The ecology of pelagic freshwater methylotrophs assessed by a high-resolution monitoring and isolation campaign
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25942006
PubMed Central
PMC4611508
DOI
10.1038/ismej.2015.55
PII: ismej201555
Knihovny.cz E-zdroje
- MeSH
- Betaproteobacteria genetika MeSH
- DNA bakterií genetika MeSH
- ekologie MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- genotyp MeSH
- jezera mikrobiologie MeSH
- koloběh uhlíku * MeSH
- methanol chemie MeSH
- Methylophilaceae klasifikace genetika MeSH
- mikrobiologie vody MeSH
- nízká teplota MeSH
- plankton genetika MeSH
- pravděpodobnostní funkce MeSH
- reprodukovatelnost výsledků MeSH
- ribozomální DNA genetika MeSH
- RNA ribozomální 16S genetika MeSH
- roční období MeSH
- sekvenční analýza DNA MeSH
- sladká voda chemie mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Švýcarsko MeSH
- Názvy látek
- DNA bakterií MeSH
- methanol MeSH
- ribozomální DNA MeSH
- RNA ribozomální 16S MeSH
Methylotrophic planktonic bacteria fulfill a particular role in the carbon cycle of lakes via the turnover of single-carbon compounds. We studied two planktonic freshwater lineages (LD28 and PRD01a001B) affiliated with Methylophilaceae (Betaproteobacteria) in Lake Zurich, Switzerland, by a combination of molecular and cultivation-based approaches. Their spatio-temporal distribution was monitored at high resolution (n=992 samples) for 4 consecutive years. LD28 methylotrophs constituted up to 11 × 10(7) cells l(-1) with pronounced peaks in spring and autumn-winter, concomitant with blooms of primary producers. They were rare in the warm water layers during summer but abundant in the cold hypolimnion, hinting at psychrophilic growth. Members of the PRD01a001B lineage were generally less abundant but also had maxima in spring. More than 120 axenic strains from these so far uncultivated lineages were isolated from the pelagic zone by dilution to extinction. Phylogenetic analysis separated isolates into two distinct genotypes. Isolates grew slowly (μmax=0.4 d(-1)), were of conspicuously small size, and were indeed psychrophilic, with higher growth yield at low temperatures. Growth was enhanced upon addition of methanol and methylamine to sterile lake water. Genomic analyses of two strains confirmed a methylotrophic lifestyle with a reduced set of genes involved in C1 metabolism. The very small and streamlined genomes (1.36 and 1.75 Mb) shared several pathways with the marine OM43 lineage. As the closest described taxa (Methylotenera sp.) are only distantly related to either set of isolates, we propose a new genus with two species, that is, 'Candidatus Methylopumilus planktonicus' (LD28) and 'Candidatus Methylopumilus turicensis' (PRD01a001B).
Institute of Hydrobiology Biology Centre CAS Ceske Budejovice Czech Republic
Limnological Station Institute of Plant Biology University of Zurich Kilchberg Switzerland
Zobrazit více v PubMed
Aziz R, Bartels D, Best A, DeJongh M, Disz T, Edwards R et al. (2008). The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75. PubMed PMC
Beck DAC, McTaggart TL, Setboonsarng U, Vorobev A, Kalyuzhnaya MG, Ivanova N et al. (2014). The expanded diversity of Methylophilaceae from Lake Washington through cultivation and genomic sequencing of novel ecotypes. PLoS One 9: e102458. PubMed PMC
Beutler M, Wiltshire K, Meyer B, Moldaenke C, Lüring C, Meyerhöfer M et al. (2002). A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynthesis Res 72: 39–53. PubMed
Chistoserdova L, Lapidus A, Han C, Goodwin L, Saunders L, Brettin T et al. (2007). Genome of Methylobacillus flagellatus, molecular basis for obligate methylotrophy, and polyphyletic origin of methylotrophy. J Bacteriol 189: 4020–4027. PubMed PMC
Chistoserdova L. (2011). Modularity of methylotrophy, revisited. Environ Microbiol 13: 2603–2622. PubMed
Coil D, Jospin G, Darling AE. (2014), A5-miseq: an updated pipeline to assemble microbial genomes from illumina miseq data. arXiv preprint1401.5130. PubMed
Connon SA, Giovannoni SJ. (2002). High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68: 3878–3885. PubMed PMC
Dean FB, Hosono S, Fang LH, Wu XH, Faruqi AF, Bray-Ward P et al. (2002). Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 99: 5261–5266. PubMed PMC
Dennis PG, Seymour J, Kumbun K, Tyson GW. (2013). Diverse populations of lake water bacteria exhibit chemotaxis towards inorganic nutrients. ISME J 7: 1661–1664. PubMed PMC
Dixon JL, Beale R, Nightingale PD. (2011. a). Rapid biological oxidation of methanol in the tropical Atlantic: significance as a microbial carbon source. Biogeosci Discuss 8: 3899–3921.
Dixon JL, Beale R, Nightingale PD. (2011. b). Microbial methanol uptake in northeast Atlantic waters. ISME J 5: 704–716. PubMed PMC
Dixon JL, Sargeant S, Nightingale PD, Colin Murrell J. (2013). Gradients in microbial methanol uptake: productive coastal upwelling waters to oligotrophic gyres in the Atlantic Ocean. ISME J 7: 568–580. PubMed PMC
Eiler A, Bertilsson S. (2004). Comparison of freshwater bacterial communities associated with cyanobacterial blooms in four swedish lakes. Environ Microbiol 6: 1228–1243. PubMed
Eiler A, Heinrich F, Bertilsson S. (2012). Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J 6: 330–342. PubMed PMC
Georges AA, El-Swais H, Craig SE, Li WKW, Walsh DA. (2014). Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME J 8: 1301–1313. PubMed PMC
Gifford SM, Sharma S, Booth M, Moran MA. (2013). Expression patterns reveal niche diversification in a marine microbial assemblage. ISME J 7: 281–298. PubMed PMC
Giovannoni SJ, Hayakawa DH, Tripp HJ, Stingl U, Givan SA, Cho JC et al. (2008). The small genome of an abundant coastal ocean methylotroph. Environ Microbiol 10: 1771–1782. PubMed
Govorukhina NI, Trotsenko YA. (1991). Methylovorus, a new genus of restricted facultatively methylotrophic bacteria. Int J Syst Bacteriol 41: 158–162.
Hahn MW, Koll U, Jezberová J, Camacho A. (2014). Global phylogeography of pelagic Polynucleobacter bacteria: restricted geographic distribution of subgroups, isolation by distance, and influence of climate. Environ Microbiol 17: 829–840. PubMed PMC
Halsey KH, Carter AE, Giovannoni SJ. (2011). Synergistic metabolism of a broad range of C1 compounds in the marine methylotrophic bacterium HTCC2181. Environ Microbiol 14: 630–640. PubMed
Hanson B, Hewson I, Madsen E. (2014). Metaproteomic survey of six aquatic habitats: discovering the identities of microbial populations active in biogeochemical cycling. Microb Ecol 67: 520–539. PubMed
Heikes BG, Chang W, Pilson MEQ, Swift E, Singh HB, Guenther A et al. (2002). Atmospheric methanol budget and ocean implication. Global Biogeochem Cycles 16: 1133.
Hibi Y, Asai K, Arafuka H, Hamajima M, Iwama T, Kawai K. (2011). Molecular structure of La3+-induced methanol dehydrogenase-like protein in Methylobacterium radiotolerans. J Biosci Bioengineer 111: 547–549. PubMed
Huggett M, Hayakawa D, Rappe M. (2012). Genome sequence of strain HIMB624, a cultured representative from the OM43 clade of marine Betaproteobacteria. Stand Genomic Sci 6: 11–20. PubMed PMC
Jenkins O, Byrom D, Jones D. (1987). Methylophilus - a new genus of methanol-utilizing bacteria. Int J Syst Bacteriol 37: 446–448.
Kalyuzhnaya MG, Bowerman S, Lara JC, Lidstrom ME, Chistoserdova L. (2006). Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int J Syst Evol Microbiol 56: 2819–2823. PubMed
Landa M, Cottrell MT, Kirchman DL, Kaiser K, Medeiros PM, Tremblay L et al. (2014). Phylogenetic and structural response of heterotrophic bacteria to dissolved organic matter of different chemical composition in a continuous culture study. Environ Microbiol 16: 1668–1681. PubMed
Lapidus A, Clum A, LaButti K, Kaluzhnaya MG, Lim S, Beck DAC et al. (2011). Genomes of three methylotrophs from a single niche reveal the genetic and metabolic divergence of the Methylophilaceae. J Bacteriol 193: 3757–3764. PubMed PMC
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar et al. (2004). ARB: a software environment for sequence data. Nucl Acid Res 32: 1363–1371. PubMed PMC
Meier-Kolthoff J, Auch A, Klenk H-P, Goker M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14: 60. PubMed PMC
Meincke L, Copeland A, Lapidus A, Lucas S, Berry K, Glavina Del Rio T et al. (2012). Complete genome sequence of Polynucleobacter necessarius subsp. asymbioticus type strain (QLW-P1DMWA-1T). Stand Genomics 6: 74–83. PubMed PMC
Milne PJ, Riemer DD, Zika RG, Brand LE. (1995). Measurement of vertical distribution of isoprene in surface seawater, its chemical fate, and its emission from several phytoplankton monocultures. Marine Chem 48: 237–244.
Mopper K, Zhou X, Kieber RJ, Kieber DJ, Sikorski RJ, Jones RD. (1991). Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353: 60–62.
