In the right place, at the right time: the integration of bacteria into the Plankton Ecology Group model

. 2023 May 20 ; 11 (1) : 112. [epub] 20230520

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu audiovizuální média, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37210505
Odkazy

PubMed 37210505
PubMed Central PMC10199524
DOI 10.1186/s40168-023-01522-0
PII: 10.1186/s40168-023-01522-0
Knihovny.cz E-zdroje

BACKGROUND: Planktonic microbial communities have critical impacts on the pelagic food web and water quality status in freshwater ecosystems, yet no general model of bacterial community assembly linked to higher trophic levels and hydrodynamics has been assessed. In this study, we utilized a 2-year survey of planktonic communities from bacteria to zooplankton in three freshwater reservoirs to investigate their spatiotemporal dynamics. RESULTS: We observed site-specific occurrence and microdiversification of bacteria in lacustrine and riverine environments, as well as in deep hypolimnia. Moreover, we determined recurrent bacterial seasonal patterns driven by both biotic and abiotic conditions, which could be integrated into the well-known Plankton Ecology Group (PEG) model describing primarily the seasonalities of larger plankton groups. Importantly, bacteria with different ecological potentials showed finely coordinated successions affiliated with four seasonal phases, including the spring bloom dominated by fast-growing opportunists, the clear-water phase associated with oligotrophic ultramicrobacteria, the summer phase characterized by phytoplankton bloom-associated bacteria, and the fall/winter phase driven by decay-specialists. CONCLUSIONS: Our findings elucidate the major principles driving the spatiotemporal microbial community distribution in freshwater ecosystems. We suggest an extension to the original PEG model by integrating new findings on recurrent bacterial seasonal trends. Video Abstract.

Zobrazit více v PubMed

Ho M, Lall U, Allaire M, Pal I, Raff D, Wegner D, et al. The future role of dams in the United States of America. Water Resour Res Comment. 2017;53(2):982–98. doi: 10.1002/2016WR019905. DOI

Maavara T, Chen Q, Van Meter K, Brown LE, Zhang J, Ni J, et al. River dam impacts on biogeochemical cycling. Nat Rev Earth Environ. 2020;1(2):103–16. doi: 10.1038/s43017-019-0019-0. DOI

Carneiro FM, Bini LM. Revisiting the concept of longitudinal gradients in reservoirs. Acta Limnol Bras. 2020;32:e8. doi: 10.1590/s2179-975x1319. DOI

Thornton KW, Kennedy RH, Carroll JH, Walker WW, Gunkel RC, Ashby S. Reservoir sedimentation and water quality - an heuristic model. Water Sci Technol. 1981;1:654–61.

Yu Z, Yang J, Amalfitano S, Yu X, Liu L. Effects of water stratification and mixing on microbial community structure in a subtropical deep reservoir. Sci Rep. 2014;4:1–7. doi: 10.1038/srep05821. PubMed DOI PMC

Liu M, Zhang Y, Shi K, Zhu G, Wu Z, Liu M, et al. Thermal stratification dynamics in a large and deep subtropical reservoir revealed by high-frequency buoy data. Sci Total Environ. 2019;651:614–24. doi: 10.1016/j.scitotenv.2018.09.215. PubMed DOI

Lu L, Tang Q, Li H, Li Z. Damming river shapes distinct patterns and processes of planktonic bacterial and microeukaryotic communities. Environ Microbiol. 2022;24(4):1760–1774. doi: 10.1111/1462-2920.15872. PubMed DOI

Paver SF, Newton RJ, Coleman ML. Microbial communities of the Laurentian Great Lakes reflect connectivity and local biogeochemistry. Environ Microbiol. 2020;22(1):433–46. doi: 10.1111/1462-2920.14862. PubMed DOI PMC

Okazaki Y, Fujinaga S, Salcher MM, Callieri C, Tanaka A, Kohzu A, et al. Microdiversity and phylogeographic diversification of bacterioplankton in pelagic freshwater systems revealed through long-read amplicon sequencing. Microbiome. 2021;9(1):1–16. doi: 10.1186/s40168-020-00974-y. PubMed DOI PMC

Šimek K, Comerma M, García JC, Nedoma J, Marcé R, Armengol J. The effect of river water circulation on the distribution and functioning of reservoir microbial communities as determined by a relative distance approach. Ecosystems. 2011;14(1):1–14. doi: 10.1007/s10021-010-9388-4. DOI

Pan Y, Guo S, Li Y, Yin W, Qi P, Shi J, et al. Effects of water level increase on phytoplankton assemblages in a drinking water reservoir. Water (Switzerland) 2018;10(3):1–18.

Rychtecký P, Znachor P. Spatial heterogeneity and seasonal succession of phytoplankton along the longitudinal gradient in a eutrophic reservoir. Hydrobiologia. 2011;663(1):175–86. doi: 10.1007/s10750-010-0571-6. DOI

Šimek K, Nedoma J, Znachor P, Kasalický V, Jezbera J, Horňák K, et al. A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr. 2014;59(5):1477–92. doi: 10.4319/lo.2014.59.5.1477. DOI

Znachor P, Visocká V, Nedoma J, Rychtecký P. Spatial heterogeneity of diatom silicification and growth in a eutrophic reservoir. Freshw Biol. 2013;58(9):1889–902. doi: 10.1111/fwb.12178. DOI

Šimek K, Horňák K, Jezbera J, Nedoma J, Znachor P, Hejzlar J, et al. Spatio-temporal patterns of bacterioplankton production and community composition related to phytoplankton composition and protistan bacterivory in a dam reservoir. Aquat Microb Ecol. 2008;51(3):249–62. doi: 10.3354/ame01193. DOI

Mašín M, Jezbera J, Nedoma J, Straškrabová V, Hejzlar J, Šimek K. Changes in bacterial community composition and microbial activities along the longitudinal axis of two canyon-shaped reservoirs with different inflow loading. Hydrobiologia. 2003;504:99–113. doi: 10.1023/B:HYDR.0000008512.04563.0b. DOI

Sommer U, Adrian R, De Senerpont Domis L, Elser JJ, Gaedke U, Ibelings B, et al. Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst. 2012;43:429–48. doi: 10.1146/annurev-ecolsys-110411-160251. DOI

Romagnan JB, Legendre L, Guidi L, Jamet JL, Jamet D, Mousseau L, et al. Comprehensive model of annual plankton succession based on the whole-plankton time series approach. PLoS One. 2015;10(3):1–18. doi: 10.1371/journal.pone.0119219. PubMed DOI PMC

Kent AD, Yannarell AC, Rusak JA, Triplett EW, McMahon KD. Synchrony in aquatic microbial community dynamics. ISME J. 2007;1(1):38–47. doi: 10.1038/ismej.2007.6. PubMed DOI

Zhang Y, Liu WT. The application of molecular tools to study the drinking water microbiome–Current understanding and future needs. Crit Rev Environ Sci Technol. 2019;49(13):1188–235. doi: 10.1080/10643389.2019.1571351. DOI

Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han SK. Typical freshwater bacteria: An analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol. 2002;28(2):141–55. doi: 10.3354/ame028141. DOI

Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev. 2011;75:14–49. doi: 10.1128/MMBR.00028-10. PubMed DOI PMC

Yan Q, Bi Y, Deng Y, He Z, Wu L, Van Nostrand JD, et al. Impacts of the Three Gorges Dam on microbial structure and potential function. Sci Rep. 2015;5:1–9. PubMed PMC

Eiler A, Heinrich F, Bertilsson S. Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J. 2012;6(2):330–42. doi: 10.1038/ismej.2011.113. PubMed DOI PMC

Diao M, Sinnige R, Kalbitz K, Huisman J, Muyzer G. Succession of bacterial communities in a seasonally stratified lake with an anoxic and sulfidic hypolimnion. Front Microbiol. 2017;8:2511. doi: 10.3389/fmicb.2017.02511. PubMed DOI PMC

Phillips AA, Speth DR, Miller LG, Wang XT, Wu F, Medeiros PM, et al. Microbial succession and dynamics in meromictic Mono Lake California. Geobiology. 2021;19(4):376–93. doi: 10.1111/gbi.12437. PubMed DOI PMC

Jezbera J, Jezberová J, Koll U, Horňák K, Šimek K, Hahn MW. Contrasting trends in distribution of four major planktonic betaproteobacterial groups along a pH gradient of epilimnia of 72 freshwater habitats. FEMS Microbiol Ecol. 2012;81(2):467–79. doi: 10.1111/j.1574-6941.2012.01372.x. PubMed DOI PMC

Salcher MM, Pernthaler J, Posch T. Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria that rule the waves (LD12) ISME J. 2011;5(8):1242–52. doi: 10.1038/ismej.2011.8. PubMed DOI PMC

Salcher MM, Neuenschwander SM, Posch T, Pernthaler J. The ecology of pelagic freshwater methylotrophs assessed by a high-resolution monitoring and isolation campaign. ISME J. 2015;9(11):2442–53. doi: 10.1038/ismej.2015.55. PubMed DOI PMC

Neuenschwander SM, Ghai R, Pernthaler J, Salcher MM. Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. ISME J. 2018;12(1):185–98. doi: 10.1038/ismej.2017.156. PubMed DOI PMC

Flynn KJ, Stoecker DK, Mitra A, Raven JA, Glibert PM, Hansen PJ, et al. Misuse of the phytoplankton-zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J Plankton Res. 2013;35(1):3–11. doi: 10.1093/plankt/fbs062. DOI

Princiotta SDV, Sanders RW. Heterotrophic and mixotrophic nanoflagellates in a mesotrophic lake: abundance and grazing impacts across season and depth. Limnol Oceanogr. 2017;62(2):632–44. doi: 10.1002/lno.10450. DOI

Romano F, Symiakaki K, Pitta P. Temporal variability of planktonic ciliates in a coastal oligotrophic environment: mixotrophy, size classes and vertical distribution. Front Mar Sci. 2021;8:1–14. doi: 10.3389/fmars.2021.641589. PubMed DOI

International Organization for Standardization. Water Quality: Measurement of Biochemical Parameters: Spectrometric Determination of the Chlorophyll-a Concentration (ISO Standard No. 10260:1992). 1992. https://www.iso.org/standard/18300.html.

Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 1962;8(1):11–6.

Kopacek J, Hejzlar J. Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int J Environ Anal Chem. 1993;53(3):173–83. doi: 10.1080/03067319308045987. DOI

Shabarova T, Salcher MM, Porcal P, Znachor P, Nedoma J, Grossart HP, et al. Recovery of freshwater microbial communities after extreme rain events is mediated by cyclic succession. Nat Microbiol. 2021;6(4):479–88. doi: 10.1038/s41564-020-00852-1. PubMed DOI

Sherr EB, Sherr BF. Preservation and storage of samples for enumeration of heterotrophic protists. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ, editors. Handbook of methods in aquatic microbial ecology. Boca Raton: Lewis Publishers; 1993. pp. 207–212.

Porter KG, Feig YS. The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr. 1980;25:943–948. doi: 10.4319/lo.1980.25.5.0943. DOI

Lund JWG, Kipling C, Le Cren ED. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia. 1958;11(2):143–70. doi: 10.1007/BF00007865. DOI

Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. Biovolume calculation for pelagic and benthic microalgae. J Phycol. 1999;35(2):403–24. doi: 10.1046/j.1529-8817.1999.3520403.x. DOI

McCauley E. The estimation of the abundance and biomass of zooplankton insamples. In: Edmonson WT, editor. A manual on methods for the assessment of secondary productivity in freshWaters. Oxford: Blackwell; 1984. pp. 228–265.

