CARD-FISH in the Sequencing Era: Opening a New Universe of Protistan Ecology

. 2021 ; 12 () : 640066. [epub] 20210304

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33746931

Phagotrophic protists are key players in aquatic food webs. Although sequencing-based studies have revealed their enormous diversity, ecological information on in situ abundance, feeding modes, grazing preferences, and growth rates of specific lineages can be reliably obtained only using microscopy-based molecular methods, such as Catalyzed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH). CARD-FISH is commonly applied to study prokaryotes, but less so to microbial eukaryotes. Application of this technique revealed that Paraphysomonas or Spumella-like chrysophytes, considered to be among the most prominent members of protistan communities in pelagic environments, are omnipresent but actually less abundant than expected, in contrast to little known groups such as heterotrophic cryptophyte lineages (e.g., CRY1), cercozoans, katablepharids, or the MAST lineages. Combination of CARD-FISH with tracer techniques and application of double CARD-FISH allow visualization of food vacuole contents of specific flagellate groups, thus considerably challenging our current, simplistic view that they are predominantly bacterivores. Experimental manipulations with natural communities revealed that larger flagellates are actually omnivores ingesting both prokaryotes and other protists. These new findings justify our proposition of an updated model of microbial food webs in pelagic environments, reflecting more authentically the complex trophic interactions and specific roles of flagellated protists, with inclusion of at least two additional trophic levels in the nanoplankton size fraction. Moreover, we provide a detailed CARD-FISH protocol for protists, exemplified on mixo- and heterotrophic nanoplanktonic flagellates, together with tips on probe design, a troubleshooting guide addressing most frequent obstacles, and an exhaustive list of published probes targeting protists.

Zobrazit více v PubMed

Adl S. M., Bass D., Lane C. E., Lukeš J., Schoch C. L., Smirnov A., et al. (2019). Revisions to the classification, nomenclature, and diversity of Eukaryotes. J. Eukaryot. Microbiol. 66 4–119. PubMed PMC

Amann R., Fuchs B. M. (2008). Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol. 6 339–348. 10.1038/nrmicro1888 PubMed DOI

Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. (1990). Combination of 16S ribosomal-RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56 1919–1925. 10.1128/aem.56.6.1919-1925.1990 PubMed DOI PMC

Amann R. I., Ludwig W., Schleifer K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59 143–169. 10.1128/mmbr.59.1.143-169.1995 PubMed DOI PMC

Amaral-Zettler L., Mccliment E. A., Ducklow H. W., Huse S. M. (2009). A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of Small-Subunit Ribosomal RNA Genes. PLoS One 4:e6372. 10.1371/journal.pone.0006372 PubMed DOI PMC

Andersen O. K., Goldman J. C., Caron D. A., Dennett M. R. (1986). Nutrient cycling in a microflagellate food chain: III. Phosphorus dynamics. Mar. Ecol. Prog. Ser. 31 47–55. 10.3354/meps031047 DOI

Andersen P., Fenchel T. (1985). Bacterivory by microheterotrophic flagellates in seawater samples. Limnol. Oceanogr. 30 198–202. 10.4319/lo.1985.30.1.0198 DOI

Anderson R., Winter C., Jürgens K. (2012). Protist grazing and viral lysis as prokaryotic mortality factors at Baltic Sea oxic-anoxic interfaces. Mar. Ecol. Prog. Ser. 467 1–14. 10.3354/meps10001 DOI

Arndt H., Dietrich D., Auer B., Cleven E.-J., Gräfenhan T., Weitere M., et al. (2000). “Functional diversity of heterotrophic flagellates in aquatic ecosystems,” in The Flagellates, eds Leadbeater B. S. C., Green J. C. (London: Taylor & Francis; ), 240–268.

Arndt H., Mathes J. (1991). Large heterotrophic flagellates form a significant part of protozooplankton biomass in lakes and rivers. Ophelia 33 225–234. 10.1080/00785326.1991.10429713 DOI

Azam F., Fenchel T., Field J. G., Gray J. S., Meyer-Reil L., Thingsted F. (1983). The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10 257–263. 10.3354/meps010257 DOI

Azam F., Malfatti F. (2007). Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5 782–791. 10.1038/nrmicro1747 PubMed DOI

Bachy C., Dolan J. R., Lopez-Garcia P., Deschamps P., Moreira D. (2013). Accuracy of protist diversity assessments: morphology compared with cloning and direct pyrosequencing of 18S rRNA genes and ITS regions using the conspicuous tintinnid ciliates as a case study. ISME J. 7 244–255. 10.1038/ismej.2012.106 PubMed DOI PMC

Ballen-Segura M., Felip M., Catalan J. (2017). Some mixotrophic flagellate species selectively Graze on Archaea. Appl. Environ. Microbiol. 83:e2317-16. PubMed PMC

Balzano S., Abs E., Leterme S. C. (2015). Protist diversity along a salinity gradient in a coastal lagoon. Aquat. Microb. Ecol. 74 263–277. 10.3354/ame01740 DOI

Bass D., Cavalier-Smith T. (2004). Phylum-specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa). Int. J. Syst. Evol. Microbiol. 54 2393–2404. 10.1099/ijs.0.63229-0 PubMed DOI

Beardsley C., Knittel K., Amann R., Pernthaler J. (2005). Quantification and distinction of aplastidic and plastidic marine nanoplankton by fluorescence in situ hybridization. Aquat. Microb. Ecol. 41 163–169. 10.3354/ame041163 DOI

Behnke A., Engel M., Christen R., Nebel M., Klein R. R., Stoeck T. (2011). Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions. Environ. Microbiol. 13 340–349. 10.1111/j.1462-2920.2010.02332.x PubMed DOI

Berninger U.-G., Finlay B. J., Kuuppo-Leinikki P. (1991). Protozoan control of bacterial abundances in freshwater. Limnol. Oceanogr. 36 139–147. 10.4319/lo.1991.36.1.0139 DOI

Biard T., Stemmann L., Picheral M., Mayot N., Vandromme P., Hauss H., et al. (2016). In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532 504–507. 10.1038/nature17652 PubMed DOI

Biegala I. C., Not F., Vaulot D., Simon N. (2003). Quantitative assessment of picoeukaryotes in the natural environment by using taxon-specific oligonucleotide probes in association with tyramide signal amplification-fluorescence in situ hybridization and flow cytometry. Appl. Environ. Microbiol. 69 5519–5529. 10.1128/aem.69.9.5519-5529.2003 PubMed DOI PMC

Bobrow M. N., Shaughnessy K. J., Litt G. J. (1991). Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays. J. Immunol. Methods 137 103–112. 10.1016/0022-1759(91)90399-z PubMed DOI

Bochdansky A., Clouse M., Herndl G. (2017). Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 11 362–373. 10.1038/ismej.2016.113 PubMed DOI PMC

Bochdansky A. B., Huang L. (2010). Re-evaluation of the EUK516 probe for the domain Eukarya results in a suitable probe for the detection of kinetoplastids, an important group of parasitic and free-living flagellates. J. Eukaryot. Microbiol. 57 229–235. PubMed

Boenigk J., Arndt H. (2000). Comparative studies on the feeding behavior of two heterotrophic nanoflagellates: the filter-feeding choanoflagellate Monosiga ovata and the raptorial-feeding kinetoplastid Rhynchomonas nasuta. Aquat. Microb. Ecol. 22 243–249. 10.3354/ame022243 DOI

Boenigk J., Arndt H. (2002). Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie Van Leeuwenhoek 81 465–480. PubMed

Bork P., Bowler C., De Vargas C., Gorsky G., Karsenti E., Wincker P. (2015). Tara Oceans studies plankton at planetary scale. Science 348 873–873. 10.1126/science.aac5605 PubMed DOI

