Morphological and molecular analyses of season-specific responses of freshwater ciliate communities to top-down and bottom-up experimental manipulations

. 2025 Sep 23 ; 10 (9) : e0030425. [epub] 20250815

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40815464

Grantová podpora
22-35826 K Czech Science Foundation (GACR)
2021/03/Y/NZ8/00076 National Science Center, Poland (Weave-UNISONO)
25-18210S Czech Science Foundation

UNLABELLED: In aquatic microbial food webs, ciliates represent an important trophic link in the energy transfer from prokaryotes, algae, and heterotrophic nanoflagellates (HNFs) to higher trophic levels. However, the trophic role of abundant small ciliates (<20 µm) is not clearly understood. To unveil their trophic linkages, we conducted two experiments manipulating both top-down and bottom-up controlling factors, thus modulating the trophic cascading and bacterial prey availability for protists during contrasting spring and summer seasons with samples collected from a freshwater meso-eutrophic reservoir. Water samples were size fractionated to modify food web complexity, i.e., 10 µm, 20 µm, and unfiltered control and amended with bacterial prey additions. The samples were analyzed by morphological and sequencing techniques. The bacterial amendments triggered strong ciliate growth following the peaks of HNFs in the 10 and 20 µm treatments, reflecting a trophic cascading from HNFs to raptorial prostome ciliates (Balanion planctonicum and Urotricha spp.) in spring. In summer, HNFs and ciliates peaked simultaneously, suggesting the important trophic cascade also from bacteria to bacterivorous scuticociliates (Cyclidium glaucoma and Cinetochilum margaritaceum) and HNFs. In spring, unfiltered treatments showed stronger ciliate top-down control by zooplankton than in summer. The sequence analysis revealed season-specific manipulation-induced shifts in ciliate communities and their large cryptic diversity. However, morphological and molecular analyses also revealed considerable discrepancies in the abundance of major ciliate taxa. The ciliate communities responded to our experimental manipulations in season-specific fashions, thereby highlighting the different roles of ciliates as an intermediate trophic link between prokaryotes and higher trophic levels. IMPORTANCE: Ciliates represent an important trophic link in aquatic microbial food webs. In this study, we used the food web manipulation techniques to reveal their complex trophic interactions during seasonally different plankton scenarios occurring in spring and summer. Manipulating top-down controlling factors (grazing pressure of micro- and metazooplankton grazers) and bottom-up factors (an availability of bacterial prey) shaped distinctly the complexity and dynamics of natural plankton communities and thus yielded significant changes in ciliate community dynamics. The experimentally simplified plankton and ciliate communities responded to our manipulations in season-specific fashions, reflected in different roles of ciliates as an intermediate trophic link between prokaryotes and higher trophic levels. This study also demonstrates that the combination of molecular and morphological analyses is essential to gain more realistic insights into the structure of ciliate community and for providing robust, ecologically meaningful results.

Zobrazit více v PubMed

Pierce RW, Turner JT. 1992. Ecology of planktonic ciliates in marine food webs. Rev Aquat Sci 6:139–181.

Gao F, Warren A, Zhang Q, Gong J, Miao M, Sun P, Xu D, Huang J, Yi Z, Song W. 2016. The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the phylum Ciliophora (Eukaryota, Alveolata). Sci Rep 6:1–14. doi: 10.1038/srep24874 PubMed DOI PMC

Azam F, Ammerman JW. 1984. Cycling of organic matter by bacterioplankton in pelagic marine ecosystems: microenvironmental considerations, p 345–360. In Fasham MJR (ed), Flows of energy and materials in marine ecosystems: theory and practice. Springer, New York, NY.