Morris RM, Longnecker K, Giovannoni SJ. (2006). Pirellula and OM43 are among the dominant lineages identified in an Oregon coast diatom bloom. Environ Microbiol 8: 1361–1370. PubMed
Mou X, Lu X, Jacob J, Sun S, Heath R. (2013). Metagenomic identification of bacterioplankton taxa and pathways involved in microcystin degradation in Lake Erie. PLoS One 8: e61890. PubMed PMC
Muyzer G, Teske A, Wirsen C, Jannasch H. (1995). Phylogenetic relationship of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164: 165–172. PubMed
Neuenschwander SM, Pernthaler J, Posch T, Salcher MM. (2015). Seasonal growth potential of rare lake water bacteria suggest their disproportional contribution to carbon fluxes. Environ Microbiol 17: 781–795. PubMed
Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. (2011). A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol R 75: 14–49. PubMed PMC
Parveen B, Reveilliez J-P, Mary I, Ravet V, Bronner G, Mangot J-F et al. (2011). Diversity and dynamics of free-living and particle-associated Betaproteobacteria and Actinobacteria in relation to phytoplankton and zooplankton communities. FEMS Microbiol Ecol 77: 461–476. PubMed
Posch T, Franzoi J, Prader M, Salcher MM. (2009). New image analysis tool to study biomass and morphotypes of three major bacterioplankton groups in an alpine lake. Aquat Microb Ecol 54: 113–126.
Posch T, Koster O, Salcher MM, Pernthaler J. (2012). Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat Climate Change 2: 809–813.
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J et al. (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl Acid Res 35: 7188–7196. PubMed PMC
Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream M-A et al. (2000). Artemis: sequence visualization and annotation. Bioinformatics 16: 944–945. PubMed
Salcher MM, Pernthaler J, Zeder M, Psenner R, Posch T. (2008). Spatio-temporal niche separation of planktonic Betaproteobacteria in an oligo-mesotrophic lake. Environ Microbiol 10: 2074–2086. PubMed
Salcher MM, Pernthaler J, Frater N, Posch T. (2011. a). Vertical and longitudinal distribution patterns of differnt bacterioplankton populations in a canyon-shaped, deep prealpine lake. Limnol Oceanogr 56: 2027–2039.
Salcher MM, Pernthaler J, Posch T. (2011. b). Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria 'that rule the waves' (LD12). ISME J 5: 1242–1252. PubMed PMC
Salcher MM, Posch T, Pernthaler J. (2013). In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. ISME J 7: 896–907. PubMed PMC
Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R. (2003). An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol 69: 2928–2935. PubMed PMC
Sekar R, Fuchs BM, Amann R, Pernthaler J. (2004). Flow sorting of marine bacterioplankton after fluorescence in situ hybridization. Appl Environ Microbiol 70: 6210–6219. PubMed PMC
Sieburth JM, Keller MD. (1989). Methylaminotrophic bacteria in xenic nanoalgal cultures: incidence, significance, and role of methylated algal osmoprotectants. Biol Oceanograph 6: 383–395.
Song J, Oh H-M, Jang-Cheon C. (2009). Improved culturability of SAR11 strains in dilution-to-extinction culturing from the East Sea, West Pacific Ocean. FEMS Microbiol Lett 295: 141–147. PubMed
Sowell SM, Abraham PE, Shah M, Verberkmoes NC, Smith DP, Barofsky DF et al. (2011). Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. ISME J 5: 856–865. PubMed PMC
Stamatakis A, Ludwig T, Meier H. (2005). RAxML-II: a program for sequential, parallel and distributed inference of large phylogenetic. Concurr Comput-Pract Exp 17: 1705–1723.
Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A et al. (2013). MicroScope - an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucl Acid Res 41: D636–D647. PubMed PMC
Van den Wyngaert S, Salcher MM, Pernthaler J, Zeder M, Posch T. (2011). Quantitative dominance of seasonally persistent filamentous cyanobacteria (Planktothrix rubescens in the microbial assemblages of a temperate lake. Limnol Oceanogr 56: 97–109.
Vorholt JA. (2012). Microbial life in the phyllosphere. Nat Rev Microbiol 10: 828–840. PubMed
Woyke T, Sczyrba A, Lee J, Rinke C, Tighe D, Clingenpeel S et al. (2011). Decontamination of MDA reagents for single cell whole genome amplification. PLoS One 6: e26161. PubMed PMC
Wu Q, Zwart G, Schauer M, Kamst-van AMP, Hahn M. (2006). Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan plateau, China. Appl Environ Microbiol 72: 5478–5485. PubMed PMC
Yordy JR, Weaver TL. (1977). Methylobacillus: a new genus of obligately methylotrophic bacteria. Int J Syst Bacteriol 27: 247–255.
Yung C-M, Vereen MK, Herbert A, Davis KM, Yang J, Kantorowska A et al. (2014). Thermally adaptive tradeoffs in closely-related marine bacterial strains. Environ Microbiol: doi:10.1111/1462-2920.12714. PubMed
Zeder M, Pernthaler J. (2009). Multispot live-image autofocusing for high-throughput microscopy of fluorescently stained bacteria. Cytometry Part A 75A: 781–788. PubMed
Flexible genomic island conservation across freshwater and marine Methylophilaceae
Ubiquitous genome streamlined Acidobacteriota in freshwater environments
High-resolution metagenomic reconstruction of the freshwater spring bloom
Niche-directed evolution modulates genome architecture in freshwater Planctomycetes
Hidden in plain sight-highly abundant and diverse planktonic freshwater Chloroflexi
Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria