Cascading effects in freshwater microbial food webs by predatory Cercozoa, Katablepharidacea and ciliates feeding on aplastidic bacterivorous cryptophytes
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32556274
PubMed Central
PMC7538307
DOI
10.1093/femsec/fiaa121
PII: 5859480
Knihovny.cz E-zdroje
- Klíčová slova
- Cercozoa, Cryptophyceae, Katablepharidacea, bacterivorous and predatory flagellates, ciliates, freshwater microbial food webs,
- MeSH
- Cercozoa * MeSH
- Cryptophyta MeSH
- hybridizace in situ fluorescenční MeSH
- potravní řetězec * MeSH
- sladká voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Heterotrophic nanoflagellates (HNF) are considered as major planktonic bacterivores, however, larger HNF taxa can also be important predators of eukaryotes. To examine this trophic cascading, natural protistan communities from a freshwater reservoir were released from grazing pressure by zooplankton via filtration through 10- and 5-µm filters, yielding microbial food webs of different complexity. Protistan growth was stimulated by amendments of five Limnohabitans strains, thus yielding five prey-specific treatments distinctly modulating protistan communities in 10- versus 5-µm fractions. HNF dynamics was tracked by applying five eukaryotic fluorescence in situ hybridization probes covering 55-90% of total flagellates. During the first experimental part, mainly small bacterivorous Cryptophyceae prevailed, with significantly higher abundances in 5-µm treatments. Larger predatory flagellates affiliating with Katablepharidacea and one Cercozoan lineage (increasing to up to 28% of total HNF) proliferated towards the experimental endpoint, having obviously small phagocytized HNF in their food vacuoles. These predatory flagellates reached higher abundances in 10-µm treatments, where small ciliate predators and flagellate hunters also (Urotricha spp., Balanion planctonicum) dominated the ciliate assemblage. Overall, our study reports pronounced cascading effects from bacteria to bacterivorous HNF, predatory HNF and ciliates in highly treatment-specific fashions, defined by both prey-food characteristics and feeding modes of predominating protists.
Biology Centre CAS Institute of Hydrobiology Na Sádkách 7 370 05 České Budějovice Czech Republic
University of South Bohemia Faculty of Science Branišovská 31 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Adl SM, Bass D, Lane CE et al. . Revisions to the classification, nomenclature, and diversity of eukaryotes. J Euk Microbiol. 2019;66:4–119. PubMed PMC
Arndt H, Dietrich D, Auere B et al. . Functional diversity of heterotrophic flagellates in aquatic ecosystems. In: Leadbeater BSC, Green JC (eds.). The Flagellates. London Taylor and Francis, 2000, 240–68.
Bass D, Cavalier-Smith T. Phylum-specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa). Int J Syst Evol Micr. 2004;54:2393–404. PubMed
Beisner BE, Grossart H-P, Gasol JM. A guide to methods for estimating phago-mixotrophy in nanophytoplankton. J Plankton Res. 2019;41:77–89.
Berney C, Romac S, Mahe F et al. . Vampires in the oceans: predatory cercozoan amoebae in marine habitats. ISME J. 2013;7:2387–99. PubMed PMC
Berninger UB, Finlay J, Kuuppo-Leinikki P. Protozoan control of bacterial abundances in freshwaters. Limnol Oceanogr. 1991;36:139–47.
Bochdanksy AB, Huang L. Re-evaluation of the EUK516 probe for the domain eukarya results in a suitable probe for the detection of Kinetoplastids, an important group of parasitic and free-living flagellates. J Eukaryot Microbiol. 2010;57:229–35. PubMed
Boenigk J, Arndt H. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie Van Leeuwenhoek. 2002;81:465–80. PubMed
Boenigk J, Arndt H. Particle handling during interception feeding by four species of heterotrophic nanoflagellates. J Eukaryot Microbiol. 2000;47:350–58. PubMed
Caron DA. Grazing of attached bacteria by heterotrophic microflagellates. Microb Ecol. 1987;13:203–18. PubMed
Clay B, Kugrens P. Systematics of the enigmatic kathablepharids, including EM characterization of the type species, Kathablepharis phoenikoston, and new observations on K. remigera comb. nov. Protist. 1999;150:43–59. PubMed
Domaizon I, Viboud S, Fontvieille D. Taxon-specific and seasonal variations in flagellates grazing on heterotrophic bacteria in the oligotrophic Lake Annecy - importance of mixotrophy. FEMS Microbiol Ecol. 2003;46:317–29. PubMed
Foissner W, Berger H, Schaumburg J. Identification and ecology of limnetic plankton ciliates. Informationsberichte des Bayer Landesamtes für Wasserwirtschaft Heft 3/99, 1999;793.
Foissner W, Berger H. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshw Biol. 1996;35:375–482.
Grujčić V, Kasalický V, Šimek K. Prey-specific growth responses of freshwater flagellate communities induced by morphologically distinct bacteria from the genus Limnohabitans. Appl Environ Microbiol. 2015;81:4993–5002. PubMed PMC
Grujčić V, Nuy J, Salcher MM et al. . Cryptophyta as major freshwater bacterivores in experiments with manipulated bacterial prey. ISME J. 2018;12:1668–81. PubMed PMC
Hahn MW, Stadler P, Wu QL et al. . The filtration acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods. 2004;57:379–90. PubMed
Hammer Ø, Harper DAT, Ryan PD. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron. 2001;4:art.4.
Havskum H, Riemann B. Ecological importance of bacterivorous, pigmented flagellates (mixotrophs) in the Bay of Aarhus, Denmark. Mar Ecol Prog Ser. 1996;137:251–63.
Hess S, Melkonian M. The Mystery of clade X: Orciraptor gen. nov. and Viridiraptor gen. nov. are highly specialised, algivorous Amoeboflagellates (Glissomonadida, Cercozoa). Protists. 2013;164:706–47. PubMed
Jeuck A, Arndt H. A short guide to common heterotrophic flagellates of freshwater habitats based on the morphology of living organisms. Protist. 2013;164:842–60. PubMed
Jezbera J, Horňák K, Šimek K. Food selection by bacterivorous protists: Insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microbiol Ecol. 2005;52:351–63. PubMed
Jürgens K, Jeppesen E. The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. J Plankton Res. 2000;22:1047–70.
Jürgens K, Matz C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek. 2002;81:413–34. PubMed
Jürgens K, Šimek K. Functional response and particle size selection of Halteria cf. grandinella, a common freshwater oligotrichous ciliate. Aquat Microb Ecol. 2000;22:57–68.
Kasalický V, Jezbera J, Šimek K et al. . The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS One. 2013;8:e58209. PubMed PMC
Kiørboe T. How zooplankton feed: mechanisms, traits and trade-offs. Biol Rev. 2011;86:311–39. PubMed
Kwon JE, Jeong HJ, Kim SJ et al. . Newly discovered role of the heterotrophic nanoflagellate Katablepharis japonica, a predator of toxic or harmful dinoflagellates and raphidophytes. Harmful Algae. 2017;68:224–39. PubMed
Ludwig W, Strunk O, Westram R et al. . ARB: a software environment for sequence data. Nucl Acid Res. 2004;32:1363–71. PubMed PMC
Massana R, Unrein F, Rodríguez-Martínez R et al. . Grazing rates and functional diversity of uncultured heterotrophic flagellates. ISME J. 2009;3:588–96. PubMed
Metfies K, Medlin LK. Refining cryptophyte identification with DNA-microarrays. J Plankton Res. 2007;29:1071–75.
Montagnes DJS, Barbosa AB, Boenigk J et al. . Selective feeding behaviour of key free-living protists: avenues for continued study. Aquat Microb Ecol. 2008;53:83–98.
Mukherjee I, Hodoki Y, Nakano S. Kinetoplastid flagellates overlooked by universal primers dominate in the oxygenated hypolimnion of Lake Biwa, Japan. FEMS Microbiol Ecol. 2015;91:1–11. PubMed
Mukherjee I, Hodoki Y, Okazaki Y et al. . Widespread dominance of kinetoplastids and unexpected presence of diplonemids in deep freshwater lakes. Front Microbiol. 2019;10:2375. PubMed PMC
Müller H, Schöne A, Pinto-Coelho RM et al. . Seasonal succession of ciliates in Lake Constance. Microb Ecol. 1991;21:119–38. PubMed
Nakano S, Ishii N, Manage PM et al. . Trophic roles of heterotrophic nanoflagellates and ciliates among planktonic organisms in a hypereutrophic pond. Aquat Microb Ecol. 2001;16:153–61.