Weisse T, Müller H, Pinto-Coelho RM, Schweizer A, Springmann D, Baldringer G. 1990. Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake. Limnol Oceanogr 35:781–794. doi: 10.4319/lo.1990.35.4.0781 DOI

Zingel P, Agasild H, Nõges T, Kisand V. 2007. Ciliates are the dominant grazers on pico- and nanoplankton in a shallow, naturally highly eutrophic lake. Microb Ecol 53:134–142. doi: 10.1007/s00248-006-9155-4 PubMed DOI

Muylaert K, Van Der Gucht K, Vloemans N, Meester LD, Gillis M, Vyverman W. 2002. Relationship between bacterial community composition and bottom-up versus top-down variables in four eutrophic shallow lakes. Appl Environ Microbiol 68:4740–4750. doi: 10.1128/AEM.68.10.4740-4750.2002 PubMed DOI PMC

Zingel P, Agasild H, Karus K, Kangro K, Tammert H, Tõnno I, Feldmann T, Nõges T. 2016. The influence of zooplankton enrichment on the microbial loop in a shallow, eutrophic lake. Eur J Protistol 52:22–35. doi: 10.1016/j.ejop.2015.09.004 PubMed DOI

Sherr EB, Sherr BF. 1994. Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb Ecol 28:223–235. doi: 10.1007/BF00166812 PubMed DOI

Lu X, Weisse T. 2022. Top-down control of planktonic ciliates by microcrustacean predators is stronger in lakes than in the ocean. Sci Rep 12:10501. doi: 10.1038/s41598-022-14301-y PubMed DOI PMC

Müller H, Schöne A, Pinto-Coelho RM, Schweizer A, Weisse T. 1991. Seasonal succession of ciliates in lake constance. Microb Ecol 21:119–138. doi: 10.1007/BF02539148 PubMed DOI

Sommer U, Adrian R, De Senerpont Domis L, Elser JJ, Gaedke U, Ibelings B, Jeppesen E, Lürling M, Molinero JC, Mooij WM, van Donk E, Winder M. 2012. Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst 43:429–448. doi: 10.1146/annurev-ecolsys-110411-160251 DOI

Biyu S. 2000. A comparative study on planktonic ciliates in two shallow mesotrophic lakes (China): species composition, distribution and quantitative importance. Hydrobiologia 427:143–153. doi: 10.1023/A:1003963126254 DOI

Li J, Chen F, Liu Z, Zhao X, Yang K, Lu W, Cui K. 2016. Bottom-up versus top-down effects on ciliate community composition in four eutrophic lakes (China). Eur J Protistol 53:20–30. doi: 10.1016/j.ejop.2015.12.007 PubMed DOI

Pfister G, Auer B, Arndt H. 2002. Pelagic ciliates (Protozoa, Ciliophora) of different brackish and freshwater lakes — a community analysis at the species level. Limnologica 32:147–168. doi: 10.1016/S0075-9511(02)80005-6 DOI

Beaver JR, Crisman TL. 1989. The role of ciliated protozoa in pelagic freshwater ecosystems. Microb Ecol 17:111–136. doi: 10.1007/BF02011847 PubMed DOI

Šimek K, Nedoma J, Znachor P, Kasalický V, Jezbera J, Hornňák K, Sed’a J. 2014. A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr 59:1477–1492. doi: 10.4319/lo.2014.59.5.1477 DOI

Park H, Shabarova T, Salcher MM, Kosová L, Rychtecký P, Mukherjee I, Šimek K, Porcal P, Seďa J, Znachor P, Kasalický V. 2023. In the right place, at the right time: the integration of bacteria into the plankton ecology group model. Microbiome 11:112. doi: 10.1186/s40168-023-01522-0 PubMed DOI PMC

Posch T, Eugster B, Pomati F, Pernthaler J, Pitsch G, Eckert EM. 2015. Network of interactions between ciliates and phytoplankton during spring. Front Microbiol 6:1289. doi: 10.3389/fmicb.2015.01289 PubMed DOI PMC

Sonntag B, Posch T, Klammer S, Teubner K, Psenner R. 2006. Phagotrophic ciliates and flagellates in an oligotrophic, deep, alpine lake: contrasting variability with seasons and depths. Aquat Microb Ecol 43:193–207. doi: 10.3354/ame043193 DOI

Zingel P, Nõges T. 2010. Seasonal and annual population dynamics of ciliates in a shallow eutrophic lake. fal 176:133–143. doi: 10.1127/1863-9135/2010/0176-0133 DOI

Pitsch G, Bruni EP, Forster D, Qu Z, Sonntag B, Stoeck T, Posch T. 2019. Seasonality of planktonic freshwater ciliates: are analyses based on V9 regions of the 18S rRNA gene correlated with morphospecies counts? Front Microbiol 10:248. doi: 10.3389/fmicb.2019.00248 PubMed DOI PMC

Cleven EJ. 2004. Pelagic ciliates in a large mesotrophic lake: seasonal succession and taxon‐specific bacterivory in lake Constance. Int Rev Hydrobiol 89:289–304. doi: 10.1002/iroh.200310701 DOI

Müller H. 1991. Pseudobalanion planctonicum (Ciliophora, Prostomatida): ecological significance of an algivorous nanociliate in a deep meso-eutrophic lake. J Plankton Res 13:247–262. doi: 10.1093/plankt/13.1.247 DOI

Šimek K, Bobková J, Macek M, Nedoma J, Psenner R. 1995. Ciliategrazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol Oceanogr 40:1077–1090. doi: 10.4319/lo.1995.40.6.1077 DOI

Jürgens K, Skibbe O, Jeppesen E. 1999. Impact of metazooplankton on the composition and population dynamics of planktonic ciliates in a shallow, hypertrophic lake. Aquat Microb Ecol 17:61–75. doi: 10.3354/ame017061 DOI

Aberle N, Lengfellner K, Sommer U. 2007. Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia 150:668–681. doi: 10.1007/s00442-006-0540-y PubMed DOI

Müller H, Schlegel A. 1999. Responses of three freshwater planktonic ciliates with different feeding modes to cryptophyte and diatom prey. Aquat Microb Ecol 17:49–60. doi: 10.3354/ame017049 DOI

Šimek K, Grujčić V, Mukherjee I, Kasalický V, Nedoma J, Posch T, Mehrshad M, Salcher MM. 2020. Cascading effects in freshwater microbial food webs by predatory Cercozoa, Katablepharidacea and ciliates feeding on aplastidic bacterivorous cryptophytes. FEMS Microbiol Ecol 96:fiaa121. doi: 10.1093/femsec/fiaa121 PubMed DOI PMC

Grujčić V, Nuy JK, Salcher MM, Shabarova T, Kasalicky V, Boenigk J, Jensen M, Simek K. 2018. Cryptophyta as major bacterivores in freshwater summer plankton. ISME J 12:1668–1681. doi: 10.1038/s41396-018-0057-5 PubMed DOI PMC

Piwosz K, Mukherjee I, Salcher MM, Grujčić V, Šimek K. 2021. Card-fish in the sequencing era: opening a new universe of protistan ecology. Front Microbiol 12:640066. doi: 10.3389/fmicb.2021.640066 PubMed DOI PMC

Burns CW, Schallenberg M. 2001. Calanoid copepods versus cladocerans: consumer effects on protozoa in lakes of different trophic status. Limnol Oceanogr 46:1558–1565. doi: 10.4319/lo.2001.46.6.1558 DOI

Jack JD, Gilbert JJ. 1997. Effects of metazoan predators on ciliates in freshwater plankton communities. J Eukaryot Microbiol 44:194–199. doi: 10.1111/j.1550-7408.1997.tb05699.x DOI

Tirok K, Gaedke U. 2007. Regulation of planktonic ciliate dynamics and functional composition during spring in lake Constance. Aquat Microb Ecol 49:87–100. doi: 10.3354/ame01127 DOI

Zöllner E, Santer B, Boersma M, Hoppe HG, Jürgens K. 2003. Cascading predation effects of Daphnia and copepods on microbial food web components. Freshw Biol 48:2174–2193. doi: 10.1046/j.1365-2426.2003.01158.x DOI

Jürgens K, Jeppesen E. 2000. The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. J Plankton Res 22:1047–1070. doi: 10.1093/plankt/22.6.1047 DOI

Mukherjee I, Grujčić V, Salcher MM, Znachor P, Seďa J, Devetter M, Rychtecký P, Šimek K, Shabarova T. 2024. Integrating depth-dependent protist dynamics and microbial interactions in spring succession of a freshwater reservoir. Environ Microbiome 19:31. doi: 10.1186/s40793-024-00574-5 PubMed DOI PMC

Kath NJ, Thomas MK, Gaedke U. 2022. Mysterious ciliates: seasonally recurrent and yet hard to predict. J Plankton Res 44:891–910. doi: 10.1093/plankt/fbac043 DOI

Macek M, Šimek K, Pernthaler J, Vyhnálek V, Psenner R. 1996. Growth rates of dominant planktonic ciliates in two freshwater bodies of different trophic degree. J Plankton Res 18:463–481. doi: 10.1093/plankt/18.4.463 DOI

Šimek K, Grujčić V, Nedoma J, Jezberová J, Šorf M, Matoušů A, Pechar L, Posch T, Bruni EP, Vrba J. 2019. Microbial food webs in hypertrophic fishponds: omnivorous ciliate taxa are major protistan bacterivores. Limnol Oceanogr 64:2295–2309. doi: 10.1002/lno.11260 DOI

Forster D, Qu Z, Pitsch G, Bruni EP, Kammerlander B, Pröschold T, Sonntag B, Posch T, Stoeck T. 2021. Lake ecosystem robustness and resilience inferred from a climate-stressed protistan plankton network. Microorganisms 9:549. doi: 10.3390/microorganisms9030549 PubMed DOI PMC

Posch T, Jezbera J, Vrba J, Šimek K, Pernthaler J, Andreatta S, Sonntag B. 2001. Size selective feeding in Cyclidium glaucoma (Ciliophora, Scuticociliatida) and its effects on bacterial community structure: a study from a continuous cultivation system. Microb Ecol 42:217–227. doi: 10.1007/s002480000114 PubMed DOI

Šimek K, Macek M, Pernthaler J, Strasˇkrabová V, Psenner R. 1996. Can freshwater planktonic ciliates survive on a diet of picoplankton? J Plankton Res 18:597–613. doi: 10.1093/plankt/18.4.597 DOI

Tso S, Taghon G. 1999. Factors affecting predation by Cyclidium sp. and Euplotes sp. on PAH-degrading and nondegrading bacteria. Microb Ecol 37:3–12. doi: 10.1007/s002489900125 PubMed DOI

Rychert K, Wielgat-Rychert M, Szczurowska D, Myszka M, Bochyńska M, Krawiec K. 2012. The importance of ciliates as a trophic link in shallow, brackish and eutrophic lakes. Pol J Ecol 60:767–776.

Vijverberg J. 1989. Culture techniques for studies on the growth, development and reproduction of copepods and cladocerans under laboratory and in situ conditions: a review. Freshw Biol 21:317–373. doi: 10.1111/j.1365-2427.1989.tb01369.x DOI

Agasild H, Zingel P, Karus K, Kangro K, Salujõe J, Nõges T. 2013. Does metazooplankton regulate the ciliate community in a shallow eutrophic lake? Freshw Biol 58:183–191. doi: 10.1111/fwb.12049 DOI

Weisse T, Montagnes DJS. 2022. Ecology of planktonic ciliates in a changing world: concepts, methods, and challenges. J Eukaryot Microbiol 69:e12879. doi: 10.1111/jeu.12879 PubMed DOI PMC

Montagnes D, Barbosa A, Boenigk J, Davidson K, Jürgens K, Macek M, Parry J, Roberts E, Šimek K. 2008. Selective feeding behaviour of key free-living protists: avenues for continued study. Aquat Microb Ecol 53:83–98. doi: 10.3354/ame01229 DOI

Mullen AD, Treibitz T, Roberts PLD, Kelly ELA, Horwitz R, Smith JE, Jaffe JS. 2016. Underwater microscopy for in situ studies of benthic ecosystems. Nat Commun 7:12093. doi: 10.1038/ncomms12093 PubMed DOI PMC

Weisse T. 2017. Functional diversity of aquatic ciliates. Eur J Protistol 61:331–358. doi: 10.1016/j.ejop.2017.04.001 PubMed DOI

