CARD-FISH and prey tracer techniques reveal the role of overlooked flagellate groups as major bacterivores in freshwater hypertrophic shallow lakes
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34933408
PubMed Central
PMC9788210
DOI
10.1111/1462-2920.15846
Knihovny.cz E-zdroje
- MeSH
- Bacteria genetika MeSH
- Ciliophora * MeSH
- Cryptophyta MeSH
- ekosystém MeSH
- fylogeneze MeSH
- hybridizace in situ fluorescenční MeSH
- jezera * mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Heterotrophic nanoflagellates (HNF) and ciliates are major protistan planktonic bacterivores. The term HNF, however, describes a functional guild only and, in contrast to the morphologically distinguishable ciliates, does not reflect the phylogenetic diversity of flagellates in aquatic ecosystems. Associating a function with taxonomic affiliation of key flagellate taxa is currently a major task in microbial ecology. We investigated seasonal changes in the HNF and ciliate community composition as well as taxa-specific bacterivory in four hypertrophic freshwater lakes. Taxa-specific catalyzed reporter deposition-fluorescence in situ hybridization probes assigned taxonomic affiliations to 51%-96% (average ±SD, 75 ± 14%) of total HNF. Ingestion rates of fluorescently labelled bacteria unveiled that HNF contributed to total protist-induced bacterial mortality rates more (56%) than ciliates (44%). Surprisingly, major HNF bacterivores were aplastidic cryptophytes and their Cry1 lineage, comprising on average 53% and 24% of total HNF abundance and 67% and 21% of total HNF bacterivory respectively. Kinetoplastea were important consumers of bacteria during summer phytoplankton blooms, reaching 38% of total HNF. Katablepharidacea (7.5% of total HNF) comprised mainly omnivores, with changing contributions of bacterivorous and algivorous phylotypes. Our results show that aplastidic cryptophytes, accompanied by small omnivorous ciliate genera Halteria/Pelagohalteria, are the major protistan bacterivores in hypertrophic freshwaters.
Zobrazit více v PubMed
Adl, S.M. , Bass, D. , Lane, C.E. , Lukeš, J. , Schoch, C.L. , Smirnov, A. , et al. (2019) Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol 66: 4–119. PubMed PMC
Altschul, S.F. , Gish, W. , Miller, W. , Myers, E.W. , and Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol 215: 403–410. PubMed
Arndt, H. , Dietrich, D. , Auer, B. , Cleven, E.‐J. , Gräfenhan, T. , Weitere, M. , and Mylnikov, A.P. (2000) Functional diversity of heterotrophic flagellates in aquatic ecosystems. In The Flagellates, Leadbeater, B.S.C. , and Green, J.C. (eds). London: Taylor and Francis, pp. 240–268.
Arndt, H. , and Mathes, J. (1991) Large heterotrophic flagellates form a significant part of protozooplankton biomass in lakes and rivers. Ophelia 33: 225–234.
Bass, D. , and Cavalier‐Smith, T. (2004) Phylum‐specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa). Int J Syst Evol Microbiol 54: 2393–2404. PubMed
Beaver, J.R. , and Crisman, T.L. (1989) The role of ciliated protozoa in pelagic freshwater ecosystems. Microb Ecol 17: 111–136. PubMed
Bell, R.T. (1990) An explanation for the variability in the conversion factor deriving bacterial cell production from incorporation of [3H]thymidine. Limnol Oceanogr 35: 910–915.
Berninger, U.G. , Finlay, B.J. , and Kuuppo‐Leinikki, P. (1991) Protozoan control of bacterial abundances in freshwater. Limnol Oceanogr 36: 139–147.
Bickel, S.L. , Tang, K.W. , and Grossart, H.‐P. (2012) Ciliate epibionts associated with crustacean zooplankton in German lakes: distribution, motility, and bacterivory. Front Microb 3: 243. PubMed PMC
Bjorbækmo, M.F.M. , Evenstad, A. , Røsæg, L.L. , Krabberød, A.K. , and Logares, R. (2020) The planktonic protist interactome: where do we stand after a century of research? ISME J 14: 544–559. PubMed PMC
Bochdansky, A.B. , and Huang, L. (2010) Re‐evaluation of the EUK516 probe for the domain Eukarya results in a suitable probe for the detection of Kinetoplastids, an important group of parasitic and free‐living flagellates. J Eukaryot Microbiol 57: 229–235. PubMed
Bock, C. , Jensen, M. , Forster, D. , Marks, S. , Nuy, J. , Psenner, R. , et al. (2020) Factors shaping community patterns of protists and bacteria on a European scale. Environ Microbiol 22: 2243–2260. PubMed
Boenigk, J. , and Arndt, H. (2000) Particle handling during interception feeding by four species of heterotrophic nanoflagellates. J Eukaryot Microbiol 47: 350–358. PubMed
Boenigk, J. , and Arndt, H. (2002) Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie Van Leeuwenhoek 81: 465–480. PubMed
Caron, D.A. (1987) Grazing of attached bacteria by heterotrophic microflagellates. Microb Ecol 13: 203–218. PubMed
Caron, D.A. , Davis, P. , Madin, L.P. , and Sieburth, J.M. (1982) Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science 218: 795–797. PubMed
Cenci, U. , Sibbald, S.J. , Curtis, B.A. , Kamikawa, R. , Eme, L. , Moog, D. , et al. (2018) Nuclear genome sequence of the plastid‐lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids. BMC Biol 16: 137. PubMed PMC
Choi, J.W. , and Peters, F. (1992) Effects of temperature on two psychrophilic ecotypes of a heterotrophic nanoflagellate, Paraphysomonas imperforata . Appl Environ Microbiol 58: 593–599. PubMed PMC
Clay, B. , and Kugrens, P. (1999) Systematics of the enigmatic kathablepharids, including EM characterization of the type species, Kathablepharis phoenikoston, and new observations on K. remigera comb. nov. Protist 150: 43–59. PubMed
de Vargas, C. , Audic, S. , Henry, N. , Decelle, J. , Mahé, F. , Logares, R. , et al. (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348: 1261605. PubMed
del Campo, J. , and Massana, R. (2011) Emerging diversity within chrysophytes, choanoflagellates and bicosoecids based on molecular surveys. Protist 162: 435–448. PubMed
Domaizon, I. , Viboud, S. , and Fontvieille, D. (2003) Taxon‐specific and seasonal variations in flagellates grazing on heterotrophic bacteria in the oligotrophic Lake Annecy – importance of mixotrophy. FEMS Microbiol Ecol 46: 317–329. PubMed
Eckert, E.M. , Salcher, M.M. , Posch, T. , Eugster, B. , and Pernthaler, J. (2011) Rapid successions affect microbial N‐acetyl‐glucosamine uptake patterns during a lacustrine spring phytoplankton bloom. Environ Microbiol 14: 794–806. PubMed
Foissner, W. , and Berger, H. (1996) A user‐friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshw Biol 35: 375–482.
Foissner, W. , Berger, H. , and Schaumburg, J. (1999) Identification and ecology of limnetic plankton ciliates. Informationsber Bayer Landesamtes Wasserwirtsch Heft 3/99: 793.
Gasol, J.M. , and Vaqué, D. (1993) Lack of coupling between heterotrophic nanoflagellates and bacteria: a general phenomenon across aquatic systems? Limnol Oceanogr 38: 657–665.
Grossart, H.P. , Levold, F. , Allgaier, M. , Simon, M. , and Brinkhoff, T. (2005) Marine diatom species harbour distinct bacterial communities. Environ Microbiol 7: 860–873. PubMed
Grossmann, L. , Bock, C. , Schweikert, M. , and Boenigk, J. (2016) Small but manifold – hidden diversity in “Spumella‐like flagellates”. J Eukaryot Microbiol 63: 419–439. PubMed PMC
Grujčić, V. , Nuy, J.K. , Salcher, M.M. , Shabarova, T. , Kasalicky, V. , Boenigk, J. , et al. (2018) Cryptophyta as major bacterivores in freshwater summer plankton. ISME J 12: 1668–1681. PubMed PMC
Holen, D.A. , and Boraas, M.E. (1995) Mixotrophy in chrysophytes. In Chrysophyte Algae: Ecology, Phylogeny and Development, Sandgren, C.D. , Smol, J.P. , and Kristiansen, J. (eds): New York: Cambridge University Press, pp. 119–141.
Jeppesen, E. , Søndergaard, M. , Jensen, J.P. , Mortensen, E. , Hansen, A.M. , and Jørgensen, T. (1998) Cascading trophic interactions from fish to bacteria and nutrients after reduced sewage loading: an 18‐year study of a shallow hypertrophic lake. Ecosystems 1: 250–267.
Jeuck, A. , and Arndt, H. (2013) A short guide to common heterotrophic flagellates of freshwater habitats based on the morphology of living organisms. Ann Anat 164: 842–860. PubMed
Jezbera, J. , Horňák, K. , and Šimek, K. (2005) Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microbiol Ecol 52: 351–363. PubMed
Jones, R.I. (2000) Mixotrophy in planktonic protists: an overview. Freshw Biol 45: 219–226.
Jürgens, K. , and Jeppesen, E. (2000) The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. J Plankton Res 22: 1047–1070.
Jürgens, K. , and Matz, C. (2002) Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek 81: 413–434. PubMed
Jürgens, K. , and Šimek, K. (2000) Functional response and particle size selection of Halteria cf. grandinella, a common freshwater oligotrichous ciliate. Aquat Microb Ecol 22: 57–68.
Kopáček, J. , and Hejzlar, J. (1993) Semi‐micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int J Environ Anal Chem 53: 173–183.
Kwon, J. , Jeong, H. , Kim, S. , Jang, S. , Lee, K. , and Seong, K. (2017) Newly discovered role of the heterotrophic nanoflagellate Katablepharis japonica, a predator of toxic or harmful dinoflagellates and raphidophytes. Harmful Algae 68: 224–239. PubMed
Lepère, C. , Masquelier, S. , Mangot, J. , Debroas, D. , and Domaizon, I. (2010) Vertical structure of small eukaryotes in three lakes that differ by their trophic status: a quantitative approach. ISME J 4: 1509–1519. PubMed
Lim, E.L. , Dennett, M.R. , and Caron, D.A. (1999) The ecology of Paraphysomonas imperforata based on studies employing oligonucleotide probe identification in coastal water samples and enrichment cultures. Limnol Oceanogr 44: 37–51.
Logares, R. , Audic, S. , Santini, S. , Pernice, M.C. , de Vargas, C. , and Massana, R. (2012) Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing. ISME J 6: 1823–1833. PubMed PMC
Mangot, J.F. , Domaizon, I. , Taib, N. , Marouni, N. , Duffaud, E. , Bronner, G. , and Debroas, D. (2013) Short‐term dynamics of diversity patterns: evidence of continual reassembly within lacustrine small eukaryotes. Environ Microbiol 15: 1745–1758. PubMed
Mangot, J.F. , Forn, I. , Obiol, A. , and Massana, R. (2018) Constant abundances of ubiquitous uncultured protists in the open sea assessed by automated microscopy. Environ Microbiol 20: 3876–3889. PubMed
Mangot, J.F. , Lepère, C. , Bouvier, C. , Debroas, D. , and Domaizon, I. (2009) Community structure and dynamics of small eukaryotes targeted by new oligonucleotide probes: New insight into the lacustrine microbial food web. Appl Environ Microbiol 75: 6373–6381. PubMed PMC
Marshall, W. , and Laybourn‐Parry, J. (2002) The balance between photosynthesis and grazing in Antarctic mixotrophic cryptophytes during summer. Freshw Biol 47: 2060–2070.
Massana, R. , Guillou, L. , Terrado, R. , Forn, I. , and Pedrós‐Alió, C. (2006) Growth of uncultured heterotrophic flagellates in unamended seawater incubations. Aquat Microb Ecol 45: 171–180.
Massana, R. , Unrein, F. , Rodríguez‐Martínez, R. , Forn, I. , Lefort, T. , Pinhassi, J. , and Not, F. (2009) Grazing rates and functional diversity of uncultured heterotrophic flagellates. ISME J 3: 588–595. PubMed
Meerhoff, M. , and Jeppesen, E. (2009) Shallow lakes and ponds. In Encyclopedia of Inland Waters, 2nd ed, Likens, G.E. (ed): Amsterdam, Boston: Elsevier, pp. 645–655.
Metfies, K. , and Medlin, L.K. (2007) Refining cryptophyte identification with DNA‐microarrays. J Plankton Res 29: 1071–1075.
Mukherjee, I. , Hodoki, Y. , and Nakano, S. (2015) Kinetoplastid flagellates overlooked by universal primers dominate in the oxygenated hypolimnion of Lake Biwa, Japan. FEMS Microbiol Ecol 91: 83. PubMed
Mukherjee, I. , Hodoki, Y. , Okazaki, Y. , Fujinaga, S. , Ohbayashi, K. , and Nakano, S.I. (2019) Widespread dominance of Kinetoplastids and unexpected presence of Diplonemids in deep freshwater lakes. Front Microbiol 10: 2375. PubMed PMC
Mukherjee, I. , Salcher, M.M. , Andrei, A.Ş. , Kavagutti, V.S. , Shabarova, T. , Grujčić, V. , et al. (2020) A freshwater radiation of diplonemids. Environ Microbiol 22: 4658–4668. PubMed
Müller, H. , and Schlegel, A. (1999) Responses of three freshwater planktonic ciliates with different feeding modes to cryptophyte and diatom prey. Aquat Microb Ecol 17: 49–60.
Nakano, S.I. , Ishii, N. , Manage, P.M. , and Kawabata, Z. (1998) Trophic roles of heterotrophic nanoflagellates and ciliates among planktonic organisms in a hypereutrophic pond. Aquat Microb Ecol 16: 153–161.
Not, F. , Latasa, M. , Scharek, R. , Viprey, M. , Karleskind, P. , Balagué, V. , et al. (2008) Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes. Deep Res Part I Oceanogr Res Pap 55: 1456–1473.
Not, F. , Massana, R. , Latasa, M. , Marie, D. , Colson, C. , Eikrem, W. , et al. (2005) Late summer community composition and abundance of photosynthetic picoeukaryotes in Norwegian and Barents Seas. Limnol Oceanogr 50: 1677–1686.
Ok, J.H. , Jeong, H.J. , Lim, A.S. , Lee, S.Y. , and Kim, S.J. (2018) Feeding by the heterotrophic nanoflagellate Katablepharis remigera on algal prey and its nationwide distribution in Korea. Harmful Algae 74: 30–45. PubMed
Okamoto, N. , and Inouye, I. (2005) The katablepharids are a distant sister group of the cryptophyta: a proposal for Katablepharidophyta divisio nova/Kathablepharida phylum novum based on SSU rDNA and beta‐tubulin phylogeny. Protist 156: 163–179. PubMed
Pitsch, G. , Bruni, E.P. , Forster, D. , Qu, Z. , Sonntag, B. , Stoeck, T. , and Posch, T. (2019) Seasonality of planktonic freshwater ciliates: are analyses based on V9 regions of the 18S rRNA gene correlated with morphospecies counts? Front Microbiol 10: 248. PubMed PMC
Piwosz, K. (2019) Weekly dynamics of abundance and size structure of specific nano‐phytoplankton lineages in coastal waters (Baltic Sea). Limnol Oceanogr 64: 2172–2186.
Piwosz, K. , Kownacka, J. , Ameryk, A. , Zalewski, M. , and Pernthaler, J. (2016) Phenology of cryptomonads and the CRY1 lineage in a coastal brackish lagoon (Vistula Lagoon, Baltic Sea). J Phycol 52: 626–637. PubMed
Piwosz, K. , Mukherjee, I. , Salcher, M.M. , Grujčić, V. , and Šimek, K. (2021) CARD‐FISH in the sequencing era: opening a new universe of protistan ecology. Front Microbiol 12: 397. PubMed PMC
Piwosz, K. , and Pernthaler, J. (2009) Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the Southern Baltic Sea. Environ Microbiol 12: 364–377. PubMed
Piwosz, K. , Shabarova, T. , Pernthaler, J. , Posch, T. , Šimek, K. , Porcal, P. , and Salcher, M.M. (2020) Bacterial and eukaryotic small‐subunit amplicon data do not provide a quantitative picture of microbial communities, but they are reliable in the context of ecological interpretations. mSphere 5: e00052‐20. PubMed PMC
Posch, T. , Eugster, B. , Pomati, F. , Pernthaler, J. , Pitsch, G. , and Eckert, E.M. (2015) Network of interactions between ciliates and phytoplankton during spring. Front Microbiol 6: 1289. PubMed PMC
Salcher, M.M. , Posch, T. , and Pernthaler, J. (2013) In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. ISME J 7: 896–907. PubMed PMC
Sanders, R. , Caron, D. , and Berninger, U.G. (1992) Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter‐ecosystem comparison. Mar Ecol Prog Ser 86: 1–14.
Scheffer, M. (2004) Ecology of shallow lakes. Dordrecht: Kluwer, p. 357.
Shalchian‐Tabrizi, K. , Bråte, J. , Logares, R. , Klaveness, D. , Berney, C. , and Jakobsen, K.S. (2008) Diversification of unicellular eukaryotes: cryptomonad colonizations of marine and fresh waters inferred from revised 18S rRNA phylogeny. Wiley Online Libr 10: 2635–2644. PubMed
Sherr, B.F. , Sherr, E.B. , and Fallont, R.D. (1987) Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol 53: 958–965. PubMed PMC
Sherr, E.B. , and Sherr, B.F. (1988) Role of microbes in pelagic food webs: a revised concept. Limnol Oceanogr 33: 1225–1227.
Sherr, E.B. , and Sherr, B.F. (1994) Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb Ecol 28: 223–235. PubMed
Shiratori, T. , and Ishida, K.‐I. (2016) A new heterotrophic cryptomonad: Hemiarma marina n. g., n. sp. J Eukaryot Microbiol 63: 804–812. PubMed
Sieber, G. , Beisser, D. , Bock, C. , and Boenigk, J. (2020) Protistan and fungal diversity in soils and freshwater lakes are substantially different. Sci Rep 10: 20025. PubMed PMC
Šimek, K. , Grujčić, V. , Hahn, M.W. , Horňák, K. , Jezberová, J. , Kasalický, V. , et al. (2018) Bacterial prey food characteristics modulate community growth response of freshwater bacterivorous flagellates. Limnol Oceanogr 63: 484–502.
Šimek, K. , Grujčić, V. , Mukherjee, I. , Kasalický, V. , Nedoma, J. , Posch, T. , et al. (2020) Cascading effects in freshwater microbial food webs by predatory Cercozoa, Katablepharidacea and ciliates feeding on aplastidic bacterivorous cryptophytes. FEMS Microbiol Ecol 96: fiaa121. PubMed PMC
Šimek, K. , Grujčić, V. , Nedoma, J. , Jezberová, J. , Šorf, M. , Matoušů, A. , et al. (2019) Microbial food webs in hypertrophic fishponds: omnivorous ciliate taxa are major protistan bacterivores. Limnol Oceanogr 64: 2295–2309.
Šimek, K. , Hartman, P. , Nedoma, J. , Pernthaler, J. , Springmann, D. , Vrba, J. , and Psenner, R. (1997) Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum. Aquat Microb Ecol 12: 49–63.
Šimek, K. , Kasalický, V. , Jezbera, J. , Horňák, K. , Nedoma, J. , Hahn, M.W. , et al. (2013) Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria. ISME J 7: 1519–1530. PubMed PMC
Šimek, K. , Nedoma, J. , Znachor, P. , Kasalický, V. , Jezbera, J. , Horňák, K. , and Seďa, J. (2014) A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr 59: 1477–1492.
Šimek, K. , and Sirová, D. (2019) Fluorescently labeled bacteria as a tracer to reveal novel pathways of organic carbon flow in aquatic ecosystems. J Vis Exp 2019: e59903. PubMed
Simon, M. , López‐García, P. , Deschamps, P. , Moreira, D. , Restoux, G. , Bertolino, P. , and Jardillier, L. (2015) Marked seasonality and high spatial variability of protist communities in shallow freshwater systems. ISME J 9: 1941–1953. PubMed PMC
Sommaruga, R. (1995) Microbial and classical food webs: a visit to a hypertrophic lake. FEMS Microbiol Ecol 17: 257–270.
Sommer, U. , Adrian, R. , De Senerpont Domis, L. , Elser, J.J. , Gaedke, U. , Ibelings, B. , et al. (2012) Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst 43: 429–477.
Sommer, U. , Gliwicz, M. , Lampert, W. , and Duncan, A. (1986) The PEG‐model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106: 433–471.
Stern, R. , Kraberg, A. , Bresnan, E. , Kooistra, W.H.C.F. , Lovejoy, C. , Montresor, M. , et al. (2018) Molecular analyses of protists in long‐term observation programmes – current status and future perspectives. J Plankton Res 40: 519–536.
Straile, D. (1997) Gross growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration, predator‐prey weight ratio, and taxonomic group. Limnol Oceanogr 42: 1375–1385.
Unrein, F. , Gasol, J.M. , Not, F. , Forn, I. , and Massana, R. (2014) Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME J 8: 164–176. PubMed PMC
von der Heyden, S. , Chao, E. , and Cavalier‐Smith, T. (2004) Genetic diversity of goniomonads: an ancient divergence between marine and freshwater species. Eur J Phycol 39: 343–350.
Weisse, T. , Jezberová, J. , and Moser, M. (2021) Picoplankton feeding by the ciliate Vorticella similis in comparison to other peritrichs emphasizes their significance in the water purification process. Ecol Indic 121: 106992.
Weitere, M. , and Arndt, H. (2003) Structure of the heterotrophic flagellate community in the water column of the River Rhine (Germany). J Eur Protistol 39: 287–300.
Zeder, M. , Peter, S. , Shabarova, T. , and Pernthaler, J. (2009) A small population of planktonic Flavobacteria with disproportionally high growth during the spring phytoplankton bloom in a prealpine lake. Environ Microbiol 11: 2676–2686. PubMed
Zingel, P. , Agasild, H. , Noges, T. , and Kisand, V. (2007) Ciliates are the dominant grazers on pico‐and nanoplankton in a shallow, naturally highly eutrophic lake. Microb Ecol 53: 134–142. PubMed
Zubkov, M.V. , and Sleigh, M.A. (2000) Comparison of growth efficiencies of protozoa growing on bacteria deposited on surfaces and in suspension. J Eukaryot Microbiol 47: 62–69. PubMed
Global freshwater distribution of Telonemia protists
High-resolution metagenomic reconstruction of the freshwater spring bloom
Cryptic and ubiquitous aplastidic cryptophytes are key freshwater flagellated bacterivores