římov reservoir (Czech Republic). To examine the succession of distinct lineages, we performed (i) a study of an intensive spring sampling program at the lacustrine part of the Římov reservoir (from ice melt through a phytoplankton peak to the clear-water phase), and (ii) a seasonal study (April to November) when the occurrence of distinct Limnohabitans lineages was related to the inherent longitudinal heterogeneity of the reservoir. Significant spatiotemporal changes in the compositions of distinct Limnohabitans lineages allowed for the identification of "generalists" that were always present throughout the whole season as well as "specialists" that appeared in the reservoir only for limited periods of time or irregularly. Our results indicate that some phytoplankton groups, such as cryptophytes or cyanobacteria, and zooplankton composition were the major factors modulating the distribution and dynamics of distinct Limnohabitans lineages. The highest Limnohabitans diversity was observed during the spring algal bloom, whereas the lowest was during the summer cyanobacterial bloom. The microdiversity also markedly increased upstream in the reservoir, being highest at the inflow, and thus likely reflecting strong influences of the watershed.IMPORTANCE The genus Limnohabitans is a typical freshwater bacterioplankton and is believed to play a significant role in inland freshwater habitats. This work is unique in detecting and tracing different closely related lineages of this bacterial genus in its natural conditions using the semiquantitative reverse line blot hybridization method and in discovering the factors influencing the microdiversity, subtype alternations, and seasonality.
Biology Centre CAS Institute of Hydrobiology České Budějovice Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Straškrabová V. 1975. Self-purification capacity of impoundments. Water Res 9:1171–1177. doi:10.1016/0043-1354(75)90117-7. DOI
Zwart G, van Hannen EJ, Kamst-van Agterveld MP, Van der Gucht K, Lindstrom ES, Van Wichelen J, Lauridsen T, Crump BC, Han SK, Declerck S. 2003. Rapid screening for freshwater bacterial groups by using reverse line blot hybridization. Appl Environ Microbiol 69:5875–5883. doi:10.1128/AEM.69.10.5875-5883.2003. PubMed DOI PMC
Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. 2011. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49. doi:10.1128/MMBR.00028-10. PubMed DOI PMC
Hahn MW, Kasalický V, Jezbera J, Brandt U, Jezberová J, Šimek K. 2010. Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from a freshwater lake. Int J Syst Evol Microbiol 60:1358–1365. doi:10.1099/ijs.0.013292-0. PubMed DOI PMC
Hahn MW, Kasalický V, Jezbera J, Brandt U, Šimek K. 2010. Limnohabitans australis sp. nov., isolated from a freshwater pond, and emended description of the genus Limnohabitans. Int J Syst Evol Microbiol 60:2946–2950. doi:10.1099/ijs.0.022384-0. PubMed DOI PMC
Kasalický V, Jezbera J, Šimek K, Hahn MW. 2010. Limnohabitans planktonicus sp. nov. and Limnohabitans parvus sp. nov., planktonic betaproteobacteria isolated from a freshwater reservoir, and emended description of the genus Limnohabitans. Int J Syst Evol Microbiol 60:2710–2714. doi:10.1099/ijs.0.018952-0. PubMed DOI PMC
Kasalický V, Jezbera J, Hahn MW, Šimek K. 2013. The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS One 8:e58209. doi:10.1371/journal.pone.0058209. PubMed DOI PMC
Salcher MM, Pernthaler J, Frater N, Posch T. 2011. Vertical and longitudinal distribution patterns of different bacterioplankton populations in a canyon-shaped, deep prealpine lake. Limnol Oceanogr 56:2027–2039. doi:10.4319/lo.2011.56.6.2027. DOI
Šimek K, Kasalický V, Zapomělová E, Horňák K. 2011. Alga-derived substrates select for distinct betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains. Appl Environ Microbiol 77:7307–7315. doi:10.1128/AEM.05107-11. PubMed DOI PMC
Eckert EM, Salcher MM, Posch T, Eugster B, Pernthaler J. 2012. Rapid successions affect microbial N-acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom. Environ Microbiol 14:794–806. doi:10.1111/j.1462-2920.2011.02639.x. PubMed DOI
Horňák K, Zeder M, Blom JF, Posch T, Pernthaler J. 2012. Suboptimal light conditions negatively affect the heterotrophy of Planktothrix rubescens but are beneficial for accompanying Limnohabitans spp. Environ Microbiol 14:765–778. doi:10.1111/j.1462-2920.2011.02635.x. PubMed DOI
Jezbera J, Jezberová J, Koll U, Horňák K, Šimek K, Hahn MW. 2012. Contrasting trends in distribution of four major planktonic betaproteobacterial groups along a pH gradient of epilimnia of 72 freshwater habitats. FEMS Microbiol Ecol 81:467–479. doi:10.1111/j.1574-6941.2012.01372.x. PubMed DOI PMC
Šimek K, Nedoma J, Znachor P, Kasalický V, Jezbera J, Horňák K, Sed'a J. 2014. A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr 59:1477–1492. doi:10.4319/lo.2014.59.5.1477. DOI
Eckert EM, Pernthaler J. 2014. Bacterial epibionts of Daphnia: a potential route for the transfer of dissolved organic carbon in freshwater food webs. ISME J 8:1808–1819. doi:10.1038/ismej.2014.39. PubMed DOI PMC
Salcher MM. 2014. Same same but different: ecological niche partitioning of planktonic freshwater prokaryotes. J Limnol 73:74–87. doi:10.4081/jlimnol.2014.813. DOI
Šimek K, Pernthaler J, Weinbauer MG, Horňák K, Dolan JR, Nedoma J, Mašín M, Amann R. 2001. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl Environ Microbiol 67:2723–2733. doi:10.1128/AEM.67.6.2723-2733.2001. PubMed DOI PMC
Buck U, Grossart HP, Amann R, Pernthaler J. 2009. Substrate incorporation patterns of bacterioplankton populations in stratified and mixed waters of a humic lake. Environ Microbiol 11:1854–1865. doi:10.1111/j.1462-2920.2009.01910.x. PubMed DOI
Šimek K, Horňák K, Jezbera J, Nedoma J, Vrba J, Straškrabová V, Macek M, Dolan JR, Hahn MW. 2006. Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ Microbiol 8:1613–1624. doi:10.1111/j.1462-2920.2006.01053.x. PubMed DOI
Šimek K, Kasalický V, Jezbera J, Jezberová J, Hejzlar J, Hahn MW. 2010. Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing a core group of the betaproteobacterial genus Limnohabitans. Appl Environ Microbiol 76:631–639. doi:10.1128/AEM.02203-09. PubMed DOI PMC
Jezbera J, Horňák K, Šimek K. 2005. Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microbiol Ecol 52:351–363. doi:10.1016/j.femsec.2004.12.001. PubMed DOI
Šimek K, Kasalický V, Horňák K, Hahn MW, Weinbauer MG. 2010. Assessing niche separation among coexisting Limnohabitans strains through interactions with a competitor, viruses, and a bacterivore. Appl Environ Microbiol 76:1406–1416. doi:10.1128/AEM.02517-09. PubMed DOI PMC
Perez MT, Sommaruga R. 2006. Differential effect of algal- and soil-derived dissolved organic matter on alpine lake bacterial community composition and activity. Limnol Oceanogr 51:2527–2537. doi:10.4319/lo.2006.51.6.2527. DOI
Paver SF, Hayek KR, Gano KA, Fagen JR, Brown CT, Davis-Richardson AG, Crabb DB, Rosario-Passapera R, Giongo A, Triplett EW, Kent AD. 2013. Interactions between specific phytoplankton and bacteria affect lake bacterial community succession. Environ Microbiol 15:2489–2504. doi:10.1111/1462-2920.12131. PubMed DOI
Salcher MM, Posch T, Pernthaler J. 2013. In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. ISME J 7:896–907. doi:10.1038/ismej.2012.162. PubMed DOI PMC
Newton RJ, McMahon KD. 2011. Seasonal differences in bacterial community composition following nutrient additions in a eutrophic lake. Environ Microbiol 13:887–899. doi:10.1111/j.1462-2920.2010.02387.x. PubMed DOI
Jezbera J, Jezberová J, Kasalický V, Šimek K, Hahn MW. 2013. Patterns of Limnohabitans microdiversity across a large set of freshwater habitats as revealed by reverse line blot hybridization. PLoS One 8:e58527. doi:10.1371/journal.pone.0058527. PubMed DOI PMC
Kimmel B, Lind O, Paulson L. 1990. Reservoir primary production, p 133–194. In Thornton KW, Kimmel BL, Payne FE (ed), Reservoir limnology. Ecological perspectives. John Wiley & Sons, New York, NY.
Strasškraba M, Hocking G. 2002. The effect of theoretical retention time on the hydrodynamics of deep river valley reservoirs. Int Rev Hydrobiol 87:61–83. doi:10.1002/1522-2632(200201)87:1<61::AID-IROH61>3.0.CO;2-4. DOI
Znachor P, Zapomělová E, Řeháková K, Nedoma J, Šimek K. 2008. The effect of extreme rainfall on summer succession and vertical distribution of phytoplankton in a lacustrine part of a eutrophic reservoir. Aquat Sci 70:77–86. doi:10.1007/s00027-007-7033-x. DOI
Horňák K, Jezbera J, Šimek K. 2010. Bacterial single-cell activities along the nutrient availability gradient in a canyon-shaped reservoir: a seasonal study. Aquat Microb Ecol 60:215–225. doi:10.3354/ame01425. DOI
Vergin KL, Beszteri B, Monier A, Thrash JC, Temperton B, Treusch AH, Kilpert F, Worden AZ, Giovannoni SJ. 2013. High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic time-series study site by phylogenetic placement of pyrosequences. ISME J 7:1322–1332. doi:10.1038/ismej.2013.32. PubMed DOI PMC
Hahn MW, Koll U, Jezberová J, Camacho A. 2015. Global phylogeography of pelagic Polynucleobacter bacteria: restricted geographic distribution of subgroups, isolation by distance and influence of climate. Environ Microbiol 17:829–840. doi:10.1111/1462-2920.12532. PubMed DOI PMC
Salcher MM, Neuenschwander SM, Posch T, Pernthaler J. 2015. The ecology of pelagic freshwater methylotrophs assessed by a high-resolution monitoring and isolation campaign. ISME J 9:2442–2453. doi:10.1038/ismej.2015.55. PubMed DOI PMC
Wu QLL, Hahn MW. 2006. High predictability of the seasonal dynamics of a species-like Polynucleobacter population in a freshwater lake. Environ Microbiol 8:1660–1666. doi:10.1111/j.1462-2920.2006.01049.x. PubMed DOI
Kent AD, Jones SE, Yannarell AC, Graham JM, Lauster GH, Kratz TK, Triplett EW. 2004. Annual patterns in bacterioplankton community variability in a humic lake. Microb Ecol 48:550–560. doi:10.1007/s00248-004-0244-y. PubMed DOI
Eiler A, Heinrich F, Bertilsson S. 2012. Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J 6:330–342. doi:10.1038/ismej.2011.113. PubMed DOI PMC
Murray AE, Arnosti C, De La Rocha CL, Grossart HP, Passow U. 2007. Microbial dynamics in autotrophic and heterotrophic seawater mesocosms. II. Bacterioplankton community structure and hydrolytic enzyme activities. Aquat Microb Ecol 49:123–141. doi:10.3354/ame01139. DOI
Šimek K, Horňák K, Jezbera J, Nedoma J, Znachor P, Hejzlar J, Sed'a J. 2008. Spatio-temporal patterns of bacterioplankton production and community composition related to phytoplankton composition and protistan bacterivory in a dam reservoir. Aquat Microb Ecol 51:249–262. doi:10.3354/ame01193. DOI
Louati I, Pascault N, Debroas D, Bernard C, Humbert J–F, Leloup J. 2015. Structural diversity of bacterial communities associated with bloom-forming freshwater cyanobacteria differs according to the cyanobacterial genus. PLoS One 10:e0140614. doi:10.1371/journal.pone.0140614. PubMed DOI PMC
Salcher MM, Pernthaler J, Posch T. 2010. Spatiotemporal distribution and activity patterns of bacteria from three phylogenetic groups in an oligomesotrophic lake. Limnol Oceanogr 55:846–856. doi:10.4319/lo.2010.55.2.0846. DOI
Zeder M, Peter S, Shabarova T, Pernthaler J. 2009. A small population of planktonic Flavobacteria with disproportionally high growth during the spring phytoplankton bloom in a prealpine lake. Environ Microbiol 11:2676–2686. doi:10.1111/j.1462-2920.2009.01994.x. PubMed DOI
Horňák K, Jezbera J, Šimek K. 2008. Effects of a Microcystis aeruginosa bloom and bacterivory on bacterial abundance and activity in a eutrophic reservoir. Aquat Microb Ecol 52:107–117. doi:10.3354/ame01210. DOI
Grujčić V, Kasalický V, Šimek K. 2015. Prey-specific growth responses of freshwater flagellate communities induced by morphologically distinct bacteria from the genus Limnohabitans. Appl Environ Microbiol 81:4993–5002. doi:10.1128/AEM.00396-15. PubMed DOI PMC
Salcher MM, Ewert C, Šimek K, Kasalický V, Posch T. 2016. Interspecific competition and protistan grazing affect the coexistence of freshwater betaproteobacterial strains. FEMS Microbiol Ecol 92:fiv156. doi:10.1093/femsec/fiv156. PubMed DOI
Berga M, Ostman O, Lindstrom ES, Langenheder S. 2015. Combined effects of zooplankton grazing and dispersal on the diversity and assembly mechanisms of bacterial metacommunities. Environ Microbiol 17:2275–2287. doi:10.1111/1462-2920.12688. PubMed DOI
Hornak K, Corno G. 2012. Every coin has a back side: invasion by Limnohabitans planktonicus promotes the maintenance of species diversity in bacterial communities. PLoS One 7:e51576. doi:10.1371/journal.pone.0051576. PubMed DOI PMC
Freese HM, Schink B. 2011. Composition and stability of the microbial community inside the digestive tract of the aquatic crustacean Daphnia magna. Microb Ecol 62:882–894. doi:10.1007/s00248-011-9886-8. PubMed DOI
Peerakietkhajorn S, Tsukada K, Kato Y, Matsuura T, Watanabe H. 2015. Symbiotic bacteria contribute to increasing the population size of a freshwater crustacean, Daphnia magna. Environ Microbiol Rep 7:364–372. doi:10.1111/1758-2229.12260. PubMed DOI
Peerakietkhajorn S, Kato Y, Kasalický V, Matsuura T, Watanabe H. 2016. Betaproteobacteria Limnohabitans strains increase fecundity in the crustacean Daphnia magna: symbiotic relationship between major bacterioplankton and zooplankton in freshwater ecosystem. Environ Microbiol 18:2366–2374. doi:10.1111/1462-2920.12919. PubMed DOI
Armengol J, Garcia JC, Comerma M, Romero M, Dolz J, Roura M, Han BH, Vidal A, Šimek K. 1999. Longitudinal processes in canyon type reservoirs: the case of Sau (NE Spain), p 313–345. In Tundisi JG, Strǎskraba M (ed), Theoretical reservoir ecology and its applications. International Institute of Ecology, Brazilian Academy of Sciences, Backhuys Publishers, Leiden, the Netherlands.
Znachor P, Visocká V, Nedoma J, Rychtecký P. 2013. Spatial heterogeneity of diatom silicification and growth in a eutrophic reservoir. Freshw Biol 58:1889–1902. doi:10.1111/fwb.12178. DOI
Horner-Devine MC, Leibold MA, Smith VH, Bohannan BJM. 2003. Bacterial diversity patterns along a gradient of primary productivity. Ecol Lett 6:613–622. doi:10.1046/j.1461-0248.2003.00472.x. DOI
Shabarova T, Kasalický V, Šimek K, Nedoma J, Znachor P, Posch T, Pernthaler J, Salcher MM. 2017. Distribution and ecological preferences of the freshwater lineage LimA (genus Limnohabitans) revealed by a new double hybridisation approach. Environ Microbiol 19:1296–1309. doi:10.1111/1462-2920.13663. PubMed DOI
Crump BC, Kling GW, Bahr M, Hobbie JE. 2003. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl Environ Microbiol 69:2253–2268. doi:10.1128/AEM.69.4.2253-2268.2003. PubMed DOI PMC
Ruiz-Gonzalez C, Nino-Garcia JP, del Giorgio PA. 2015. Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol Lett 18:1198–1206. doi:10.1111/ele.12499. PubMed DOI
Fujii M, Kojima H, Iwata T, Urabe J, Fukui M. 2012. Dissolved organic carbon as major environmental factor affecting bacterioplankton communities in mountain lakes of eastern Japan. Microb Ecol 63:496–508. doi:10.1007/s00248-011-9983-8. PubMed DOI
Saleem M, Fetzer I, Harms H, Chatzinotas A. 2016. Trophic complexity in aqueous systems: bacterial species richness and protistan predation regulate dissolved organic carbon and dissolved total nitrogen removal. Proc Biol Sci 283:20152724. doi:10.1098/rspb.2015.2724. PubMed DOI PMC
Rychtecký P, Znachor P. 2011. Spatial heterogeneity and seasonal succession of phytoplankton along the longitudinal gradient in a eutrophic reservoir. Hydrobiologia 663:175–186. doi:10.1007/s10750-010-0571-6. DOI
Carlson CA, Morris R, Parsons R, Treusch AH, Giovannoni SJ, Vergin K. 2009. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J 3:283–295. doi:10.1038/ismej.2008.117. PubMed DOI
Thrash JC, Temperton B, Swan BK, Landry ZC, Woyke T, DeLong EF, Stepanauskas R, Giovannoni SJ. 2014. Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype. ISME J 8:1440–1451. doi:10.1038/ismej.2013.243. PubMed DOI PMC
Giovannoni SJ. 2017. SAR11 bacteria: the most abundant plankton in the oceans. Ann Rev Mar Sci 9:231–255. doi:10.1146/annurev-marine-010814-015934. PubMed DOI
Jezbera J, Nedoma J, Šimek K. 2003. Longitudinal changes in protistan bacterivory and bacterial production in two canyon-shaped reservoirs of different trophic status. Hydrobiologia 504:115–130. doi:10.1023/B:HYDR.0000008502.31554.ef. DOI
Jezberová J, Jezbera J, Brandt U, Lindstrom ES, Langenheder S, Hahn MW. 2010. Ubiquity of Polynucleobacter necessarius ssp. asymbioticus in lentic freshwater habitats of a heterogenous 2000 km2 area. Environ Microbiol 12:658–669. doi:10.1111/j.1462-2920.2009.02106.x. PubMed DOI PMC
Jezbera J, Jezberová J, Brandt U, Hahn MW. 2011. Ubiquity of Polynucleobacter necessarius subspecies asymbioticus results from ecological diversification. Environ Microbiol 13:922–931. doi:10.1111/j.1462-2920.2010.02396.x. PubMed DOI PMC
Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R. 2003. An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol 69:2928–2935. doi:10.1128/AEM.69.5.2928-2935.2003. PubMed DOI PMC
Lund JWG. 1981. Citation classic—the inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Curr Contents Agric Biol Environ Sci 43:163.
Hillebrand H, Durselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424. doi:10.1046/j.1529-8817.1999.3520403.x. DOI
Ter Braak CJF, Šmilauer P. 1998. CANOCO for Windows version 4.02. Centre of Biometry Wageningen, CPRO-DLO, Wageningen, the Netherlands.
Diversity dynamics of aerobic anoxygenic phototrophic bacteria in a freshwater lake
High-resolution metagenomic reconstruction of the freshwater spring bloom