Zhao Y, Langlois GA. 2022. Ciliate morpho-taxonomy and practical considerations before deploying metabarcoding to ciliate community diversity surveys in urban receiving waters. Microorganisms 10:2512. doi: 10.3390/microorganisms10122512 PubMed DOI PMC

Abraham JS, Sripoorna S, Maurya S, Makhija S, Gupta R, Toteja R. 2019. Techniques and tools for species identification in ciliates: a review. Int J Syst Evol Microbiol 69:877–894. doi: 10.1099/ijsem.0.003176 PubMed DOI

Dong J, Shi F, Li H, Zhang X, Hu X, Gong J. 2014. SSU rDNA sequence diversity and seasonally differentiated distribution of nanoplanktonic ciliates in Neritic Bohai and Yellow Seas as revealed by T-RFLP. PLoS One 9:e102640. doi: 10.1371/journal.pone.0102640 PubMed DOI PMC

Kulaš A, Gulin V, Kepčija RM, Žutinić P, Perić MS, Orlić S, Kajan K, Stoeck T, Lentendu G, Čanjevac I, Martinić I, Udovič MG. 2021. Ciliates (Alveolata, Ciliophora) as bioindicators of environmental pressure: a karstic river case. Ecol Indic 124:107430. doi: 10.1016/j.ecolind.2021.107430 DOI

Stoeck T, Breiner HW, Filker S, Ostermaier V, Kammerlander B, Sonntag B. 2014. A morphogenetic survey on ciliate plankton from a mountain lake pinpoints the necessity of lineage-specific barcode markers in microbial ecology. Environ Microbiol 16:430–444. doi: 10.1111/1462-2920.12194 PubMed DOI PMC

Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner H-W, Richards TA. 2010. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19:21–31. doi: 10.1111/j.1365-294X.2009.04480.x PubMed DOI

Medinger R, Nolte V, Pandey RV, Jost S, Ottenwälder B, Schlötterer C, Boenigk J. 2010. Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol 19:32–40. doi: 10.1111/j.1365-294X.2009.04478.x PubMed DOI PMC

Wang Y, Jiang Y, Liu Y, Li Y, Katz LA, Gao F, Yan Y. 2020. Comparative studies on the polymorphism and copy number variation of mtSSU rDNA in ciliates (Protista, Ciliophora): implications for Pphylogenetic, environmental, and ecological research. Microorganisms 8:316. doi: 10.3390/microorganisms8030316 PubMed DOI PMC

Gong J, Dong J, Liu X, Massana R. 2013. Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist 164:369–379. doi: 10.1016/j.protis.2012.11.006 PubMed DOI

Yu L, Zhang W, Liu L, Yang J. 2015. Determining microeukaryotic plankton community around Xiamen Island, Southeast China, using illumina MiSeq and PCR-DGGE techniques. PLoS One 10:e0127721. doi: 10.1371/journal.pone.0127721 PubMed DOI PMC

Dopheide A, Lear G, Stott R, Lewis G. 2009. Relative diversity and community structure of ciliates in stream biofilms according to molecular and microscopy methods. Appl Environ Microbiol 75:5261–5272. doi: 10.1128/AEM.00412-09 PubMed DOI PMC

Wang C, Zhang T, Wang Y, Katz LA, Gao F, Song W. 2017. Disentangling sources of variation in SSU rDNA sequences from single cell analyses of ciliates: impact of copy number variation and experimental error. Proc R Soc B 284:20170425. doi: 10.1098/rspb.2017.0425 PubMed DOI PMC

Gertler C, Näther DJ, Gerdts G, Malpass MC, Golyshin PN. 2010. A mesocosm study of the changes in marine flagellate and ciliate communities in a crude oil bioremediation trial. Microb Ecol 60:180–191. doi: 10.1007/s00248-010-9660-3 PubMed DOI

Zou S, Fu R, Deng H, Zhang Q, Gentekaki E, Gong J. 2021. Coupling between ribotypic and phenotypic traits of protists across life cycle stages and temperatures. Microbiol Spectr 9:e0173821. doi: 10.1128/Spectrum.01738-21 PubMed DOI PMC