Minas K, Mcewan NR, Newbold CJ, Scott KP. Optimization of a high-throughput CTAB-based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cultures. FEMS Microbiol Lett. 2011;325(2):162–9. doi: 10.1111/j.1574-6968.2011.02424.x. PubMed DOI

Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems. 2016;1(1):1–10. doi: 10.1128/mSystems.00009-15. PubMed DOI PMC

Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18(5):1403–14. doi: 10.1111/1462-2920.13023. PubMed DOI

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3. doi: 10.1038/nmeth.3869. PubMed DOI PMC

Eren AM, Morrison HG, Lescault PJ, Reveillaud J, Vineis JH, Sogin ML. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 2015;9:968–79. doi: 10.1038/ismej.2014.195. PubMed DOI PMC

Rohwer RR, Hamilton JJ, Newton RJ, McMahon KD. TaxAss: Leveraging a custom freshwater database achieves fine-scale taxonomic resolution. mSphere. 2018;3(5):e00327–18. PubMed PMC

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41(D1):590–6. doi: 10.1093/nar/gks1219. PubMed DOI PMC

Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42(D1):643–8. doi: 10.1093/nar/gkt1209. PubMed DOI PMC

McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217. PubMed PMC

Kandlikar GS, Gold ZJ, Cowen MC, Meyer RS, Freise AC, Kraft NJB, et al. ranacapa: An R package and Shiny web app to explore environmental DNA data with exploratory statistics and interactive visualizations. F1000Res. 2018;7(0):1734. doi: 10.12688/f1000research.16680.1. PubMed DOI PMC

Dixon P. Computer program review VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14(6):927–30. doi: 10.1111/j.1654-1103.2003.tb02228.x. DOI

R Core Team . R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2020.

De Cáceres M, Legendre P, Wiser SK, Brotons L. Using species combinations in indicator value analyses. Methods Ecol Evol. 2012;3(6):973–82. doi: 10.1111/j.2041-210X.2012.00246.x. DOI

Stamatakis A, Ludwig T, Meier H. RAxML-II: a program for sequential, parallel and distributed inference of large phylogenetic trees. Concurr Comput Pract Exp. 2005;17(14):1705–23. doi: 10.1002/cpe.954. DOI

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Kumar L, Futschik ME. Mfuzz: a software package for soft clustering of microarray data. Bioinformation. 2007;2(1):5–7. doi: 10.6026/97320630002005. PubMed DOI PMC

Hadley W. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016. p. ISBN 978.

Hu A, Ju F, Hou L, Li J, Yang X, Wang H, et al. Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community. Environ Microbiol. 2017;19(12):4993–5009. doi: 10.1111/1462-2920.13942. PubMed DOI

Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. ICWSM. 2009;8:361–362. doi: 10.1609/icwsm.v3i1.13937. DOI

Rohwer RR, Hamilton JJ, Newton RJ, McMahon KD. TaxAss: leveraging a custom freshwater database achieves fine-scale taxonomic resolution. mSphere. 2018;3(5):e00327–18. doi: 10.1128/mSphere.00327-18. PubMed DOI PMC

Henson MW, Lanclos VC, Faircloth BC, Thrash JC. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J. 2018;12(7):1846–60. doi: 10.1038/s41396-018-0092-2. PubMed DOI PMC

Hoetzinger M, Schmidt J, Jezberová J, Koll U, Hahn MW. Microdiversification of a pelagic Polynucleobacter species is mainly driven by acquisition of genomic islands from a partially interspecific gene pool. Appl Environ Microbiol. 2017;83(3):e02266-16. PubMed PMC

Kasalický V, Jezbera J, Hahn MW, Šimek K. The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS One. 2013;8(3):e58209. PubMed PMC

Flowers JJ, He S, Malfatti S, del Rio TG, Tringe SG, Hugenholtz P, et al. Comparative genomics of two ’Candidatus Accumulibacter’clades performing biological phosphorus removal. ISME J. 2013;7:2301–2314. doi: 10.1038/ismej.2013.117. PubMed DOI PMC

Okazaki Y, Fujinaga S, Tanaka A, Kohzu A, Oyagi H, Nakano SI. Ubiquity and quantitative significance of bacterioplankton lineages inhabiting the oxygenated hypolimnion of deep freshwater lakes. ISME J. 2017;11(10):2279–93. doi: 10.1038/ismej.2017.89. PubMed DOI PMC