Okamoto N, Inouye I. The katablepharids are a distant sister group of the Cryptophyta: A proposal for Katablepharidophyta divisio nova/Kathablepharida phylum novum based on SSU rDNA and beta-tubulin phylogeny. Protist. 2005;156:163–79. PubMed
Ok JH, Jeong HJ, Lim AS et al. . Feeding by the heterotrophic nanoflagellate Katablepharis remigera on algal prey and its nationwide distribution in Korea. Harmful Algae. 2018;74:30–45. PubMed
Pernthaler J. Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol. 2005;3:537–46. PubMed
Piwosz K, Kownacka J, Ameryk A et al. . Phenology of cryptomonads and the CRY1 lineage in a coastal brackish lagoon (Vistula Lagoon, Baltic Sea). J Phycol. 2016;53:1689–99. PubMed
Piwosz K, Pernthaler J. Enrichment of omnivorous Cercozoan nanoflagellates from coastal Baltic Sea waters. PLoS One. 2011;6:e24415. PubMed PMC
Piwosz K, Pernthaler J. Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the Southern Baltic Sea. Environ Microbiol. 2010;12:364–77. PubMed
Piwosz K, Shabarova T, Pernthaler J et al. . Bacterial and eukaryotic small-subunit amplicon data do not provide a quantitative picture of microbial communities, but are they reliable in the context of their ecological interpretation. mSphere. 2020;5:e00052–20. PubMed PMC
Piwosz K. Weekly dynamics of abundance and size structure of specific nanophytoplankton lineages in coastal waters (Baltic Sea). Limnol Oceanogr. 2019;64:2172–86.
Posch T, Eugster B, Pomati F et al. . Network of interactions between ciliates and phytoplankton during spring. Front Microbiol. 2015;6:1286. PubMed PMC
Quast C, Pruesse E, Yilmaz P et al. . The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acid Res. 2013;41:D590–6. PubMed PMC
Sekar RA, Pernthaler J, Pernthaler F et al. . An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol. 2003;69:2928–35. PubMed PMC
Sherr BF, Sherr EB, Fallon RD. Use of monodispersed fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol. 1987;53:958–65. PubMed PMC
Simon M, López-García P, Deschamps P et al. . Marked seasonality and high spatial variability of protist communities in shallow freshwater systems. ISME J. 2015;9:1–13. PubMed PMC
Simon N, Campbell L, Ornolfsdottir E et al. . Oligonucleotide probes for the identification of three algal groups by dot blot and fluorescent whole-cell hybridization. J Eukaryotic Microbiol. 2000;47:76–84. PubMed
Sommer U, Adrian R, De Senerpont Domis L et al. . Beyond the Plankton Ecology Group (PEG) Model: Mechanisms driving plankton succession. Annu Rev Ecol Evol Syst. 2012;43:429–48.
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–13. PubMed PMC
Šimek K, Grujčić V, Hahn MW et al. . Bacterial prey food characteristics modulate community growth response of freshwater bacterivorous flagellates. Limnol Oceanogr. 2018;63:484–502.
Šimek K, Grujčić V, Nedoma J et al. . Microbial food webs in hypertrophic fishponds: omnivorous ciliate taxa are major protistan bacterivores. Limnol Oceanogr. 2019;64:2295–309.
Šimek K, Kasalický V, Jezbera J et al. . Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria. ISME J. 2013;7:1519–30. PubMed PMC
Šimek K, Nedoma J, Znachor P et al. . A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr. 2014;59:1477–92.
Šimek K, Pernthaler J, Weinbauer MG et al. . Changes in bacterial community composition, dynamics and viral mortality rates associated with enhanced flagellate grazing in a meso-eutrophic reservoir. Appl Environ Microbiol. 2001;67:2723–33. PubMed PMC
Unrein F, Gasol JM, Not F et al. . Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME J. 2014;8:164–76. PubMed PMC
Weisse T, Anderson R, Arndt H et al. . Functional ecology of aquatic phagotrophic protists – concepts, limitations, and perspectives. Eur J Protisto1. 2016;55:50–74. PubMed
Weisse T. Functional diversity of aquatic ciliates. Europ J Protistol. 2017;61:331–58. PubMed
Yilmaz LS, Parnerkar S, Noguera DR. MathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl Environ Microbiol. 2011;77:1118–22. PubMed PMC
Global freshwater distribution of Telonemia protists
High-resolution metagenomic reconstruction of the freshwater spring bloom
Cryptic and ubiquitous aplastidic cryptophytes are key freshwater flagellated bacterivores
CARD-FISH in the Sequencing Era: Opening a New Universe of Protistan Ecology