Pasulka AL, Goffredi SK, Tavormina PL, Dawson KS, Levin LA, Rouse GW, Orphan VJ. 2017. Colonial tube-dwelling ciliates influence methane cycling and microbial diversity within methane seep ecosystems. Front Mar Sci 3:276. doi: 10.3389/fmars.2016.00276 DOI

Lara E, Berney C, Harms H, Chatzinotas A. 2007. Cultivation-independent analysis reveals a shift in ciliate 18S rRNA gene diversity in a polycyclic aromatic hydrocarbon-polluted soil. FEMS Microbiol Ecol 62:365–373. doi: 10.1111/j.1574-6941.2007.00387.x PubMed DOI

Dias RJP, de Souza PM, Rossi MF, Wieloch AH, da Silva-Neto ID, D’Agosto M. 2021. Ciliates as bioindicators of water quality: a case study in the neotropical region and evidence of phylogenetic signals (18S-rDNA). Environ Pollut 268:115760. doi: 10.1016/j.envpol.2020.115760 PubMed DOI

Melekhin M, Yakovleva Y, Lebedeva N, Nekrasova I, Nikitashina L, Castelli M, Mayén-Estrada R, Romanovich AE, Petroni G, Potekhin A. 2022. Cryptic diversity in Paramecium multimicronucleatum revealed with a polyphasic approach. Microorganisms 10:974. doi: 10.3390/microorganisms10050974 PubMed DOI PMC

Schalch-Schuler M, Bassin B, Andrei A-S, Dirren-Pitsch G, Waller K, Hofer C, Pernthaler J, Posch T. 2025. The planktonic freshwater ciliate Balanion planctonicum (Ciliophora, Prostomatea): a cryptic species complex or a “complex species”? J Eukaryot Microbiol 72:e13084. doi: 10.1111/jeu.13084 PubMed DOI PMC

Liu X, Gong J. 2012. Revealing the diversity and quantity of peritrich ciliates in environmental samples using specific primer-based PCR and quantitative PCR. Microbes Environ 27:497–503. doi: 10.1264/jsme2.me12056 PubMed DOI PMC

Caron DA, Countway PD, Savai P, Gast RJ, Schnetzer A, Moorthi SD, Dennett MR, Moran DM, Jones AC. 2009. Defining DNA-based operational taxonomic units for microbial-eukaryote ecology. Appl Environ Microbiol 75:5797–5808. doi: 10.1128/AEM.00298-09 PubMed DOI PMC

Douglas GM, Comeau AM, Langille MG. 2018. Processing a 16S rRNA sequencing dataset with the microbiome helper workflow, p 131–141. In Beiko R, Hsiao W, Parkinson J (ed), Microbiome analysis: methods protocols. Humana Press, New York, NY. PubMed

MacNeil L, Desai DK, Costa M, LaRoche J. 2022. Combining multi-marker metabarcoding and digital holography to describe eukaryotic plankton across the Newfoundland Shelf. Sci Rep 12:13078. doi: 10.1038/s41598-022-17313-w PubMed DOI PMC

Yeh YC, McNichol J, Needham DM, Fichot EB, Berdjeb L, Fuhrman JA. 2021. Comprehensive single-PCR 16S and 18S rRNA community analysis validated with mock communities, and estimation of sequencing bias against 18S. Environ Microbiol 23:3240–3250. doi: 10.1111/1462-2920.15553 PubMed DOI

Blabolil P, Ricard D, Peterka J, Říha M, Jůza T, Vašek M, Prchalová M, Čech M, Muška M, Seďa J, Mrkvička T, Boukal DS, Kubečka J. 2016. Predicting asp and pikeperch recruitment in a riverine reservoir. Fish Res 173:45–52. doi: 10.1016/j.fishres.2015.08.003 DOI

Znachor P, Hejzlar J, Vrba J, Nedoma J, Seda J, Šimek K, Komárková J, Kopacek J, Sorf M, Kubečka J, Matěna J, Říha M, Peterka J, Čech M, Vašek M. 2016. Brief history of long-term ecological research into aquatic ecosystems and their catchments in the Czech Republic. Part I: manmade reservoirs. Biology Centre CAS, v.v.i., Institute of Hydrobiology, České Budějovice Czechia.

