A freshwater radiation of diplonemids
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MSM200961801
Akademie Věd České Republiky
17-04828S
Grant Agency of the Czech Republic
19-23469S
Grant Agency of the Czech Republic
20-12496X
Grant Agency of the Czech Republic
022/2019/P
Grant Agency of the University of South Bohemia
116/2019/P
Grant Agency of the University of South Bohemia
JSPS-17-17
JSPS Bilateral Japanese-Czech Joint Research Project
310030_185108
Swiss National Science Foundation - Switzerland
PubMed
32830371
DOI
10.1111/1462-2920.15209
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- druhová specificita MeSH
- ekosystém MeSH
- Euglenozoa klasifikace cytologie genetika izolace a purifikace MeSH
- fylogeneze MeSH
- hybridizace in situ fluorescenční MeSH
- jezera mikrobiologie MeSH
- metagenomika MeSH
- RNA ribozomální 18S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Japonsko MeSH
- Názvy látek
- RNA ribozomální 18S MeSH
Diplonemids are considered marine protists and have been reported among the most abundant and diverse eukaryotes in the world oceans. Recently we detected the presence of freshwater diplonemids in Japanese deep freshwater lakes. However, their distribution and abundances in freshwater ecosystems remain unknown. We assessed abundance and diversity of diplonemids from several geographically distant deep freshwater lakes of the world by amplicon-sequencing, shotgun metagenomics and catalysed reporter deposition-fluorescent in situ hybridization (CARD-FISH). We found diplonemids in all the studied lakes, albeit with low abundances and diversity. We assembled long 18S rRNA sequences from freshwater diplonemids and showed that they form a new lineage distinct from the diverse marine clades. Freshwater diplonemids are a sister-group to a marine clade, which are mainly isolates from coastal and bay areas, suggesting a recent habitat transition from marine to freshwater habitats. Images of CARD-FISH targeted freshwater diplonemids suggest they feed on bacteria. Our analyses of 18S rRNA sequences retrieved from single-cell genomes of marine diplonemids show they encode multiple rRNA copies that may be very divergent from each other, suggesting that marine diplonemid abundance and diversity both have been overestimated. These results have wider implications on assessing eukaryotic abundances in natural habitats by using amplicon-sequencing alone.
Center for Ecological Research Kyoto University Otsu Shiga 520 2113 Japan
Ibaraki Kasumigaura Environmental Science Center 1853 Okijyuku Tsuchiura Ibaraki 300 0023 Japan
Zobrazit více v PubMed
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol 215: 403-410.
Bochdansky, A.B., Clouse, M.A., and Herndl, G.J. (2017) Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J 11: 362-373.
Boenigk, J., and Arndt, H. (2002) Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie van Leeuwenhoek 81: 465-480.
Cabello-Yeves, P.J., Zemskaya, T.I., Rosselli, R., Coutinho, F.H., Zakharenko, A.S., Blinov, V.V., and Rodriguez-Valera, F. (2018) Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal. Appl Environ Microbiol 84: e02132-17.
Cabello-Yeves, P.J., Zemskaya, T.I., Zakharenko, A.S., Sakirko, M.V., Ivanov, V.G., Ghai, R., and Rodriguez-Valera, F. (2019) Microbiome of the deep Lake Baikal, a unique oxic bathypelagic habitat. Limnol Oceanogr 65: 1471-1488.
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes, S.P. (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13: 581-583.
Caron, D.A., and Hu, S.K. (2018) Are we overestimating protistan diversity in nature? Trend Microbiol 27: 197-205.
Choi, J.W., and Stoecker, D.K. (1989) Effects of fixation on cell volume of marine planktonic protozoa. Appl Environ Microbiol 55: 1761-1765.
de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R., et al. (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348: 1261605.
Elbrächter, M., Schnepf, E., and Balzer, I. (1996) Hemistasia phaeocysticola (Scherffel) comb. nov., redescription of a free-living, marine, phagotrophic kinetoplastid flagellate. Arch Protistenkd. 147: 125-136.
Eloe, E.A., Shulse, C.N., Fadrosh, D.W., Williamson, S.J., Allen, E.E., and Bartlett, D.H. (2011) Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environ Microbiol Rep 3: 449-458.
Flegontova, O., Flegontov, P., Malviya, S., Audic, S., Wincker, P., de Vargas, C., et al. (2016) Extreme diversity of diplonemid eukaryotes in the ocean. Curr Biol 26: 3060-3065.
Gawryluk, R.M.R., del Campo, J., Okamoto, N., Strassert, J.F.H., Lukeš, J., Richards, T.A., et al. (2016) Morphological identification and single-cell genomics of marine diplonemids. Curr Biol 26: 3053-3059.