Salcher MM, Schaefle D, Kaspar M, Neuenschwander SM, Ghai R. Evolution in action: habitat transition from sediment to the pelagial leads to genome streamlining in Methylophilaceae. ISME J. 2019;13(11):2764–77. doi: 10.1038/s41396-019-0471-3. PubMed DOI PMC

Shabarova T, Kasalický V, Šimek K, Nedoma J, Znachor P, Posch T, et al. Distribution and ecological preferences of the freshwater lineage LimA (genus Limnohabitans) revealed by a new double hybridization approach. Environ Microbiol. 2017;19(3):1296–309. doi: 10.1111/1462-2920.13663. PubMed DOI

Watanabe K, Komatsu N, Kitamura T, Ishii Y, Park HD, Miyata R, et al. Ecological niche separation in the Polynucleobacter subclusters linked to quality of dissolved organic matter: a demonstration using a high sensitivity cultivation-based approach. Environ Microbiol. 2012;14(9):2511–25. doi: 10.1111/j.1462-2920.2012.02815.x. PubMed DOI

Linz A, Shade A, Owens S, Jack G. Bacterial community composition and dynamics spanning five years in freshwater Bog lakes. 2017. pp. 1–15. PubMed PMC

van Grinsven S, Sinninghe Damsté JS, Harrison J, Polerecky L, Villanueva L. Nitrate promotes the transfer of methane-derived carbon from the methanotroph Methylobacter sp. to the methylotroph Methylotenera sp. in eutrophic lake water. Limnol Oceanogr. 2021;66(3):878–91. doi: 10.1002/lno.11648. DOI

Urakawa H, Garcia JC, Nielsen JL, Le VQ, Kozlowski JA, Stein LY, et al. Nitrosospira lacus sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment. Int J Syst Evol Microbiol. 2015;65(1):242–50. doi: 10.1099/ijs.0.070789-0. PubMed DOI

Risso C, Sun J, Zhuang K, Mahadevan R, DeBoy R, Ismail W, et al. Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens. BMC Genomics. 2009;10:447. doi: 10.1186/1471-2164-10-447. PubMed DOI PMC

Tammeorg O, Nürnberg G, Niemistö J, Haldna M, Horppila J. Internal phosphorus loading due to sediment anoxia in shallow areas: implications for lake aeration treatments. Aquat Sci. 2020;82(3):1–10. doi: 10.1007/s00027-020-00724-0. PubMed DOI

Diao M, Huisman J, Muyzer G. Spatio-temporal dynamics of sulfur bacteria during oxic-anoxic regime shifts in a seasonally stratified lake. FEMS Microbiol Ecol. 2018;94(4):1–11. doi: 10.1093/femsec/fiy040. PubMed DOI PMC

Watson SJ, Needoba JA, Peterson TD. Widespread detection of Candidatus Accumulibacter phosphatis, a polyphosphate-accumulating organism, in sediments of the Columbia River estuary. Environ Microbiol. 2019;21(4):1369–82. doi: 10.1111/1462-2920.14576. PubMed DOI

Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems. 2018;3(5):e00055-18. PubMed PMC

Lee ZMP, Poret-Peterson AT, Siefert JL, Kaul D, Moustafa A, Allen AE, et al. Nutrient stoichiometry shapes microbial community structure in an evaporitic shallow pond. Front Microbiol. 2017;8:1–15. doi: 10.3389/fmicb.2017.00949. PubMed DOI PMC

Leng H, Zhao W, Xiao X. Cultivation and metabolic insights of an uncultured clade, Bacteroidetes VC2.1 Bac22 (Candidatus Sulfidibacteriales ord. nov.), from deep-sea hydrothermal vents. Environ Microbiol. 2022;00:1–18. PubMed

Andrei AŞ, Salcher MM, Mehrshad M, Rychtecký P, Znachor P, Ghai R. Niche-directed evolution modulates genome architecture in freshwater Planctomycetes. ISME J. 2019;13(4):1056–71. doi: 10.1038/s41396-018-0332-5. PubMed DOI PMC

Salcher MM. Same same but different: ecological niche partitioning of planktonic freshwater prokaryotes. J Limnol. 2014;73:74–87.

Farh MEA, Kim YJ, Singh P, Jung SY, Kang JP, Yang DC. Rhodoferax koreense sp. nov, an obligately aerobic bacterium within the family Comamonadaceae, and emended description of the genus Rhodoferax. J Microbiol. 2017;55:767–74. doi: 10.1007/s12275-017-7033-z. PubMed DOI

Hiraishi A, Hoshino Y, Satoh T. Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the “Rhodocyclus gelatinosus-like” group. Arch Microbiol. 1991;155(4):330–6. doi: 10.1007/BF00243451. DOI

Madigan MT, Jung DO, Woese CR, Achenbach LA. Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Arch Microbiol. 2000;173(4):269–77. doi: 10.1007/s002030000140. PubMed DOI

Jaspers E, Overmann J. Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol. 2004;70(8):4831–9. doi: 10.1128/AEM.70.8.4831-4839.2004. PubMed DOI PMC

Okazaki Y, Nakano S, Toyoda A, Tamaki H. Long-read-resolved, ecosystem-wide exploration of nucleotide and structural microdiversity of lake bacterioplankton genomes. mSystems. 2022;7(4):e0043322. doi: 10.1128/msystems.00433-22. PubMed DOI PMC

Ward CS, Yung CM, Davis KM, Blinebry SK, Williams TC, Johnson ZI, et al. Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J. 2017;11(6):1412–22. doi: 10.1038/ismej.2017.4. PubMed DOI PMC

Jezbera J, Horňák K, Šimek K. Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients. Environ Microbiol. 2006;8(8):1330–9. doi: 10.1111/j.1462-2920.2006.01026.x. PubMed DOI

Tarao M, Jezbera J, Hahn MW. Involvement of cell surface structures in size-independent grazing resistance of freshwater Actinobacteria. Appl Environ Microbiol. 2009;75(14):4720–6. doi: 10.1128/AEM.00251-09. PubMed DOI PMC

Wu QL, Hahn MW. High predictability of the seasonal dynamics of a species-like Polynucleobacter population in a freshwater lake. Environ Microbiol. 2006;8(9):1660–6. doi: 10.1111/j.1462-2920.2006.01049.x. PubMed DOI

Morris RM, Longnecker K, Giovannoni SJ. Pirellula and OM43 are among the dominant lineages identified in an Oregon coast diatom bloom. Environ Microbiol. 2006;8(8):1361–70. doi: 10.1111/j.1462-2920.2006.01029.x. PubMed DOI

Šimek K, Kasalický V, Zapomělová E, Horňák K. Alga-derived substrates select for distinct betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains. Appl Environ Microbiol. 2011;77(20):7307–15. doi: 10.1128/AEM.05107-11. PubMed DOI PMC

Šimek K, Jezbera J, Horňák K, Vrba J, Sed’a J. Role of diatom-attached choanoflagellates of the genus Salpingoeca as pelagic bacterivores. Aquat Microb Ecol. 2004;36(3):257–69. doi: 10.3354/ame036257. DOI

Wiegand C, Pflugmacher S. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol Appl Pharmacol. 2005;203:201–18. doi: 10.1016/j.taap.2004.11.002. PubMed DOI

Kong X, Seewald M, Dadi T, Friese K, Mi C, Boehrer B, et al. Unravelling winter diatom blooms in temperate lakes using high frequency data and ecological modeling. Water Res. 2021;190:116681. doi: 10.1016/j.watres.2020.116681. PubMed DOI

Hampton SE, Galloway AWE, Powers SM, Ozersky T, Woo KH, Batt RD, et al. Ecology under lake ice. Ecol Lett. 2017;20(1):98–111. doi: 10.1111/ele.12699. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...