Znachor P, Nedoma J, Hejzlar J, Seďa J, Kopáček J, Boukal D, Mrkvička T. 2018. Multiple long-term trends and trend reversals dominate environmental conditions in a man-made freshwater reservoir. Sci Total Environ 624:24–33. doi: 10.1016/j.scitotenv.2017.12.061 PubMed DOI

Šimek K, Grujčić V, Hahn MW, Horňák K, Jezberová J, Kasalický V, Nedoma J, Salcher MM, Shabarova T. 2018. Bacterial prey food characteristics modulate community growth response of freshwater bacterivorous flagellates. Limnol Oceanogr 63:484–502. doi: 10.1002/lno.10759 DOI

Skibbe O. 1994. An improved quantitative protargol stain for ciliates and other planktonic protists. Arch Hydrobiol 130:339–347. doi: 10.1127/archiv-hydrobiol/130/1994/339 DOI

Pfister G, Sonntag B, Posch T. 1999. Comparison of a direct live count and an improved quantitative protargol stain (QPS) in determining abundance and cell volumes of pelagic freshwater protozoa. Aquat Microb Ecol 18:95–103. doi: 10.3354/ame018095 DOI

Foissner W, Berger H, Kohmann F. 1994. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems – Band III: Hymenostomata, Prostomatida, Nassulida, 548 pp. Heft 1/94. München: Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft

Foissner W, Berger H, Schaumburg J. 1999. Identification and ecology of limnetic plankton ciliates, 793 pp. Heft 3/199. München: Informationsberichte des Bayerisches Landesamt für Wasserwirtschaft

Foissner W, Blatterer H, Berger H, Kohmann F. 1995. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems – Band IV: Gymnostomatea, Loxodes, Suctoria, 540 pp. Heft 1/95. München: Informationsberichte des Bayerisches Landesamt für Wasserwirtschaft

Foissner W, Berger H. 1996. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshw Biol 35:375–482. doi: 10.1111/j.1365-2427.1996.tb01775.x DOI

Schwelm A, Berney C, Dixelius C, Bass D, Neuhauser S. 2016. The large subunit rDNA sequence of Plasmodiophora brassicae does not contain intra-species polymorphism. Protist 167:544–554. doi: 10.1016/j.protis.2016.08.008 PubMed DOI PMC

Latz MAC, Grujčić V, Brugel S, Lycken J, John U, Karlson B, Andersson A, Andersson AF. 2022. Short- and long-read metabarcoding of the eukaryotic rRNA operon: evaluation of primers and comparison to shotgun metagenomics sequencing. Mol Ecol Resour 22:2304–2318. doi: 10.1111/1755-0998.13623 PubMed DOI

Callahan BJ, Wong J, Heiner C, Oh S, Theriot CM, Gulati AS, McGill SK, Dougherty MK. 2019. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res 47:e103–e103. doi: 10.1093/nar/gkz569 PubMed DOI PMC

Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, de Vargas C, Decelle J, et al. 2013. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41:D597–D604. doi: 10.1093/nar/gks1160 PubMed DOI PMC

R Core Team . 2024. RStudio: integrated development environment for R. Posit Software, PBC, Boston, MA. https://www.posit.co/.

Lu Y, Zhou G, Ewald J, Pang Z, Shiri T, Xia J. 2023. MicrobiomeAnalyst 2.0: comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Res 51:W310–W318. doi: 10.1093/nar/gkad407 PubMed DOI PMC

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. 2017. Microbiome datasets are compositional: and this is not optional. Front Microbiol 8:2224. doi: 10.3389/fmicb.2017.02224 PubMed DOI PMC

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2007. vegan: community ecology package. CRAN (Comprehensive R Archive Network). https://CRAN.R-project.org/package=vegan.

Ahti L, Shetty S, Ernst FM, et al. 2021. Orchestrating microbiome analysis with Bioconductor [Beta Version]. Available from: https://microbiome.github.io/OMA/docs/devel/

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...