Brandt S. M., Sleigh M. A. (2000). The quantitative occurrence of different taxa of heterotrophic flagellates in Southampton water, U.K. Estuar. Coast. Shelf Sci. 51 91–102. 10.1006/ecss.2000.0607 DOI

Brate J., Klaveness D., Rygh T., Jakobsen K. S., Shalchian-Tabrizi K. (2010). Telonemia-specific environmental 18S rDNA PCR reveals unknown diversity and multiple marine-freshwater colonizations. BMC Microbiol. 10:168. 10.1186/1471-2180-10-168 PubMed DOI PMC

Bühler D. (2020). ’FISHing for Ciliates’ Fluorescence in situ Hybridization for the Detection of Planktonic Freshwater Ciliates. Master’s thesis, University of Zurich, Zürich. PubMed PMC

Burki F., Roger A. J., Brown M. W., Simpson A. G. B. (2020). The new tree of Eukaryotes. Trends Ecol. Evol. 35 43–55. 10.1016/j.tree.2019.08.008 PubMed DOI

Cabello A. M., Latasa M., Forn I., Morán X. A., Massana R. (2016). Vertical distribution of major photosynthetic picoeukaryotic groups in stratified marine waters. Environ. Microbiol. 18 1578–1590. 10.1111/1462-2920.13285 PubMed DOI

Caron D. A., Countway P. D., Jones A. C., Kim D. Y., Schnetzer A. (2012). Marine protistan diversity. Annu. Rev. Mar. Sci. 4 467–493. 10.1146/annurev-marine-120709-142802 PubMed DOI

Caron D. A., Davis P. G., Madin L. P., Sieburth J. M. (1982). Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science 218 795–797. 10.1126/science.218.4574.795 PubMed DOI

Caron D. A., Hu S. (2019). Are we overestimating protistan diversity in nature? Trends Microbiol. 27 197–205. 10.1016/j.tim.2018.10.009 PubMed DOI

Chambouvet A., Alves-De-Souza C., Cueff V., Marie D., Karpov S., Guillou L. (2011). Interplay between the parasite Amoebophrya sp (Alveolata) and the cyst formation of the red tide dinoflagellate Scrippsiella trochoidea. Protist 162 637–649. 10.1016/j.protis.2010.12.001 PubMed DOI

Chambouvet A., Morin P., Marie D., Guillou L. (2008). Control of toxic marine dinoflagellates blooms by serial parasitic killers. Science 322 1254–1257. 10.1126/science.1164387 PubMed DOI

Chrzanowski T. H., Šimek K. (1990). Prey-size selection by freshwater flagellated protozoa. Limnol. Oceanogr. 35 1429–1436. 10.4319/lo.1990.35.7.1429 DOI

Coleman A. W. (1980). Enhanced detection of bacteria in natural environments by fluorochrone staining of DNA. Limnol. Oceanogr. 25 948–951. 10.4319/lo.1980.25.5.0948 DOI

Corno G., Jürgens K. (2006). Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Appl. Environ. Microbiol. 72 78–86. 10.1128/aem.72.1.78-86.2006 PubMed DOI PMC

Cram J., Sun F., Fuhrman J. A. (2013). “Marine bacterial, Archaeal, and Protistan Association Networks,” in Encyclopedia of Metagenomics, ed. Nelson E. K. (New York, NY: Springer; ), 1–10. 10.1007/978-1-4614-6418-1_721-3 DOI

Davidov K., Iankelevich-Kounio E., Yakovenko I., Koucherov Y., Rubin-Blum M., Oren M. (2020). Identification of plastic-associated species in the Mediterranean Sea using DNA metabarcoding with Nanopore MinION. Sci. Rep. 10:17533. PubMed PMC

de Vargas C., Audic S., Henry N., Decelle J., Mahe F., Logares R., et al. (2015). Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605. PubMed

del Campo J., Massana R. (2011). Emerging diversity within chrysophytes, choanoflagellates and bicosoecids based on molecular surveys. Protist 162 435–448. 10.1016/j.protis.2010.10.003 PubMed DOI

del Giorgio P. A., Gasol J. M., Vaque D., Mura P., Agusti S., Duarte C. M. (1996). Bacterioplankton community structure: protists control net production and the proportion of active bacteria in a coastal marine community. Limnol. Oceanogr. 41 1169–1179. 10.4319/lo.1996.41.6.1169 DOI

Diehl S., Feiáe M. (2000). Effects of enrichment on three-level food chains with omnivory. Am. Nat. 155 200–218. 10.2307/3078943 PubMed DOI

Dirren S., Salcher M. M., Blom J. F., Schweikert M., Posch T. (2014). Menage-a-trois: the amoeba Nuclearia sp from Lake Zurich with its ecto- and endosymbiotic bacteria. Protist 165 745–758. 10.1016/j.protis.2014.08.004 PubMed DOI

Duarte C. M. (2015). Seafaring in the 21St century: the Malaspina 2010 circumnavigation expedition. Limnol. Oceanogr. Bull. 24 11–14. 10.1002/lob.10008 DOI

Eckert E. M., Salcher M. M., Posch T., Eugster B., Pernthaler J. (2012). Rapid successions affect microbial N-acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom. Environ. Microbiol. 14 794–806. 10.1111/j.1462-2920.2011.02639.x PubMed DOI

Edgcomb V. P., Kysela D. T., Teske A., De Vera Gomez A., Sogin M. L. (2002). Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc. Natl. Acad. Sci. U.S.A. 99 7658–7662. 10.1073/pnas.062186399 PubMed DOI PMC

Edgcomb V. P., Orsi W., Breiner H. W., Stock A., Filker S., Yakimov M. M., et al. (2011). Novel active kinetoplastids associated with hypersaline anoxic basins in the Eastern Mediterranean deep-sea. Deep Sea Res. 1 Oceanogr. Res. Pap. 58 1040–1048. 10.1016/j.dsr.2011.07.003 DOI

Edler L., Elbrächter M. (2010). “The Utermöhl method for quantitative phytoplankton analysis,” in IOC Manuals and Guides, eds Karlson B., Cusack C., Bresnan E. (Paris: Intergovernmental Oceanographic Commission of © UNESCO; ), 13–20.

Egge E., Bittner L., Andersen T., Audic S., De Vargas C., Edvardsen B. (2013). 454 pyrosequencing to describe microbial eukaryotic community composition, diversity and relative abundance: a test for marine haptophytes. PLoS One 8:e74371. 10.1371/journal.pone.0074371 PubMed DOI PMC

Egge E. S., Eikrem W., Edvardsen B. (2015). Deep-branching novel lineages and high diversity of haptophytes in the Skagerrak (Norway) uncovered by 454 pyrosequencing. J. Eukaryot. Microbiol. 62 121–140. 10.1111/jeu.12157 PubMed DOI PMC

Eickhorst T., Tippkötter R. (2008). Improved detection of soil microorganisms using fluorescence in situ hybridization (FISH) and catalyzed reporter deposition (CARD-FISH). Soil Biol. Biochem. 40 1883–1891. 10.1016/j.soilbio.2008.03.024 DOI

Fagan W. F. (1997). Omnivory as a stabilizing feature of natural communities. Am. Nat. 150 554–567. 10.1086/286081 PubMed DOI

Felsenstein J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17 368–376. 10.1007/bf01734359 PubMed DOI

Fenchel T. (1982). Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9 35–42. 10.3354/meps009035 DOI

Ferrari B. C., Tujula N., Stoner K., Kjelleberg S. (2006). Catalyzed reporter deposition-fluorescence in situ hybridization allows for enrichment-independent detection of microcolony-forming soil bacteria. Appl. Environ. Microbiol. 72 918–922. 10.1128/aem.72.1.918-922.2006 PubMed DOI PMC

Flegontova O., Flegontov P., Malviya S., Audic S., Wincker P., De Vargas C., et al. (2016). Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 26 3060–3065. 10.1016/j.cub.2016.09.031 PubMed DOI

Flegontova O., Flegontov P., Malviya S., Poulain J., De Vargas C., Bowler C., et al. (2018). Neobodonids are dominant kinetoplastids in the global ocean. Environ. Microbiol. 20 878–889. 10.1111/1462-2920.14034 PubMed DOI

Foissner W., Berger H. (1996). A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshw. Biol. 35 375. 10.1111/j.1365-2427.1996.tb01775.x DOI

Foissner W., Berger H., Schaumburg J. (1999). Identification and Ecology of Limnetic Plankton Ciliates. Munich: Bayer.

Fried J., Ludwig W., Psenner R., Schleifer K. H. (2002). Improvement of ciliate identification and quantification: a new protocol for fluorescence in situ hybridization (FISH) in combination with silver stain techniques. Syst. Appl. Microbiol. 25 555–571. 10.1078/07232020260517706 PubMed DOI

Gasol J. M., Vagué D. (1993). Lack of coupling between heterotrophic nanoflagellates and bacteria: A general phenomenon across aquatic systems? Limnol. Oceanogr. 38 657–665. 10.4319/lo.1993.38.3.0657 DOI

Geisen S., Hu S., Dela Cruz T. E. E., Veen G. F. (2020). Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes. ISME J. 15 618–621. 10.1038/s41396-020-00792-y PubMed DOI PMC

Georges C., Monchy S., Genitsaris S., Christaki U. (2014). Protist community composition during early phytoplankton blooms in the naturally iron-fertilized Kerguelen area (Southern Ocean). Biogeosciences 11 5847–5863. 10.5194/bg-11-5847-2014 PubMed DOI

Gerea M., Queimaliños C., Schiaffino M. R., Izaguirre I., Forn I., Massana R., et al. (2013). In situ prey selection of mixotrophic and heterotrophic flagellates in Antarctic oligotrophic lakes: an analysis of the digestive vacuole content. J. Plankton Res. 35 201–212. 10.1093/plankt/fbs085 PubMed DOI

Gimmler A., Stoeck T. (2015). Mining environmental high-throughput sequence data sets to identify divergent amplicon clusters for phylogenetic reconstruction and morphotype visualization. Environ. Microbiol. Rep. 7 679–686. 10.1111/1758-2229.12307 PubMed DOI

Giovannoni S. J., Delong E. F., Olsen G. J., Pace N. R. (1988). Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J. Bacteriol. 170 720–726. 10.1128/jb.170.2.720-726.1988 PubMed DOI PMC

Goldman J. C., Caron D. A. (1985). Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain. Deep Sea Res. A Oceanogr. Res. Pap. 32 899–915. 10.1016/0198-0149(85)90035-4 DOI

Goldman J. C., Caron D. A., Andersen O. K., Dennett M. R. (1985). Nutrient cycling in a microflagellate food chain: I. Nitrogen dynamics. Mar. Ecol. Prog. Ser. 24 231–242. 10.3354/meps024231 DOI

Gong J., Dong J., Liu X., Massana R. (2013). Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist 164 369–379. 10.1016/j.protis.2012.11.006 PubMed DOI

González J. M., Iriberri J., Egea L., Barcina I. (1990a). Differential rates of digestion of bacteria by freshwater and marine phagotrophic protozoa. Appl. Environ. Microbiol. 56 1851–1857. 10.1128/aem.56.6.1851-1857.1990 PubMed DOI PMC

González J. M., Sherr E. B., Sherr B. F. (1990b). Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Environ. Microbiol. 56 583–589. 10.1128/aem.56.3.583-589.1990 PubMed DOI PMC

Grossart H.-P., Van Den Wyngaert S., Kagami M., Wurzbacher C., Cunliffe M., Rojas-Jimenez K. (2019). Fungi in aquatic ecosystems. Nat. Rev. Microbiol. 17 339–354. PubMed

Grossmann L., Bock C., Schweikert M., Boenigk J. (2016). Small but manifold – hidden diversity in ‘Spumella-like flagellates’. J. Eukaryot. Microbiol. 63 419–439. 10.1111/jeu.12287 PubMed DOI PMC

Grujčić V., Kasalický V., Šimek K. (2015). Prey-specific growth responses of freshwater flagellate communities induced by morphologically distinct bacteria from the genus Limnohabitans. Appl. Environ. Microbiol. 81 4993–5002. 10.1128/aem.00396-15 PubMed DOI PMC

Grujčić V., Nuy J. K., Salcher M. M., Shabarova T., Kasalický V., Boenigk J., et al. (2018). Cryptophyta as major bacterivores in freshwater summer plankton. ISME J. 12 1668–1681. 10.1038/s41396-018-0057-5 PubMed DOI PMC

Guidi L., Chaffron S., Bittner L., Eveillard D., Larhlimi A., Roux S., et al. (2016). Plankton networks driving carbon export in the oligotrophic ocean. Nature 532 465–470. 10.1038/nature16942 PubMed DOI PMC

Guillou L., Chretiennot-Dinet M.-J., Medlin L. K., Claustre H., Loiseaux-Goer S., Vaulot D. (1999). Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterkonta). J. Phycol. 35 368–381. 10.1046/j.1529-8817.1999.3520368.x DOI

Hahn M. W., Höfle M. G. (2001). Grazing of protozoa and its effects on populations of aquatic bacteria. FEMS Microbiol. Ecol. 35 113–121. 10.1111/j.1574-6941.2001.tb00794.x PubMed DOI

Hansen M. C., Tolker-Nielsen T., Givskov M., Molin S. (1998). Biased 16S rDNA PCR amplification caused by interference from DNA flanking the template region. FEMS Microbiol. Ecol. 26 141–149. 10.1111/j.1574-6941.1998.tb00500.x DOI

Hansen P. (1996). Silica-scaled Chrysophyceae and Synurophyceae from Madagascar. Arch. Protistenkunde 147 145–172. 10.1016/s0003-9365(96)80030-3 DOI

Hatfield R. G., Batista F. M., Bean T. P., Fonseca V. G., Santos A., Turner A. D., et al. (2020). The application of Nanopore sequencing technology to the study of dinoflagellates: a proof of concept study for rapid sequence-based discrimination of potentially harmful algae. Front. Microbiol. 11:844. 10.3389/fmicb.2020.00844 PubMed DOI PMC

Head I., Saunders J., Pickup R. (1998). Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol. 35 1–21. 10.1007/s002489900056 PubMed DOI

Holyoak M., Sachdev S. (1998). Omnivory and the stability of simple food webs. Oecologia 117 413–419. 10.1007/s004420050675 PubMed DOI

Hoppenrath M., Elbrächter M., Debres G. (2009). Marine Phytoplankton. Stuttgart: Schweizerbart Science Publishers.

Hoppenrath M., Murray S. A., Chomérat N., Horiguchi T. (2014). Marine Benthic Dinoflagellates - Unveiling their Worldwide Biodiversity. Stuttgart: Schweizerbart Science Publishers.

Hu Y. O. O., Karlson B., Charvet S., Andersson A. F. (2016). Diversity of pico- to mesoplankton along the 2000 km salinity gradient of the Baltic Sea. Front. Microbiol. 7:679. 10.3389/fmicb.2016.00679 PubMed DOI PMC

Hugenholtz P., Tyson G., Blackall L. (2001). Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization. Methods Mol. Biol. 179 29–42. PubMed

Jeuck A., Arndt H. (2013). A short guide to common heterotrophic flagellates of freshwater habitats based on the morphology of living organisms. Protist 164 842–860. 10.1016/j.protis.2013.08.003 PubMed DOI

Jeuck A., Nitsche F., Wylezich C., Wirth O., Bergfeld T., Brutscher F., et al. (2017). A comparison of methods to analyze aquatic heterotrophic flagellates of different taxonomic groups. Protist 168 375–391. 10.1016/j.protis.2017.04.003 PubMed DOI

Jezbera J., Horňák K., Šimek K. (2005). Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microbiol. Ecol. 52 351–363. 10.1016/j.femsec.2004.12.001 PubMed DOI

Jezbera J., Hornak K., Šimek K. (2006). Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients. Environ. Microbiol. 8 1330–1339. 10.1111/j.1462-2920.2006.01026.x PubMed DOI

Jobard M., Wawrzyniak I., Bronner G., Marie D., Vellet A., Sime-Ngando T., et al. (2019). Freshwater Perkinsea: diversity, ecology and genomic information. J. Plankton Res. 42 3–17. 10.1093/plankt/fbz068 PubMed DOI

John U., Cembella A., Hummert C., Elbrächter M., Groben R., Medlin L. (2003). Discrimination of the toxigenic dinoflagellates Alexandrium tamarense and A. ostenfeldii in co-occurring natural populations from Scottish coastal waters. Eur. J. Phycol. 38 25–40.

Jürgens K., Güde H. (1994). The potential importance of grazing-resistant bacteria in planktonic systems. Mar. Ecol. Prog. Ser. 112 169–188.

Jürgens K., Matz C. (2002). Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek 81 413–434. PubMed

Keeling P. J. (2019). Combining morphology, behaviour and genomics to understand the evolution and ecology of microbial eukaryotes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374:20190085. PubMed PMC

Kim D. Y., Countway P. D., Jones A. C., Schnetzer A., Yamashita W., Tung C., et al. (2014). Monthly to interannual variability of microbial eukaryote assemblages at four depths in the eastern North Pacific. ISME J. 8 515–530. PubMed PMC

Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., et al. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41:e1. PubMed PMC

Ku C., Sebé-Pedrós A. (2019). Using single-cell transcriptomics to understand functional states and interactions in microbial eukaryotes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374:20190098. PubMed PMC

Lange M., Guillou L., Vaulot D., Simon N., Amann R. I., Ludwig W., et al. (1996). Identification of the class prymnesiophyceae and the genus Phaeocystis with ribosomal RNA-targeted nucleic acid probes detected by flow cytometry. J. Phycol. 32 858–868. 10.1111/j.0022-3646.1996.00858.x DOI

Langenheder S., Jürgens K. (2001). Regulation of bacterial biomass and community structure by metazoan and protozoan predation. Limnol. Oceanogr. 46 121–134. 10.4319/lo.2001.46.1.0121 DOI

Lepère C., Domaizon I., Debroas D. (2008). Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. Appl. Environ. Microbiol. 74 2940–2949. 10.1128/AEM.01156-07 PubMed DOI PMC

Lepère C., Masquelier S., Mangot J.-F., Debroas D., Domaizon I. (2010). Vertical structure of small eukaryotes in three lakes that differ by their trophic status: a quantitative approach. ISME J. 4 1509–1519. 10.1038/ismej.2010.83 PubMed DOI

Lepère C., Ostrowski M., Hartmann M., Zubkov M. V., Scanlan D. J. (2016). In situ associations between marine photosynthetic picoeukaryotes and potential parasites - a role for fungi? Environ. Microbiol. Rep. 8 445–451. 10.1111/1758-2229.12339 PubMed DOI

Lim E. L., Amaral L. A., Caron D. A., Delong E. F. (1993). Application of rRNA-based probes for observing marine nanoplanktonic protists. Appl. Environ. Microbiol. 59 1647–1655. 10.1128/AEM.59.5.1647-1655.1993 PubMed DOI PMC

Lim E. L., Dennett M. R., Caron D. A. (1999). The ecology of Paraphysomonas imperforata based on studies employing oligonucleotide probe identification in coastal water samples and enrichment cultures. Limnol. Oceanogr. 44 37–51. 10.4319/lo.1999.44.1.0037 DOI

Logares R., Audic S., Bass D., Bittner L., Boutte C., Christen R., et al. (2014). Patterns of rare and abundant marine microbial eukaryotes. Curr. Biol. 24 813–821. 10.1016/j.cub.2014.02.050 PubMed DOI

López-García P., Philippe H., Gail F., Moreira D. (2003). Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc. Natl. Acad. Sci. U.S.A. 100 697–702. 10.1073/pnas.0235779100 PubMed DOI PMC

Lopez-Garcia P., Rodriguez-Valera F., Pedros-Alio C., Moreira D. (2001). Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409 603–607. 10.1038/35054537 PubMed DOI

Lovejoy C., Massana R., Pedros-Alio C. (2006). Diversity and ditribution of marine microbial eukaryotes in the Arctic ocean and adjacent seas. Appl. Environ. Microbiol. 72 3085–3095. 10.1128/AEM.72.5.3085-3095.2006 PubMed DOI PMC

Lukumbuzya M., Schmid M., Pjevac P., Daims H. (2019). A multicolor fluorescence in situ hybridization approach using an extended set of fluorophores to visualize microorganisms. Front. Microbiol. 10:1383. 10.3389/fmicb.2019.01383 PubMed DOI PMC

Madoni P. (2011). Protozoa in wastewater treatment processes: a minireview. Ital. J. Zool. 78 3–11. 10.1080/11250000903373797 DOI

Mahé F., De Vargas C., Bass D., Czech L., Stamatakis A., Lara E., et al. (2017). Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat. Ecol. Evol. 1:91. 10.1038/s41559-017-0091 PubMed DOI

Majaneva M., Rintala J.-M., Hajdu S., Hallfors S., Hallfors G., Skjevik A.-T., et al. (2012). The extensive bloom of alternate-stage Prymnesium polylepis (Haptophyta) in the Baltic Sea during autumn-spring 2007-2008. Eur. J. Phycol. 47 310–320. 10.1080/09670262.2012.713997 DOI

Mangot J.-F., Debroas D., Domaizon I. (2011). Perkinsozoa, a well-known marine protozoan flagellate parasite group, newly identified in lacustrine systems: a review. Hydrobiologia 659 37–48. 10.1007/s10750-010-0268-x DOI

Mangot J.-F., Domaizon I., Taib N., Marouni N., Duffaud E., Bronner G., et al. (2012). Short-term dynamics of diversity patterns: evidence of continual reassembly within lacustrine small eukaryotes. Environ. Microbiol. 15 1745–1758. 10.1111/1462-2920.12065 PubMed DOI

Mangot J.-F., Forn I., Obiol A., Massana R. (2018). Constant abundances of ubiquitous uncultured protists in the open sea assessed by automated microscopy. Environ. Microbiol. 20 3876–3889. 10.1111/1462-2920.14408 PubMed DOI

Mangot J. F., Lepere C., Bouvier C., Debroas D., Domaizon I. (2009). Community structure and dynamics of small eukaryotes targeted by new oligonucleotide probes: new insight into the lacustrine microbial food web. Appl. Environ. Microbiol. 75 6373–6381. 10.1128/AEM.00607-09 PubMed DOI PMC

Martin-Laurent F., Philippot L., Hallet S., Chaussod R., Germon J. C., Soulas G., et al. (2001). DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl. Environ. Microbiol. 67 2354–2359. 10.1128/AEM.67.5.2354-2359.2001 PubMed DOI PMC

Massana R. (2011). Eukaryotic picoplankton in surface oceans. Annu. Rev. Microbiol. 65 91–110. 10.1146/annurev-micro-090110-102903 PubMed DOI

Massana R., Gobet A., Audic S., Bass D., Bittner L., Boutte C., et al. (2015). Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ. Microbiol. 17 4035–4049. 10.1111/1462-2920.12955 PubMed DOI

Massana R., Guillou L., Terrado R., Forn I., Pedros-Alio C. (2006a). Growth of uncultured heterotrophic flagellates in unamended seawater incubations. Aquat. Microb. Ecol. 45 171–180. 10.3354/ame045171 DOI

Massana R., Terrado R., Forn I., Lovejoy C., Pedros-Alio C. (2006b). Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ. Microbiol. 8 1515–1522. 10.1111/j.1462-2920.2006.01042.x PubMed DOI

Massana R., Unrein F., Rodríguez-Martínez R., Forn I., Lefort T., Pinhassi J., et al. (2009). Grazing rates and functional diversity of uncultured heterotrophic flagellates. ISME J. 3 588–596. 10.1038/ismej.2008.130 PubMed DOI

Matz C., Boenigk J., Arndt H., Jürgens K. (2002). Role of bacterial phenotypic traits in selective feeding of the heterotrophic nanoflagellate Spumella sp. Aquat. Microb. Ecol. 27 137–148. 10.3354/ame027137 DOI

McCann K., Hastings A. (1997). Re-evaluating the omnivory - stability relationship in food webs. Proc. Biol. Sci. 264 1249–1254. 10.1098/rspb.1997.0172 DOI

Medlin L., Schmidt C. (2010). Molecular probes improve the taxonomic resolution of cryptophyte abundance in Arcachon Bayy, France. Vie Milieu 60 9–15.

Medlin L. K., Piwosz K., Metfies K. (2017). Uncovering hidden biodiversity in the cryptophyta: clone library studies at the Helgoland time series site in the southern German Bight identifies the cryptophycean clade potentially responsible for the majority of its genetic diversity during the spring bloom. Vie Milieu 67 27–32.

Medlin L. K., Strieben S. (2010). Refining cryptophyte identification: matching cell fixation methods to FISH hybridisation of cryptomonads. J. Appl. Phycol. 22 725–731. 10.1007/s10811-010-9512-z DOI

Metfies K., Medlin L. (2007). Refining cryptophyte identification with DNA-microarrays. J. Plankton Res. 12 1071–1075. 10.1093/plankt/fbm080 PubMed DOI

Montagnes D., Lynn D. (1987). A quantitative protargol stain (QPS) for ciliates: method description and test of its quantitative nature. Mar. Microb. Food Webs 2 83–93.

Moon-van der Staay S. Y., De Wachter R., Vaulot D. (2001). Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409 607–610. 10.1038/35054541 PubMed DOI

Moon-van der Staay S. Y., Tzeneva V. A., Van Der Staay G. W., De Vos W. M., Smidt H., Hackstein J. H. (2006). Eukaryotic diversity in historical soil samples. FEMS Microbiol. Ecol. 57 420–428. 10.1111/j.1574-6941.2006.00130.x PubMed DOI

Moraru C., Lam P., Fuchs B. M., Kuypers M. M. M., Amann R. (2010). GeneFISH – an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environ. Microbiol. 12 3057–3073. 10.1111/j.1462-2920.2010.02281.x PubMed DOI

Morgan-Smith D., Clouse M. A., Herndl G. J., Bochdansky A. B. (2013). Diversity and distribution of microbial eukaryotes in the deep tropical and subtropical North Atlantic Ocean. Deep Sea Res. I Oceanogr. Res. Pap. 78 58–69. 10.1016/j.dsr.2013.04.010 DOI

Morgan-Smith D., Herndl G. J., Van Aken H. M., Bochdansky A. B. (2011). Abundance of eukaryotic microbes in the deep subtropical North Atlantic. Aquat. Microb. Ecol. 65 103–115. 10.3354/ame01536 DOI

Mukherjee I., Hodoki Y., Nakano S.-I. (2015). Kinetoplastid flagellates overlooked by universal primers dominate in the oxygenated hypolimnion of Lake Biwa, Japan. FEMS Microbiol. Ecol. 91:fiv083. 10.1093/femsec/fiv083 PubMed DOI

Mukherjee I., Hodoki Y., Nakano S.-I. (2017). Seasonal dynamics of heterotrophic and plastidic protists in the water column of Lake Biwa, Japan. Aquat. Microb. Ecol. 80 123–137. 10.3354/ame01843 DOI

Mukherjee I., Hodoki Y., Okazaki Y., Fujinaga S., Ohbayashi K., Nakano S.-I. (2019). Widespread dominance of kinetoplastids and unexpected presence of diplonemids in deep freshwater lakes. Front. Microbiol. 10:2375. 10.3389/fmicb.2019.02375 PubMed DOI PMC

Mukherjee I., Salcher M. M., Andrei A.-Ş., Kavagutti V. S., Shabarova T., Grujčić V., et al. (2020). A freshwater radiation of diplonemids. Environ. Microbiol. 22 4658–4668. 10.1111/1462-2920.15209 PubMed DOI

Neuenschwander S. M., Pernthaler J., Posch T., Salcher M. M. (2015). Seasonal growth potential of rare lake water bacteria suggest their disproportional contribution to carbon fluxes. Environ. Microbiol. 17 781–795. 10.1111/1462-2920.12520 PubMed DOI

Not F., Latasa M., Scharek R., Viprey M., Karleskind P., Balagué V., et al. (2008). Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes. Deep Sea Res. I Oceanogr. Res. Pap. 55 1456–1473. 10.1016/j.dsr.2008.06.007 DOI

Not F., Massana R., Latasa M., Marie D., Colson C., Eikrem W., et al. (2005). Late summer community composition and abundance of photosynthetic picoeukaryotes in Norwegian and Barents Seas. Limnol. Oceanogr. 50 1677–1686. 10.4319/lo.2005.50.5.1677 DOI

Not F., Simon N., Biegala I. C., Vaulot D. (2002). Application of fluorescent in situ hybridization coupled with tyramide signal amplification (FISH-TSA) to assess eukaryotic picoplankton composition. Aquat. Microb. Ecol. 28 157–166. 10.3354/ame028157 DOI

Nygaard K., Hessen D. (1990). Use of 14C-protein-labelled bacteria for estimating clearance rates by heterotrophic and mixotrophic flagellates. Mar. Ecol. Prog. Ser. 68 7–14. 10.3354/meps068007 DOI

Ohkuma M., Brune A. (2010). “Diversity, structure, and evolution of the termite gut microbial community,” in Biology of Termites: A Modern Synthesis, eds Bignell D., Roisin Y., Lo N. (Dordrecht: Springer; ), 413–438. 10.1007/978-90-481-3977-4_15 DOI

Orr R. J. S., Zhao S., Klaveness D., Yabuki A., Ikeda K., Watanabe M. M., et al. (2018). Enigmatic Diphyllatea eukaryotes: culturing and targeted PacBio RS amplicon sequencing reveals a higher order taxonomic diversity and global distribution. BMC Evol. Biol. 18:115. 10.1186/s12862-018-1224-z PubMed DOI PMC

Parris D. J., Ganesh S., Edgcomb V. P., Delong E. F., Stewart F. J. (2014). Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile. Front. Microbiol. 5:543. 10.3389/fmicb.2014.00543 PubMed DOI PMC

Patterson D., Larsen J. (1991). The Biology of Free-Living Heterotrophic Flagellates. Oxford: Clarendon Press.

Pawlowski J., Audic S., Adl S., Bass D., Belbahri L., Berney C., et al. (2012). CBOL Protist Working Group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 10:e1001419. 10.1371/journal.pbio.1001419 PubMed DOI PMC

Pernice M. C., Forn I., Gomes A., Lara E., Alonso-Sáez L., Arrieta J. M., et al. (2014). Global abundance of planktonic heterotrophic protists in the deep ocean. ISME J. 9 782–792. 10.1038/ismej.2014.168 PubMed DOI PMC

Pernice M. C., Giner C. R., Logares R., Perera-Bel J., Acinas S., Duarte C., et al. (2016). Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J. 10 945–958. 10.1038/ismej.2015.170 PubMed DOI PMC

Pernthaler A., Pernthaler J., Amann R. (2002). Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68 3094–3101. 10.1128/AEM.68.6.3094-3101.2002 PubMed DOI PMC

Pernthaler A., Pernthaler J., Amann R. (2004). “Sensitive multi-color fluorescence in situ hybridization for the identification of environmental microorganisms,” in Molecular Microbial Ecology Manual, ed. Kowalchuk G. E. A. (Dordrecht: Kluwer Academic Press; ), 711–726.

Pernthaler J. (2005). Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Microbiol. 3 537–546. 10.1038/nrmicro1180 PubMed DOI

Pitsch G., Bruni E. P., Forster D., Qu Z., Sonntag B., Stoeck T., et al. (2019). Seasonality of planktonic freshwater ciliates: Are analyses based on V9 regions of the 18S rRNA gene correlated with morphospecies counts? Front. Microbiol. 10:248. 10.3389/fmicb.2019.00248 PubMed DOI PMC

Piwosz K. (2019). Weekly dynamics of abundance and size structure of specific nanophytoplankton lineages in coastal waters (Baltic Sea). Limnol. Oceanogr. 64 2172–2186. 10.1002/lno.11177 DOI

Piwosz K., Całkiewicz J., Gołębiewski M., Creer S. (2018). Diversity and community composition of pico- and nanoplanktonic protists in the Vistula River estuary (Gulf of Gdañsk, Baltic Sea). Estuar. Coast. Shelf Sci. 207 242–249. 10.1016/j.ecss.2018.04.013 DOI

Piwosz K., Kownacka J., Ameryk A., Zalewski M., Pernthaler J. (2016). Phenology of cryptomonads and the CRY1 lineage in a coastal brackish lagoon (Vistula Lagoon, Baltic Sea). J. Phycol. 52 626–637. 10.1111/jpy.12424 PubMed DOI

Piwosz K., Pernthaler J. (2010). Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the Southern Baltic Sea. Environ. Microbiol. 12 364–377. 10.1111/j.1462-2920.2009.02074.x PubMed DOI

Piwosz K., Pernthaler J. (2011). Enrichment of omnivorous cercozoan nanoflagellates from coastal Baltic Sea waters. PLoS One 6:e24415. 10.1371/journal.pone.0024415 PubMed DOI PMC

Piwosz K., Shabarova T., Pernthaler J., Posch T., Šimek K., Porcal P., et al. (2020). Bacterial and eukaryotic small-subunit amplicon data do not provide a quantitative picture of microbial communities, but they are reliable in the context of ecological interpretations. mSphere 5:e00052-20. 10.1128/mSphere.00052-20 PubMed DOI PMC

Piwosz K., Spich K., Całkiewicz J., Weydmann A., Kubiszyn A. M., Wiktor J. M. (2015). Distribution of small phytoflagellates along an Arctic fjord transect. Environ. Microbiol. 17 2393–2406. 10.1111/1462-2920.12705 PubMed DOI

Piwosz K., Wiktor J. M., Niemi A., Tatarek A., Michel C. (2013). Mesoscale distribution and functional diversity of picoeukaryotes in the first-year sea ice of the Canadian Arctic. ISME J. 7 1461–1471. 10.1038/ismej.2013.39 PubMed DOI PMC

Porter K. G., Feig Y. S. (1980). The use of DAPI for identifying and counting aquatic bacteria. Limnol. Oceanogr. 25 943–948. 10.4319/lo.1980.25.5.0943 DOI

Porter K. G., Sherr E. B., Sherr B. F., Pace M. L., Sanders R. W. (1985). Protozoa in planktonic food webs. J. Protozool. 32 409–415. 10.1111/j.1550-7408.1985.tb04036.x DOI

Posch T., Eugster B., Pomati F., Pernthaler J., Pitsch G., Eckert E. M. (2015). Network of interactions between ciliates and phytoplankton during spring. Front. Microbiol. 6:1289. 10.3389/fmicb.2015.01289 PubMed DOI PMC

Potvin M., Lovejoy C. (2009). PCR-based diversity estimates of artificial and environmental 18S rRNA gene libraries. J. Eukaryot. Microbiol. 56 174–181. 10.1111/j.1550-7408.2008.00386.x PubMed DOI

Qu Z., Forster D., Bruni E. P., Frantal D., Kammerlander B., Nachbaur L., et al. (2021). Aquatic food webs in deep temperate lakes: key species establish through their autecological versatility. Mol. Ecol. 10.1111/mec.15776 [Epub ahead of print]. PubMed DOI

Rice J., Oconnor C. D., Sleigh M. A., Burkill P. H., Giles I. G., Zubkov M. V. (1997a). Fluorescent oligonucleotide rDNA probes that specifically bind to a common nanoflagellate, Paraphysomonas vestita. Microbiology 143 1717–1727. 10.1099/00221287-143-5-1717 PubMed DOI

Rice J., Sleigh M. A., Burkill P. H., Tarran G. A., O’connor C. D., Zubkov M. V. (1997b). Flow cytometric analysis of characteristics of hybridization of species-specific fluorescent oligonucleotide probes to rRNA of marine nanoflagellates. Appl. Environ. Microbiol. 63 938–944. 10.1128/AEM.63.3.938-944.1997 PubMed DOI PMC

Romari K., Vaulot D. (2004). Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. Limnol. Oceanogr. 49 784–798. 10.4319/lo.2004.49.3.0784 DOI

Rychert K. (2006). Nanoflagellates in the Gdañsk Basin: coexistence between form belonging to different trophic types. Oceanologia 48 323–330.

Salani F., Arndt H., Hausmann K., Nitsche F., Scheckenbach F. (2011). Analysis of the community structure of abyssal kinetoplastids revealed similar communities at larger spatial scales. ISME J. 6 713–723. 10.1038/ismej.2011.138 PubMed DOI PMC

Sanders R., Caron D. A., Berninger U. G. (1992). Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Mar. Ecol. Prog. Ser. 86 1–14. 10.3354/meps086001 DOI

Santoferrara L. F., Grattepanche J.-D., Katz L. A., Mcmanus G. B. (2014). Pyrosequencing for assessing diversity of eukaryotic microbes: analysis of data on marine planktonic ciliates and comparison with traditional methods. Environ. Microbiol. 16 2752–2763. 10.1111/1462-2920.12380 PubMed DOI

Sauvadet A. L., Gobet A., Guillou L. (2010). Comparative analysis between protist communities from the deep-sea pelagic ecosystem and specific deep hydrothermal habitats. Environ. Microbiol. 12 2946–2964. PubMed

Scheckenbach F., Hausmann K., Wylezich C., Weitere M., Arndt H. (2010). Large-scale patterns in biodiversity of microbial eukaryotes from the abyssal sea floor. Proc. Natl. Acad. Sci. U.S.A. 107 115–120. 10.1111/j.1462-2920.2010.02272.x PubMed DOI PMC

Schulz F., Lagkouvardos I., Wascher F., Aistleitner K., Kostanjšek R., Horn M. (2014). Life in an unusual intracellular niche: a bacterial symbiont infecting the nucleus of amoebae. ISME J. 8 1634–1644. PubMed PMC

Seeleuthner Y., Mondy S., Lombard V., Carradec Q., Pelletier E., Wessner M., et al. (2018). Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nat. Commun. 9:310. PubMed PMC

Sekiguchi H., Kawachi M., Nakayama T., Inouye I. (2003). A taxonomic re-evaluation of the Pedinellales (Dictyochophyceae), based on morphological, behavioural and molecular data. Phycologia 42 165–182.

Shalchian-Tabrizi K., Brate J., Logares R., Klaveness D., Berney C., Jakobsen K. S. (2008). Diversification of unicellular eukaryotes: cryptomonad colonization of marine and fresh waters inferred from revised 18S rRNA phylogeny. Environ. Microbiol. 10 2635–2644. PubMed

Shalchian-Tabrizi K., Kauserud H. A. E., Massana R., Klaveness D., Jakobsen K. (2007). Analysis of environmental 18S ribosomal RNA sequences reveals unknown diversity of the cosmopolitan phylum Telonemia. Protist 158 173–180. PubMed

Sherr B. F., Sherr E. B., Fallon R. D. (1987). Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl. Environ. Microbiol. 53 958–965. PubMed PMC

Sherr B. F., Sherr E. B., Pedros-Alio C. (1989). Simultaneous measurement of bacterio-plankton production and protozoan bacterivory in estuarine water. Mar. Ecol. Prog. Ser. 54 209–219.

Sherr E., Sherr B. (1988). Role of microbes in pelagic food webs: A revised concept. Limnol. Oceanogr. 33 1225–1227.

Sherr E. B., Sherr B. F., Caron D. A., Vaulot D., Worden A. Z. (2007). Oceanic Protists. Oceanography 20 130–134.

Shi H., Shi Q., Grodner B., Lenz J. S., Zipfel W. R., Brito I. L., et al. (2020). Highly multiplexed spatial mapping of microbial communities. Nature 588 676–681. PubMed PMC

Shiratori T., Ishida K.-I. (2016). A new heterotrophic Cryptomonad: Hemiarma marina n. g., n. sp. J. Eukaryot. Microbiol. 63 804–812. PubMed

Siano R., Alves-De-Souza C., Foulon E., Bendif E. M., Simon N., Guillou L., et al. (2011). Distribution and host diversity of Amoebophryidae parasites across oligotrophic waters of the Mediterranean Sea. Biogeosciences 8 267–278.

Šimek K., Chrzanowski T. H. (1992). Direct and indirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates. Appl. Environ. Microbiol. 58 3715–3720. PubMed PMC

Šimek K., Grujčić V., Hahn M. W., Horňák K., Jezberová J., Kasalický V., et al. (2018). Bacterial prey food characteristics modulate community growth response of freshwater bacterivorous flagellates. Limnol. Oceanogr. 63 484–502.

Šimek K., Grujčić V., Mukherjee I., Kasalický V., Nedoma J., Posch T., et al. (2020). Cascading effects in freshwater microbial food webs by predatory Cercozoa, Katablepharidacea and ciliates feeding on aplastidic bacterivorous cryptophytes. FEMS Microbiol. Ecol. 96:fiaa121. PubMed PMC

Šimek K., Grujčić V., Nedoma J., Jezberová J., Šorf M., Matoušů A., et al. (2019). Microbial food webs in hypertrophic fishponds: omnivorous ciliate taxa are major protistan bacterivores. Limnol. Oceanogr. 64 2295–2309.

Šimek K., Hartman P., Nedoma J., Pernthaler J., Vrba J., Springmann D., et al. (1997a). Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum. Aquat. Microb. Ecol. 12 49–63.

Šimek K., Jurgens K., Nedoma J., Comerma M., Armengol J. (2000). Ecological role and bacterial grazing of Halteria spp.: small freshwater oligotrichs as dominant pelagic ciliate bacterivores. Aquat. Microb. Ecol. 22 43–56.

Šimek K., Kasalický V., Jezbera J., Hornak K., Nedoma J., Hahn M. W., et al. (2013). Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria. ISME J. 7 1519–1530. PubMed PMC

Šimek K., Kojecká P., Nedoma J., Hartman P., Vrba J., Dolan J. (1999). Shifts in bacterial community composition associated with different microzooplankton size fractions in a eutrophic reservoir. Limnol. Oceanogr. 44 1634–1644.

Šimek K., Nedoma J., Znachor P., Kasalický V., Jezbera J., Horňák K., et al. (2014). A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol. Oceanogr. 59 1477–1492.

Šimek K., Pernthaler J., Weinbauer M. G., Horňák K., Dolan J. R., Nedoma J., et al. (2001). Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl. Environ. Microbiol. 67 2723–2733. PubMed PMC

Šimek K., Sirova D. (2019). Fluorescently labeled bacteria as a tracer to reveal novel pathways of organic carbon flow in aquatic ecosystems. J. Vis. Exp. 151:e59903. PubMed

Šimek K., Straškrabová V. (1992). Bacterioplankton production and protozoan bacterivory in a mesotrophic Reservoir. J. Plankton Res. 14 773–787.

Šimek K., Vrba J., Pernthaler J., Posch T., Hartman P., Nedoma J. (1997b). Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl. Environ. Microbiol. 63 587–595. PubMed PMC

Šimek K., Weinbauer M. G., Horňák K., Jezbera J., Nedoma J., Dolan J. R. (2007). Grazer and virus-induced mortality of bacterioplankton accelerates development of Flectobacillus populations in a freshwater community. Environ. Microbiol. 9 789–800. PubMed

Simon M., Jardillier L., Deschamps P., Moreira D., Restoux G., Bertolino P., et al. (2015a). Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems. Environ. Microbiol. 17 3610–3627. PubMed PMC

Simon M., Lopez-Garcia P., Deschamps P., Moreira D., Restoux G., Bertolino P., et al. (2015b). Marked seasonality and high spatial variability of protist communities in shallow freshwater systems. ISME J. 9 1941–1965. PubMed PMC

Simon N., Campbell L., Ornolfsdottir E., Groben R., Guillou L., Lange M., et al. (2000). Oligonucleotide probes for the identification of three algal groups by dot blot and fluorescent whole-cell hybridization. J. Eukaryot. Microbiol. 47 76–84. PubMed

Simon N., Lebot N., Marie D., Partensky F., Vaulot D. (1995). Fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes to identify small phytoplankton by flow cytometry. Appl. Environ. Microbiol. 61 2506–2513. PubMed PMC

Simpson A. G. B., Stevens J. R., Lukeš J. (2006). The evolution and diversity of kinetoplastid flagellates. Trends Parasitol. 22 168–174. PubMed

Sogin M. L., Gunderson J. H. (1987). Structural diversity of eukaryotic small subunit ribosomal RNAs. Evolutionary implications. Ann. N. Y. Acad. Sci. 503 125–139. PubMed

Sommer U., Adrian R., De Senerpont Domis L., Elser J. J., Gaedke U., Ibelings B., et al. (2012). Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annu. Rev. Ecol. Evol. Syst. 43 429–448.

Sommer U., Gliwicz M., Lampert W., Duncan A. (1986). The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106 433–471.

Staley J. T., Konopka A. (1985). Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39 321–346. PubMed

Steele J. A., Countway P. D., Xia L., Vigil P. D., Beman J. M., Kim D. Y., et al. (2011). Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J. 5 1414–1425. PubMed PMC

Steidinger K. A., Jangen K. (1997). “Dinoflagellates,” in Identifying Marine Phytoplankton, ed. Tomas C. R. (San Diego, CA: Academic Press; ), 387–584.

Stern R., Kraberg A., Bresnan E., Kooistra W. H. C. F., Lovejoy C., Montresor M., et al. (2018). Molecular analyses of protists in long-term observation programmes—current status and future perspectives. J. Plankton Res. 40 519–536.

Stock A., Breiner H.-W., Pachiadaki M., Edgcomb V., Filker S., Cono V., et al. (2012). Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 16 21–34. PubMed

Stoeck T., Bass D., Nebel M., Christen R., Jones M. D. M., Breiner H.-W., et al. (2010). Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19 21–31. PubMed

Stoeck T., Breiner H.-W., Filker S., Ostermaier V., Kammerlander B., Sonntag B. (2014). A morphogenetic survey on ciliate plankton from a mountain lake pinpoints the necessity of lineage-specific barcode markers in microbial ecology. Environ. Microbiol. 16 430–444. PubMed PMC

Stoeck T., Hayward B., Taylor G. T., Varela R., Epstein S. S. (2006). A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 157 31–43. PubMed

Stokes N. A., Calvo L. M. R., Reece K. S., Burreson E. M. (2002). Molecular diagnostics, field validation, and phylogenetic analysis of Quahog Parasite Unknown (QPX), a pathogen of the hard clam Mercenaria mercenaria. Dis. Aquat. Organ. 52 233–247. PubMed

Suttle C. A. (2007). Marine viruses - major players in the global ecosystem. Nat. Rev. Microbiol. 5 801–812. PubMed

Swale E. M. F. (1969). A study of nanoplankton flagellate Pedinella hexacostata Vysotskii by light and electron microscopy. Eur. J. Phycol. 4 65–86. 10.1080/00071616900650051 DOI

Šlapeta J., Lopez-Garcia P., Moreira D. (2006). Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Mol. Biol. Evol 23 23–29. 10.1093/molbev/msj001 PubMed DOI

Taib N., Mangot J.-F., Domaizon I., Bronner G., Debroas D. (2013). Phylogenetic affiliation of SSU rRNA genes generated by massively parallel sequencing: new insights into the freshwater protist diversity. PLoS One 8:e58950. 10.1371/journal.pone.0058950 PubMed DOI PMC

Thaler M., Lovejoy C. (2012). Distribution and diversity of a protist predator Cryothecomonas (Cercozoa) in Arctic marine waters. J. Eukaryot. Microbiol. 59 291–299. 10.1111/j.1550-7408.2012.00631.x PubMed DOI

Thiele S., Wolf C., Schulz I. K., Assmy P., Metfies K., Fuchs B. M. (2014). Stable composition of the nano- and picoplankton community during the ocean iron fertilization experiment LOHAFEX. PLoS One 9:e113244. 10.1371/journal.pone.0113244 PubMed DOI PMC

Töbe K., Alpermann T., Tillmann U., Krock B., Cembella A., John U. (2013). Molecular discrimination of toxic and non-toxic Alexandrium species (Dinophyta) in natural phytoplankton assemblages from the Scottish coast of the North Sea. Eur. J. Phycol. 48 12–26. 10.1080/09670262.2012.752870 DOI

Toebe K., Joshi A. R., Messtorff P., Tillmann U., Cembella A., John U. (2012). Molecular discrimination of taxa within the dinoflagellate genus Azadinium, the source of azaspiracid toxins. J. Plankton Res. 35 225–230. 10.1093/plankt/fbs077 PubMed DOI

Touzet N., Davidson K., Pete R., Flanagan K., Mccoy G., Amzil Z., et al. (2010). Co-Occurrence of the West European (Gr.III) and North American (Gr.I) Ribotypes of Alexandrium tamarense (Dinophyceae) in Shetland, Scotland. Protist 161 370–384. 10.1016/j.protis.2009.12.001 PubMed DOI

Triado-Margarit X., Casamayor E. O. (2012). Genetic diversity of planktonic eukaryotes in high mountain lakes (Central Pyrenees, Spain). Environ. Microbiol. 14 2445–2456. 10.1111/j.1462-2920.2012.02797.x PubMed DOI

Unrein F., Gasol J. M., Not F., Forn I., Massana R. (2014). Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME J. 8 164–176. 10.1038/ismej.2013.132 PubMed DOI PMC

Valm A. M., Welch J. L. M., Rieken C. W., Hasegawa Y., Sogin M. L., Oldenbourg R., et al. (2011). Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc. Natl. Acad. Sci. U.S.A. 108 4152–4157. 10.1073/pnas.1101134108 PubMed DOI PMC

von der Heyden S., Cavalier-Smith T. (2005). Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major marine clade within ancestrally freshwater Neobodo designis. Int. J. Syst. Evol. Microbiol. 55 2605–2621. 10.1099/ijs.0.63606-0 PubMed DOI

Wasmund N., Tuimala J., Suikkanen S., Vandepitte L., Kraberg A. (2011). Long-term trends in phytoplankton composition in the western and central Baltic Sea. J. Mar. Syst. 87 145–159. 10.1016/j.jmarsys.2011.03.010 DOI

Weber F., Mylnikov A., Jürgens K., Wylezich C. (2017). Culturing heterotrophic protists from the Baltic Sea: mostly the ‘usual suspects’ but a few novelties as well. J. Eukaryot. Microbiol. 64 153–163. 10.1111/jeu.12347 PubMed DOI

Weisse T., Anderson R., Arndt H., Calbet A., Hansen P., Djs M. (2016). Functional ecology of aquatic phagotrophic protists - Concepts, limitations, and perspectives. Eur. J. Protistol. 55 50–74. 10.1016/j.ejop.2016.03.003 PubMed DOI

Weitere M., Arndt H. (2003). Structure of the heterotrophic flagellate community in the water column of the River Rhine (Germany). Eur. J. Protistol. 39 287–300. 10.1078/0932-4739-00913 DOI

Wendeberg A., Zielinski F. U., Borowski C., Dubilier N. (2012). Expression patterns of mRNAs for methanotrophy and thiotrophy in symbionts of the hydrothermal vent mussel Bathymodiolus puteoserpentis. ISME J. 6 104–112. 10.1038/ismej.2011.81 PubMed DOI PMC

Winter C., Bouvier T., Weinbauer M. G., Thingstad T. F. (2010). Trade-offs between competition and defense specialists among unicellular planktonic organisms: the ‘Killing the Winner’ hypothesis revisited. Microbiol. Mol. Biol. Rev. 74 42–57. 10.1128/MMBR.00034-09 PubMed DOI PMC

Worden A. Z., Follows M. J., Giovannoni S. J., Wilken S., Zimmerman A. E., Keeling P. J. (2015). Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347:1257594. 10.1126/science.1257594 PubMed DOI

Xie F., Timme K. A., Wood J. R. (2018). Using Single Molecule mRNA Fluorescent in Situ Hybridization (RNA-FISH) to Quantify mRNAs in Individual Murine Oocytes and Embryos. Sci. Rep. 8:7930. 10.1038/s41598-018-26345-0 PubMed DOI PMC

Zhan Z., Stoeck T., Dunthorn M., Xu K. (2014). Identification of the pathogenic ciliate Pseudocohnilembus persalinus (Oligohymenophorea: Scuticociliatia) by fluorescence in situ hybridization. Eur. J. Protistol. 50 16–24. 10.1016/j.ejop.2013.09.004 PubMed DOI

Zhu F., Massana R., Not F., Marie D., Vaulot D. (2005). Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52 79–92. 10.1016/j.femsec.2004.10.006 PubMed DOI

Zimmerman A. E., Howard-Varona C., Needham D. M., John S. G., Worden A. Z., Sullivan M. B., et al. (2020). Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18 21–34. 10.1038/s41579-019-0270-x PubMed DOI

Zubkov M. V., Sleigh M. A. (2000). Comparison of growth efficiencies of protozoa growing on bacteria deposited on surfaces and in suspension. J. Eukaryot. Microbiol. 47 62–69. 10.1111/j.1550-7408.2000.tb00012.x PubMed DOI

Zubkov M. V., Sleigh M. A., Burkill P. H. (1998). Measurement of bacterivory by protists in open ocean waters. FEMS Microbiol. Ecol. 27 85–102. 10.1111/j.1574-6941.1998.tb00527.x DOI

Zubkov M. V., Tarran G. A. (2008). High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature 455 224–227. 10.1038/nature07236 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace