• This record comes from PubMed

CARD-FISH in the Sequencing Era: Opening a New Universe of Protistan Ecology

. 2021 ; 12 () : 640066. [epub] 20210304

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article, Review

Phagotrophic protists are key players in aquatic food webs. Although sequencing-based studies have revealed their enormous diversity, ecological information on in situ abundance, feeding modes, grazing preferences, and growth rates of specific lineages can be reliably obtained only using microscopy-based molecular methods, such as Catalyzed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH). CARD-FISH is commonly applied to study prokaryotes, but less so to microbial eukaryotes. Application of this technique revealed that Paraphysomonas or Spumella-like chrysophytes, considered to be among the most prominent members of protistan communities in pelagic environments, are omnipresent but actually less abundant than expected, in contrast to little known groups such as heterotrophic cryptophyte lineages (e.g., CRY1), cercozoans, katablepharids, or the MAST lineages. Combination of CARD-FISH with tracer techniques and application of double CARD-FISH allow visualization of food vacuole contents of specific flagellate groups, thus considerably challenging our current, simplistic view that they are predominantly bacterivores. Experimental manipulations with natural communities revealed that larger flagellates are actually omnivores ingesting both prokaryotes and other protists. These new findings justify our proposition of an updated model of microbial food webs in pelagic environments, reflecting more authentically the complex trophic interactions and specific roles of flagellated protists, with inclusion of at least two additional trophic levels in the nanoplankton size fraction. Moreover, we provide a detailed CARD-FISH protocol for protists, exemplified on mixo- and heterotrophic nanoplanktonic flagellates, together with tips on probe design, a troubleshooting guide addressing most frequent obstacles, and an exhaustive list of published probes targeting protists.

See more in PubMed

Adl S. M., Bass D., Lane C. E., Lukeš J., Schoch C. L., Smirnov A., et al. (2019). Revisions to the classification, nomenclature, and diversity of Eukaryotes. PubMed PMC

Amann R., Fuchs B. M. (2008). Single-cell identification in microbial communities by improved fluorescence PubMed DOI

Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. (1990). Combination of 16S ribosomal-RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial populations. PubMed DOI PMC

Amann R. I., Ludwig W., Schleifer K. H. (1995). Phylogenetic identification and PubMed DOI PMC

Amaral-Zettler L., Mccliment E. A., Ducklow H. W., Huse S. M. (2009). A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of Small-Subunit Ribosomal RNA Genes. PubMed DOI PMC

Andersen O. K., Goldman J. C., Caron D. A., Dennett M. R. (1986). Nutrient cycling in a microflagellate food chain: III. Phosphorus dynamics. DOI

Andersen P., Fenchel T. (1985). Bacterivory by microheterotrophic flagellates in seawater samples. DOI

Anderson R., Winter C., Jürgens K. (2012). Protist grazing and viral lysis as prokaryotic mortality factors at Baltic Sea oxic-anoxic interfaces. DOI

Arndt H., Dietrich D., Auer B., Cleven E.-J., Gräfenhan T., Weitere M., et al. (2000). “Functional diversity of heterotrophic flagellates in aquatic ecosystems,” in

Arndt H., Mathes J. (1991). Large heterotrophic flagellates form a significant part of protozooplankton biomass in lakes and rivers. DOI

Azam F., Fenchel T., Field J. G., Gray J. S., Meyer-Reil L., Thingsted F. (1983). The ecological role of water-column microbes in the sea. DOI

Azam F., Malfatti F. (2007). Microbial structuring of marine ecosystems. PubMed DOI

Bachy C., Dolan J. R., Lopez-Garcia P., Deschamps P., Moreira D. (2013). Accuracy of protist diversity assessments: morphology compared with cloning and direct pyrosequencing of 18S rRNA genes and ITS regions using the conspicuous tintinnid ciliates as a case study. PubMed DOI PMC

Ballen-Segura M., Felip M., Catalan J. (2017). Some mixotrophic flagellate species selectively Graze on Archaea. PubMed PMC

Balzano S., Abs E., Leterme S. C. (2015). Protist diversity along a salinity gradient in a coastal lagoon. DOI

Bass D., Cavalier-Smith T. (2004). Phylum-specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa). PubMed DOI

Beardsley C., Knittel K., Amann R., Pernthaler J. (2005). Quantification and distinction of aplastidic and plastidic marine nanoplankton by fluorescence DOI

Behnke A., Engel M., Christen R., Nebel M., Klein R. R., Stoeck T. (2011). Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions. PubMed DOI

Berninger U.-G., Finlay B. J., Kuuppo-Leinikki P. (1991). Protozoan control of bacterial abundances in freshwater. DOI

Biard T., Stemmann L., Picheral M., Mayot N., Vandromme P., Hauss H., et al. (2016). PubMed DOI

Biegala I. C., Not F., Vaulot D., Simon N. (2003). Quantitative assessment of picoeukaryotes in the natural environment by using taxon-specific oligonucleotide probes in association with tyramide signal amplification-fluorescence PubMed DOI PMC

Bobrow M. N., Shaughnessy K. J., Litt G. J. (1991). Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays. PubMed DOI

Bochdansky A., Clouse M., Herndl G. (2017). Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. PubMed DOI PMC

Bochdansky A. B., Huang L. (2010). Re-evaluation of the EUK516 probe for the domain Eukarya results in a suitable probe for the detection of kinetoplastids, an important group of parasitic and free-living flagellates. PubMed

Boenigk J., Arndt H. (2000). Comparative studies on the feeding behavior of two heterotrophic nanoflagellates: the filter-feeding choanoflagellate DOI

Boenigk J., Arndt H. (2002). Bacterivory by heterotrophic flagellates: community structure and feeding strategies. PubMed

Bork P., Bowler C., De Vargas C., Gorsky G., Karsenti E., Wincker P. (2015). Tara Oceans studies plankton at planetary scale. PubMed DOI

Brandt S. M., Sleigh M. A. (2000). The quantitative occurrence of different taxa of heterotrophic flagellates in Southampton water, U.K. DOI

Brate J., Klaveness D., Rygh T., Jakobsen K. S., Shalchian-Tabrizi K. (2010). Telonemia-specific environmental 18S rDNA PCR reveals unknown diversity and multiple marine-freshwater colonizations. PubMed DOI PMC

Bühler D. (2020). PubMed PMC

Burki F., Roger A. J., Brown M. W., Simpson A. G. B. (2020). The new tree of Eukaryotes. PubMed DOI

Cabello A. M., Latasa M., Forn I., Morán X. A., Massana R. (2016). Vertical distribution of major photosynthetic picoeukaryotic groups in stratified marine waters. PubMed DOI

Caron D. A., Countway P. D., Jones A. C., Kim D. Y., Schnetzer A. (2012). Marine protistan diversity. PubMed DOI

Caron D. A., Davis P. G., Madin L. P., Sieburth J. M. (1982). Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. PubMed DOI

Caron D. A., Hu S. (2019). Are we overestimating protistan diversity in nature? PubMed DOI

Chambouvet A., Alves-De-Souza C., Cueff V., Marie D., Karpov S., Guillou L. (2011). Interplay between the parasite PubMed DOI

Chambouvet A., Morin P., Marie D., Guillou L. (2008). Control of toxic marine dinoflagellates blooms by serial parasitic killers. PubMed DOI

Chrzanowski T. H., Šimek K. (1990). Prey-size selection by freshwater flagellated protozoa. DOI

Coleman A. W. (1980). Enhanced detection of bacteria in natural environments by fluorochrone staining of DNA. DOI

Corno G., Jürgens K. (2006). Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. PubMed DOI PMC

Cram J., Sun F., Fuhrman J. A. (2013). “Marine bacterial, Archaeal, and Protistan Association Networks,” in DOI

Davidov K., Iankelevich-Kounio E., Yakovenko I., Koucherov Y., Rubin-Blum M., Oren M. (2020). Identification of plastic-associated species in the Mediterranean Sea using DNA metabarcoding with Nanopore MinION. PubMed PMC

de Vargas C., Audic S., Henry N., Decelle J., Mahe F., Logares R., et al. (2015). Eukaryotic plankton diversity in the sunlit ocean. PubMed

del Campo J., Massana R. (2011). Emerging diversity within chrysophytes, choanoflagellates and bicosoecids based on molecular surveys. PubMed DOI

del Giorgio P. A., Gasol J. M., Vaque D., Mura P., Agusti S., Duarte C. M. (1996). Bacterioplankton community structure: protists control net production and the proportion of active bacteria in a coastal marine community. DOI

Diehl S., Feiáe M. (2000). Effects of enrichment on three-level food chains with omnivory. PubMed DOI

Dirren S., Salcher M. M., Blom J. F., Schweikert M., Posch T. (2014). Menage-a-trois: the amoeba Nuclearia sp from Lake Zurich with its ecto- and endosymbiotic bacteria. PubMed DOI

Duarte C. M. (2015). Seafaring in the 21St century: the Malaspina 2010 circumnavigation expedition. DOI

Eckert E. M., Salcher M. M., Posch T., Eugster B., Pernthaler J. (2012). Rapid successions affect microbial N-acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom. PubMed DOI

Edgcomb V. P., Kysela D. T., Teske A., De Vera Gomez A., Sogin M. L. (2002). Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. PubMed DOI PMC

Edgcomb V. P., Orsi W., Breiner H. W., Stock A., Filker S., Yakimov M. M., et al. (2011). Novel active kinetoplastids associated with hypersaline anoxic basins in the Eastern Mediterranean deep-sea. DOI

Edler L., Elbrächter M. (2010). “The Utermöhl method for quantitative phytoplankton analysis,” in

Egge E., Bittner L., Andersen T., Audic S., De Vargas C., Edvardsen B. (2013). 454 pyrosequencing to describe microbial eukaryotic community composition, diversity and relative abundance: a test for marine haptophytes. PubMed DOI PMC

Egge E. S., Eikrem W., Edvardsen B. (2015). Deep-branching novel lineages and high diversity of haptophytes in the Skagerrak (Norway) uncovered by 454 pyrosequencing. PubMed DOI PMC

Eickhorst T., Tippkötter R. (2008). Improved detection of soil microorganisms using fluorescence DOI

Fagan W. F. (1997). Omnivory as a stabilizing feature of natural communities. PubMed DOI

Felsenstein J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. PubMed DOI

Fenchel T. (1982). Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. DOI

Ferrari B. C., Tujula N., Stoner K., Kjelleberg S. (2006). Catalyzed reporter deposition-fluorescence PubMed DOI PMC

Flegontova O., Flegontov P., Malviya S., Audic S., Wincker P., De Vargas C., et al. (2016). Extreme diversity of diplonemid eukaryotes in the ocean. PubMed DOI

Flegontova O., Flegontov P., Malviya S., Poulain J., De Vargas C., Bowler C., et al. (2018). Neobodonids are dominant kinetoplastids in the global ocean. PubMed DOI

Foissner W., Berger H. (1996). A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. DOI

Foissner W., Berger H., Schaumburg J. (1999).

Fried J., Ludwig W., Psenner R., Schleifer K. H. (2002). Improvement of ciliate identification and quantification: a new protocol for fluorescence PubMed DOI

Gasol J. M., Vagué D. (1993). Lack of coupling between heterotrophic nanoflagellates and bacteria: A general phenomenon across aquatic systems? DOI

Geisen S., Hu S., Dela Cruz T. E. E., Veen G. F. (2020). Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes. PubMed DOI PMC

Georges C., Monchy S., Genitsaris S., Christaki U. (2014). Protist community composition during early phytoplankton blooms in the naturally iron-fertilized Kerguelen area (Southern Ocean). PubMed DOI

Gerea M., Queimaliños C., Schiaffino M. R., Izaguirre I., Forn I., Massana R., et al. (2013). DOI

Gimmler A., Stoeck T. (2015). Mining environmental high-throughput sequence data sets to identify divergent amplicon clusters for phylogenetic reconstruction and morphotype visualization. PubMed DOI

Giovannoni S. J., Delong E. F., Olsen G. J., Pace N. R. (1988). Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. PubMed DOI PMC

Goldman J. C., Caron D. A. (1985). Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain. DOI

Goldman J. C., Caron D. A., Andersen O. K., Dennett M. R. (1985). Nutrient cycling in a microflagellate food chain: I. Nitrogen dynamics. DOI

Gong J., Dong J., Liu X., Massana R. (2013). Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. PubMed DOI

González J. M., Iriberri J., Egea L., Barcina I. (1990a). Differential rates of digestion of bacteria by freshwater and marine phagotrophic protozoa. PubMed DOI PMC

González J. M., Sherr E. B., Sherr B. F. (1990b). Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. PubMed DOI PMC

Grossart H.-P., Van Den Wyngaert S., Kagami M., Wurzbacher C., Cunliffe M., Rojas-Jimenez K. (2019). Fungi in aquatic ecosystems. PubMed

Grossmann L., Bock C., Schweikert M., Boenigk J. (2016). Small but manifold – hidden diversity in ‘Spumella-like flagellates’. PubMed DOI PMC

Grujčić V., Kasalický V., Šimek K. (2015). Prey-specific growth responses of freshwater flagellate communities induced by morphologically distinct bacteria from the genus PubMed DOI PMC

Grujčić V., Nuy J. K., Salcher M. M., Shabarova T., Kasalický V., Boenigk J., et al. (2018). Cryptophyta as major bacterivores in freshwater summer plankton. PubMed DOI PMC

Guidi L., Chaffron S., Bittner L., Eveillard D., Larhlimi A., Roux S., et al. (2016). Plankton networks driving carbon export in the oligotrophic ocean. PubMed DOI PMC

Guillou L., Chretiennot-Dinet M.-J., Medlin L. K., Claustre H., Loiseaux-Goer S., Vaulot D. (1999). DOI

Hahn M. W., Höfle M. G. (2001). Grazing of protozoa and its effects on populations of aquatic bacteria. PubMed DOI

Hansen M. C., Tolker-Nielsen T., Givskov M., Molin S. (1998). Biased 16S rDNA PCR amplification caused by interference from DNA flanking the template region. DOI

Hansen P. (1996). Silica-scaled Chrysophyceae and Synurophyceae from Madagascar. DOI

Hatfield R. G., Batista F. M., Bean T. P., Fonseca V. G., Santos A., Turner A. D., et al. (2020). The application of Nanopore sequencing technology to the study of dinoflagellates: a proof of concept study for rapid sequence-based discrimination of potentially harmful algae. PubMed DOI PMC

Head I., Saunders J., Pickup R. (1998). Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. PubMed DOI

Holyoak M., Sachdev S. (1998). Omnivory and the stability of simple food webs. PubMed DOI

Hoppenrath M., Elbrächter M., Debres G. (2009).

Hoppenrath M., Murray S. A., Chomérat N., Horiguchi T. (2014).

Hu Y. O. O., Karlson B., Charvet S., Andersson A. F. (2016). Diversity of pico- to mesoplankton along the 2000 km salinity gradient of the Baltic Sea. PubMed DOI PMC

Hugenholtz P., Tyson G., Blackall L. (2001). Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence PubMed

Jeuck A., Arndt H. (2013). A short guide to common heterotrophic flagellates of freshwater habitats based on the morphology of living organisms. PubMed DOI

Jeuck A., Nitsche F., Wylezich C., Wirth O., Bergfeld T., Brutscher F., et al. (2017). A comparison of methods to analyze aquatic heterotrophic flagellates of different taxonomic groups. PubMed DOI

Jezbera J., Horňák K., Šimek K. (2005). Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence PubMed DOI

Jezbera J., Hornak K., Šimek K. (2006). Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients. PubMed DOI

Jobard M., Wawrzyniak I., Bronner G., Marie D., Vellet A., Sime-Ngando T., et al. (2019). Freshwater Perkinsea: diversity, ecology and genomic information. DOI

John U., Cembella A., Hummert C., Elbrächter M., Groben R., Medlin L. (2003). Discrimination of the toxigenic dinoflagellates

Jürgens K., Güde H. (1994). The potential importance of grazing-resistant bacteria in planktonic systems.

Jürgens K., Matz C. (2002). Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. PubMed

Keeling P. J. (2019). Combining morphology, behaviour and genomics to understand the evolution and ecology of microbial eukaryotes. PubMed PMC

Kim D. Y., Countway P. D., Jones A. C., Schnetzer A., Yamashita W., Tung C., et al. (2014). Monthly to interannual variability of microbial eukaryote assemblages at four depths in the eastern North Pacific. PubMed PMC

Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., et al. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. PubMed PMC

Ku C., Sebé-Pedrós A. (2019). Using single-cell transcriptomics to understand functional states and interactions in microbial eukaryotes. PubMed PMC

Lange M., Guillou L., Vaulot D., Simon N., Amann R. I., Ludwig W., et al. (1996). Identification of the class prymnesiophyceae and the genus Phaeocystis with ribosomal RNA-targeted nucleic acid probes detected by flow cytometry. DOI

Langenheder S., Jürgens K. (2001). Regulation of bacterial biomass and community structure by metazoan and protozoan predation. DOI

Lepère C., Domaizon I., Debroas D. (2008). Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. PubMed DOI PMC

Lepère C., Masquelier S., Mangot J.-F., Debroas D., Domaizon I. (2010). Vertical structure of small eukaryotes in three lakes that differ by their trophic status: a quantitative approach. PubMed DOI

Lepère C., Ostrowski M., Hartmann M., Zubkov M. V., Scanlan D. J. (2016). PubMed DOI

Lim E. L., Amaral L. A., Caron D. A., Delong E. F. (1993). Application of rRNA-based probes for observing marine nanoplanktonic protists. PubMed DOI PMC

Lim E. L., Dennett M. R., Caron D. A. (1999). The ecology of Paraphysomonas imperforata based on studies employing oligonucleotide probe identification in coastal water samples and enrichment cultures. DOI

Logares R., Audic S., Bass D., Bittner L., Boutte C., Christen R., et al. (2014). Patterns of rare and abundant marine microbial eukaryotes. PubMed DOI

López-García P., Philippe H., Gail F., Moreira D. (2003). Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. PubMed DOI PMC

Lopez-Garcia P., Rodriguez-Valera F., Pedros-Alio C., Moreira D. (2001). Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. PubMed DOI

Lovejoy C., Massana R., Pedros-Alio C. (2006). Diversity and ditribution of marine microbial eukaryotes in the Arctic ocean and adjacent seas. PubMed DOI PMC

Lukumbuzya M., Schmid M., Pjevac P., Daims H. (2019). A multicolor fluorescence PubMed DOI PMC

Madoni P. (2011). Protozoa in wastewater treatment processes: a minireview. DOI

Mahé F., De Vargas C., Bass D., Czech L., Stamatakis A., Lara E., et al. (2017). Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. PubMed DOI

Majaneva M., Rintala J.-M., Hajdu S., Hallfors S., Hallfors G., Skjevik A.-T., et al. (2012). The extensive bloom of alternate-stage DOI

Mangot J.-F., Debroas D., Domaizon I. (2011). Perkinsozoa, a well-known marine protozoan flagellate parasite group, newly identified in lacustrine systems: a review. DOI

Mangot J.-F., Domaizon I., Taib N., Marouni N., Duffaud E., Bronner G., et al. (2012). Short-term dynamics of diversity patterns: evidence of continual reassembly within lacustrine small eukaryotes. PubMed DOI

Mangot J.-F., Forn I., Obiol A., Massana R. (2018). Constant abundances of ubiquitous uncultured protists in the open sea assessed by automated microscopy. PubMed DOI

Mangot J. F., Lepere C., Bouvier C., Debroas D., Domaizon I. (2009). Community structure and dynamics of small eukaryotes targeted by new oligonucleotide probes: new insight into the lacustrine microbial food web. PubMed DOI PMC

Martin-Laurent F., Philippot L., Hallet S., Chaussod R., Germon J. C., Soulas G., et al. (2001). DNA extraction from soils: old bias for new microbial diversity analysis methods. PubMed DOI PMC

Massana R. (2011). Eukaryotic picoplankton in surface oceans. PubMed DOI

Massana R., Gobet A., Audic S., Bass D., Bittner L., Boutte C., et al. (2015). Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. PubMed DOI

Massana R., Guillou L., Terrado R., Forn I., Pedros-Alio C. (2006a). Growth of uncultured heterotrophic flagellates in unamended seawater incubations. DOI

Massana R., Terrado R., Forn I., Lovejoy C., Pedros-Alio C. (2006b). Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. PubMed DOI

Massana R., Unrein F., Rodríguez-Martínez R., Forn I., Lefort T., Pinhassi J., et al. (2009). Grazing rates and functional diversity of uncultured heterotrophic flagellates. PubMed DOI

Matz C., Boenigk J., Arndt H., Jürgens K. (2002). Role of bacterial phenotypic traits in selective feeding of the heterotrophic nanoflagellate DOI

McCann K., Hastings A. (1997). Re-evaluating the omnivory - stability relationship in food webs. DOI

Medlin L., Schmidt C. (2010). Molecular probes improve the taxonomic resolution of cryptophyte abundance in Arcachon Bayy, France.

Medlin L. K., Piwosz K., Metfies K. (2017). Uncovering hidden biodiversity in the cryptophyta: clone library studies at the Helgoland time series site in the southern German Bight identifies the cryptophycean clade potentially responsible for the majority of its genetic diversity during the spring bloom.

Medlin L. K., Strieben S. (2010). Refining cryptophyte identification: matching cell fixation methods to FISH hybridisation of cryptomonads. DOI

Metfies K., Medlin L. (2007). Refining cryptophyte identification with DNA-microarrays. DOI

Montagnes D., Lynn D. (1987). A quantitative protargol stain (QPS) for ciliates: method description and test of its quantitative nature.

Moon-van der Staay S. Y., De Wachter R., Vaulot D. (2001). Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. PubMed DOI

Moon-van der Staay S. Y., Tzeneva V. A., Van Der Staay G. W., De Vos W. M., Smidt H., Hackstein J. H. (2006). Eukaryotic diversity in historical soil samples. PubMed DOI

Moraru C., Lam P., Fuchs B. M., Kuypers M. M. M., Amann R. (2010). GeneFISH – an PubMed DOI

Morgan-Smith D., Clouse M. A., Herndl G. J., Bochdansky A. B. (2013). Diversity and distribution of microbial eukaryotes in the deep tropical and subtropical North Atlantic Ocean. DOI

Morgan-Smith D., Herndl G. J., Van Aken H. M., Bochdansky A. B. (2011). Abundance of eukaryotic microbes in the deep subtropical North Atlantic. DOI

Mukherjee I., Hodoki Y., Nakano S.-I. (2015). Kinetoplastid flagellates overlooked by universal primers dominate in the oxygenated hypolimnion of Lake Biwa, Japan. PubMed DOI

Mukherjee I., Hodoki Y., Nakano S.-I. (2017). Seasonal dynamics of heterotrophic and plastidic protists in the water column of Lake Biwa, Japan. DOI

Mukherjee I., Hodoki Y., Okazaki Y., Fujinaga S., Ohbayashi K., Nakano S.-I. (2019). Widespread dominance of kinetoplastids and unexpected presence of diplonemids in deep freshwater lakes. PubMed DOI PMC

Mukherjee I., Salcher M. M., Andrei A.-Ş., Kavagutti V. S., Shabarova T., Grujčić V., et al. (2020). A freshwater radiation of diplonemids. PubMed DOI

Neuenschwander S. M., Pernthaler J., Posch T., Salcher M. M. (2015). Seasonal growth potential of rare lake water bacteria suggest their disproportional contribution to carbon fluxes. PubMed DOI

Not F., Latasa M., Scharek R., Viprey M., Karleskind P., Balagué V., et al. (2008). Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes. DOI

Not F., Massana R., Latasa M., Marie D., Colson C., Eikrem W., et al. (2005). Late summer community composition and abundance of photosynthetic picoeukaryotes in Norwegian and Barents Seas. DOI

Not F., Simon N., Biegala I. C., Vaulot D. (2002). Application of fluorescent DOI

Nygaard K., Hessen D. (1990). Use of 14C-protein-labelled bacteria for estimating clearance rates by heterotrophic and mixotrophic flagellates. DOI

Ohkuma M., Brune A. (2010). “Diversity, structure, and evolution of the termite gut microbial community,” in DOI

Orr R. J. S., Zhao S., Klaveness D., Yabuki A., Ikeda K., Watanabe M. M., et al. (2018). Enigmatic Diphyllatea eukaryotes: culturing and targeted PacBio RS amplicon sequencing reveals a higher order taxonomic diversity and global distribution. PubMed DOI PMC

Parris D. J., Ganesh S., Edgcomb V. P., Delong E. F., Stewart F. J. (2014). Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile. PubMed DOI PMC

Patterson D., Larsen J. (1991).

Pawlowski J., Audic S., Adl S., Bass D., Belbahri L., Berney C., et al. (2012). CBOL Protist Working Group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PubMed DOI PMC

Pernice M. C., Forn I., Gomes A., Lara E., Alonso-Sáez L., Arrieta J. M., et al. (2014). Global abundance of planktonic heterotrophic protists in the deep ocean. PubMed DOI PMC

Pernice M. C., Giner C. R., Logares R., Perera-Bel J., Acinas S., Duarte C., et al. (2016). Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. PubMed DOI PMC

Pernthaler A., Pernthaler J., Amann R. (2002). Fluorescence PubMed DOI PMC

Pernthaler A., Pernthaler J., Amann R. (2004). “Sensitive multi-color fluorescence in situ hybridization for the identification of environmental microorganisms,” in

Pernthaler J. (2005). Predation on prokaryotes in the water column and its ecological implications. PubMed DOI

Pitsch G., Bruni E. P., Forster D., Qu Z., Sonntag B., Stoeck T., et al. (2019). Seasonality of planktonic freshwater ciliates: Are analyses based on V9 regions of the 18S rRNA gene correlated with morphospecies counts? PubMed DOI PMC

Piwosz K. (2019). Weekly dynamics of abundance and size structure of specific nanophytoplankton lineages in coastal waters (Baltic Sea). DOI

Piwosz K., Całkiewicz J., Gołębiewski M., Creer S. (2018). Diversity and community composition of pico- and nanoplanktonic protists in the Vistula River estuary (Gulf of Gdañsk, Baltic Sea). DOI

Piwosz K., Kownacka J., Ameryk A., Zalewski M., Pernthaler J. (2016). Phenology of cryptomonads and the CRY1 lineage in a coastal brackish lagoon (Vistula Lagoon, Baltic Sea). PubMed DOI

Piwosz K., Pernthaler J. (2010). Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the Southern Baltic Sea. PubMed DOI

Piwosz K., Pernthaler J. (2011). Enrichment of omnivorous cercozoan nanoflagellates from coastal Baltic Sea waters. PubMed DOI PMC

Piwosz K., Shabarova T., Pernthaler J., Posch T., Šimek K., Porcal P., et al. (2020). Bacterial and eukaryotic small-subunit amplicon data do not provide a quantitative picture of microbial communities, but they are reliable in the context of ecological interpretations. PubMed DOI PMC

Piwosz K., Spich K., Całkiewicz J., Weydmann A., Kubiszyn A. M., Wiktor J. M. (2015). Distribution of small phytoflagellates along an Arctic fjord transect. PubMed DOI

Piwosz K., Wiktor J. M., Niemi A., Tatarek A., Michel C. (2013). Mesoscale distribution and functional diversity of picoeukaryotes in the first-year sea ice of the Canadian Arctic. PubMed DOI PMC

Porter K. G., Feig Y. S. (1980). The use of DAPI for identifying and counting aquatic bacteria. DOI

Porter K. G., Sherr E. B., Sherr B. F., Pace M. L., Sanders R. W. (1985). Protozoa in planktonic food webs. DOI

Posch T., Eugster B., Pomati F., Pernthaler J., Pitsch G., Eckert E. M. (2015). Network of interactions between ciliates and phytoplankton during spring. PubMed DOI PMC

Potvin M., Lovejoy C. (2009). PCR-based diversity estimates of artificial and environmental 18S rRNA gene libraries. PubMed DOI

Qu Z., Forster D., Bruni E. P., Frantal D., Kammerlander B., Nachbaur L., et al. (2021). Aquatic food webs in deep temperate lakes: key species establish through their autecological versatility. PubMed DOI

Rice J., Oconnor C. D., Sleigh M. A., Burkill P. H., Giles I. G., Zubkov M. V. (1997a). Fluorescent oligonucleotide rDNA probes that specifically bind to a common nanoflagellate, PubMed DOI

Rice J., Sleigh M. A., Burkill P. H., Tarran G. A., O’connor C. D., Zubkov M. V. (1997b). Flow cytometric analysis of characteristics of hybridization of species-specific fluorescent oligonucleotide probes to rRNA of marine nanoflagellates. PubMed DOI PMC

Romari K., Vaulot D. (2004). Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. DOI

Rychert K. (2006). Nanoflagellates in the Gdañsk Basin: coexistence between form belonging to different trophic types.

Salani F., Arndt H., Hausmann K., Nitsche F., Scheckenbach F. (2011). Analysis of the community structure of abyssal kinetoplastids revealed similar communities at larger spatial scales. PubMed DOI PMC

Sanders R., Caron D. A., Berninger U. G. (1992). Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. DOI

Santoferrara L. F., Grattepanche J.-D., Katz L. A., Mcmanus G. B. (2014). Pyrosequencing for assessing diversity of eukaryotic microbes: analysis of data on marine planktonic ciliates and comparison with traditional methods. PubMed DOI

Sauvadet A. L., Gobet A., Guillou L. (2010). Comparative analysis between protist communities from the deep-sea pelagic ecosystem and specific deep hydrothermal habitats. PubMed

Scheckenbach F., Hausmann K., Wylezich C., Weitere M., Arndt H. (2010). Large-scale patterns in biodiversity of microbial eukaryotes from the abyssal sea floor. PubMed DOI PMC

Schulz F., Lagkouvardos I., Wascher F., Aistleitner K., Kostanjšek R., Horn M. (2014). Life in an unusual intracellular niche: a bacterial symbiont infecting the nucleus of amoebae. PubMed PMC

Seeleuthner Y., Mondy S., Lombard V., Carradec Q., Pelletier E., Wessner M., et al. (2018). Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. PubMed PMC

Sekiguchi H., Kawachi M., Nakayama T., Inouye I. (2003). A taxonomic re-evaluation of the Pedinellales (Dictyochophyceae), based on morphological, behavioural and molecular data.

Shalchian-Tabrizi K., Brate J., Logares R., Klaveness D., Berney C., Jakobsen K. S. (2008). Diversification of unicellular eukaryotes: cryptomonad colonization of marine and fresh waters inferred from revised 18S rRNA phylogeny. PubMed

Shalchian-Tabrizi K., Kauserud H. A. E., Massana R., Klaveness D., Jakobsen K. (2007). Analysis of environmental 18S ribosomal RNA sequences reveals unknown diversity of the cosmopolitan phylum Telonemia. PubMed

Sherr B. F., Sherr E. B., Fallon R. D. (1987). Use of monodispersed, fluorescently labeled bacteria to estimate PubMed PMC

Sherr B. F., Sherr E. B., Pedros-Alio C. (1989). Simultaneous measurement of bacterio-plankton production and protozoan bacterivory in estuarine water.

Sherr E., Sherr B. (1988). Role of microbes in pelagic food webs: A revised concept.

Sherr E. B., Sherr B. F., Caron D. A., Vaulot D., Worden A. Z. (2007). Oceanic Protists.

Shi H., Shi Q., Grodner B., Lenz J. S., Zipfel W. R., Brito I. L., et al. (2020). Highly multiplexed spatial mapping of microbial communities. PubMed PMC

Shiratori T., Ishida K.-I. (2016). A new heterotrophic Cryptomonad: PubMed

Siano R., Alves-De-Souza C., Foulon E., Bendif E. M., Simon N., Guillou L., et al. (2011). Distribution and host diversity of Amoebophryidae parasites across oligotrophic waters of the Mediterranean Sea.

Šimek K., Chrzanowski T. H. (1992). Direct and indirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates. PubMed PMC

Šimek K., Grujčić V., Hahn M. W., Horňák K., Jezberová J., Kasalický V., et al. (2018). Bacterial prey food characteristics modulate community growth response of freshwater bacterivorous flagellates.

Šimek K., Grujčić V., Mukherjee I., Kasalický V., Nedoma J., Posch T., et al. (2020). Cascading effects in freshwater microbial food webs by predatory Cercozoa, Katablepharidacea and ciliates feeding on aplastidic bacterivorous cryptophytes. PubMed PMC

Šimek K., Grujčić V., Nedoma J., Jezberová J., Šorf M., Matoušů A., et al. (2019). Microbial food webs in hypertrophic fishponds: omnivorous ciliate taxa are major protistan bacterivores.

Šimek K., Hartman P., Nedoma J., Pernthaler J., Vrba J., Springmann D., et al. (1997a). Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum.

Šimek K., Jurgens K., Nedoma J., Comerma M., Armengol J. (2000). Ecological role and bacterial grazing of

Šimek K., Kasalický V., Jezbera J., Hornak K., Nedoma J., Hahn M. W., et al. (2013). Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria. PubMed PMC

Šimek K., Kojecká P., Nedoma J., Hartman P., Vrba J., Dolan J. (1999). Shifts in bacterial community composition associated with different microzooplankton size fractions in a eutrophic reservoir.

Šimek K., Nedoma J., Znachor P., Kasalický V., Jezbera J., Horňák K., et al. (2014). A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring.

Šimek K., Pernthaler J., Weinbauer M. G., Horňák K., Dolan J. R., Nedoma J., et al. (2001). Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. PubMed PMC

Šimek K., Sirova D. (2019). Fluorescently labeled bacteria as a tracer to reveal novel pathways of organic carbon flow in aquatic ecosystems. PubMed

Šimek K., Straškrabová V. (1992). Bacterioplankton production and protozoan bacterivory in a mesotrophic Reservoir.

Šimek K., Vrba J., Pernthaler J., Posch T., Hartman P., Nedoma J. (1997b). Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. PubMed PMC

Šimek K., Weinbauer M. G., Horňák K., Jezbera J., Nedoma J., Dolan J. R. (2007). Grazer and virus-induced mortality of bacterioplankton accelerates development of Flectobacillus populations in a freshwater community. PubMed

Simon M., Jardillier L., Deschamps P., Moreira D., Restoux G., Bertolino P., et al. (2015a). Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems. PubMed PMC

Simon M., Lopez-Garcia P., Deschamps P., Moreira D., Restoux G., Bertolino P., et al. (2015b). Marked seasonality and high spatial variability of protist communities in shallow freshwater systems. PubMed PMC

Simon N., Campbell L., Ornolfsdottir E., Groben R., Guillou L., Lange M., et al. (2000). Oligonucleotide probes for the identification of three algal groups by dot blot and fluorescent whole-cell hybridization. PubMed

Simon N., Lebot N., Marie D., Partensky F., Vaulot D. (1995). Fluorescent PubMed PMC

Simpson A. G. B., Stevens J. R., Lukeš J. (2006). The evolution and diversity of kinetoplastid flagellates. PubMed

Sogin M. L., Gunderson J. H. (1987). Structural diversity of eukaryotic small subunit ribosomal RNAs. Evolutionary implications. PubMed

Sommer U., Adrian R., De Senerpont Domis L., Elser J. J., Gaedke U., Ibelings B., et al. (2012). Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession.

Sommer U., Gliwicz M., Lampert W., Duncan A. (1986). The PEG-model of seasonal succession of planktonic events in fresh waters.

Staley J. T., Konopka A. (1985). Measurement of PubMed

Steele J. A., Countway P. D., Xia L., Vigil P. D., Beman J. M., Kim D. Y., et al. (2011). Marine bacterial, archaeal and protistan association networks reveal ecological linkages. PubMed PMC

Steidinger K. A., Jangen K. (1997). “Dinoflagellates,” in

Stern R., Kraberg A., Bresnan E., Kooistra W. H. C. F., Lovejoy C., Montresor M., et al. (2018). Molecular analyses of protists in long-term observation programmes—current status and future perspectives.

Stock A., Breiner H.-W., Pachiadaki M., Edgcomb V., Filker S., Cono V., et al. (2012). Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. PubMed

Stoeck T., Bass D., Nebel M., Christen R., Jones M. D. M., Breiner H.-W., et al. (2010). Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. PubMed

Stoeck T., Breiner H.-W., Filker S., Ostermaier V., Kammerlander B., Sonntag B. (2014). A morphogenetic survey on ciliate plankton from a mountain lake pinpoints the necessity of lineage-specific barcode markers in microbial ecology. PubMed PMC

Stoeck T., Hayward B., Taylor G. T., Varela R., Epstein S. S. (2006). A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. PubMed

Stokes N. A., Calvo L. M. R., Reece K. S., Burreson E. M. (2002). Molecular diagnostics, field validation, and phylogenetic analysis of Quahog Parasite Unknown (QPX), a pathogen of the hard clam PubMed

Suttle C. A. (2007). Marine viruses - major players in the global ecosystem. PubMed

Swale E. M. F. (1969). A study of nanoplankton flagellate DOI

Šlapeta J., Lopez-Garcia P., Moreira D. (2006). Global dispersal and ancient cryptic species in the smallest marine eukaryotes. PubMed DOI

Taib N., Mangot J.-F., Domaizon I., Bronner G., Debroas D. (2013). Phylogenetic affiliation of SSU rRNA genes generated by massively parallel sequencing: new insights into the freshwater protist diversity. PubMed DOI PMC

Thaler M., Lovejoy C. (2012). Distribution and diversity of a protist predator Cryothecomonas (Cercozoa) in Arctic marine waters. PubMed DOI

Thiele S., Wolf C., Schulz I. K., Assmy P., Metfies K., Fuchs B. M. (2014). Stable composition of the nano- and picoplankton community during the ocean iron fertilization experiment LOHAFEX. PubMed DOI PMC

Töbe K., Alpermann T., Tillmann U., Krock B., Cembella A., John U. (2013). Molecular discrimination of toxic and non-toxic DOI

Toebe K., Joshi A. R., Messtorff P., Tillmann U., Cembella A., John U. (2012). Molecular discrimination of taxa within the dinoflagellate genus DOI

Touzet N., Davidson K., Pete R., Flanagan K., Mccoy G., Amzil Z., et al. (2010). Co-Occurrence of the West European (Gr.III) and North American (Gr.I) Ribotypes of PubMed DOI

Triado-Margarit X., Casamayor E. O. (2012). Genetic diversity of planktonic eukaryotes in high mountain lakes (Central Pyrenees, Spain). PubMed DOI

Unrein F., Gasol J. M., Not F., Forn I., Massana R. (2014). Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. PubMed DOI PMC

Valm A. M., Welch J. L. M., Rieken C. W., Hasegawa Y., Sogin M. L., Oldenbourg R., et al. (2011). Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. PubMed DOI PMC

von der Heyden S., Cavalier-Smith T. (2005). Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major marine clade within ancestrally freshwater PubMed DOI

Wasmund N., Tuimala J., Suikkanen S., Vandepitte L., Kraberg A. (2011). Long-term trends in phytoplankton composition in the western and central Baltic Sea. DOI

Weber F., Mylnikov A., Jürgens K., Wylezich C. (2017). Culturing heterotrophic protists from the Baltic Sea: mostly the ‘usual suspects’ but a few novelties as well. PubMed DOI

Weisse T., Anderson R., Arndt H., Calbet A., Hansen P., Djs M. (2016). Functional ecology of aquatic phagotrophic protists - Concepts, limitations, and perspectives. PubMed DOI

Weitere M., Arndt H. (2003). Structure of the heterotrophic flagellate community in the water column of the River Rhine (Germany). DOI

Wendeberg A., Zielinski F. U., Borowski C., Dubilier N. (2012). Expression patterns of mRNAs for methanotrophy and thiotrophy in symbionts of the hydrothermal vent mussel PubMed DOI PMC

Winter C., Bouvier T., Weinbauer M. G., Thingstad T. F. (2010). Trade-offs between competition and defense specialists among unicellular planktonic organisms: the ‘Killing the Winner’ hypothesis revisited. PubMed DOI PMC

Worden A. Z., Follows M. J., Giovannoni S. J., Wilken S., Zimmerman A. E., Keeling P. J. (2015). Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. PubMed DOI

Xie F., Timme K. A., Wood J. R. (2018). Using Single Molecule mRNA Fluorescent PubMed DOI PMC

Zhan Z., Stoeck T., Dunthorn M., Xu K. (2014). Identification of the pathogenic ciliate PubMed DOI

Zhu F., Massana R., Not F., Marie D., Vaulot D. (2005). Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. PubMed DOI

Zimmerman A. E., Howard-Varona C., Needham D. M., John S. G., Worden A. Z., Sullivan M. B., et al. (2020). Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. PubMed DOI

Zubkov M. V., Sleigh M. A. (2000). Comparison of growth efficiencies of protozoa growing on bacteria deposited on surfaces and in suspension. PubMed DOI

Zubkov M. V., Sleigh M. A., Burkill P. H. (1998). Measurement of bacterivory by protists in open ocean waters. DOI

Zubkov M. V., Tarran G. A. (2008). High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...