George, E.E., Husnik, F., Tashyreva, D., Prokopchuk, G., Horák, A., Kwong, W.K., et al. (2020) Highly reduced genomes of protist endosymbionts show evolutionary convergence. Curr Biol 30: 925-933.e3.
Grujcic, V., Nuy, J.K., Salcher, M.M., Jensen, M., and Simek, K. (2018) Cryptophyta as major bacterivores in freshwater summer plankton. ISME J 12: 1668-1681.
Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., et al. (2013) The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41: 597-604.
Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., and Vinh, L.S. (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35: 518-522.
Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., Von Haeseler, A., and Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14: 587-589.
Kavagutti, V.S., Andrei, A.Ş., Mehrshad, M., Salcher, M.M., and Ghai, R. (2019) Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome 7: 135-115.
Lara, E., Moreira, D., Vereshchaka, A., and López-García, P. (2009) Pan-oceanic distribution of new highly diverse clades of deep-sea diplonemids. Environ Microbiol 11: 47-55.
Larsen, J., and Patterson, D.J. (1990) Some flagellates (Protista) from tropical marine sediments. J Nat Hist 24: 801-937.
Li, D., Luo, R., Liu, C.M., Leung, C.M., Ting, H.F., Sadakane, K., et al. (2016) MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102: 3-11.
Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin, S., Carcillo, F., et al. (2015) Determinants of community structure in the global plankton interactome. Science 348: 1262073.
López-García, P., Vereshchaka, A., and Moreira, D. (2007) Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. Environ Microbiol 9: 546-554.
Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Buchner, A., et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363-1371.
Lukeš, J., Olga, F., and Horák, A. (2015) Diplonemids. Curr Biol 25: R702-R704.
Massana, R., Unrein, F., Rodríguez-Martínez, R., Forn, I., Lefort, T., Pinhassi, J., and Not, F. (2009) Grazing rates and functional diversity of uncultured heterotrophic flagellates. ISME J 3: 588-595.
Mirarab, S., Nguyen, N., Guo, S., Wang, L.S., Kim, J., and Warnow, T. (2015) PASTA: Ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. J Comput Biol 22: 377-386.
Morales, J., Hashimoto, M., Williams, T.A., Hirawake-Mogi, H., Makiuchi, T., Tsubouchi, A., et al. (2016) Differential remodelling of peroxisome function underpins the environmental and metabolic adaptability of diplonemids and kinetoplastids. Proc R Soc B Biol Sci 283: 20160520.
Morgan-Smith, D., Clouse, M.A., Herndl, G.J., and Bochdansky, A.B. (2013) Diversity and distribution of microbial eukaryotes in the deep tropical and subtropical North Atlantic Ocean. Deep Res Part I Oceanogr Res Pap 78: 58-69.
Mukherjee, I., Hodoki, Y., and Nakano, S. (2015) Kinetoplastid flagellates overlooked by universal primers dominate in the oxygenated hypolimnion of Lake Biwa, Japan. FEMS Microbiol Ecol 91: fiv083.
Mukherjee, I., Hodoki, Y., Okazaki, Y., Fujinaga, S., Ohbayashi, K., and Nakano, S.I. (2019) Widespread dominance of kinetoplastids and unexpected presence of diplonemids in deep freshwater lakes. Front Microbiol 10: 2375.
Nawrocki, E.P. (2009) Structural alignment and RNA homology search and alignment using covariance models (Ph. D. Thesis). Washington University in Saint Louis, School of Medicine.
Piwosz, K., Shabarova, T., Pernthaler, J., Posch, T., Šimek, K., Porcal, P., and Salcher, M.M. (2020) Bacterial and eukaryotic small-subunit amplicon data do Not provide a quantitative picture of microbial communities, but they are reliable in the context of ecological interpretations. mSphere 5: e00052-20.
Pruesse, E., Peplies, J., and Glöckner, F.O. (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. 28: 1823-1829.
Quang, B., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von Haeseler, A., and Lanfear, R. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37: 1530-1534.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41: D590-D596.
Roy, J., Faktorová, D., Benada, O., Lukeš, J., and Burger, G. (2007) Description of Rhynchopus euleeides n. sp. (Diplonemea), a free-living marine euglenozoan. J Eukaryot Microbiol 54: 137-145.
Scheckenbach, F., Hausmann, K., Wylezich, C., Weitere, M., and Arndt, H. (2010) Large-scale patterns in biodiversity of microbial eukaryotes from the abyssal sea floor. Proc Natl Acad Sci U S A 107: 115-120.
Seppey, M., Manni, M., and Zdobnov, E.M. (2019) BUSCO: assessing genome assembly and annotation completeness. In Methods in Molecular Biology, Clifton, N.J.: Humana Press, pp. 227-245.
Šimek, K., Grujčić, V., Hahn, M.W., Horňák, K., Jezberová, J., Kasalický, V., et al. (2018) Bacterial prey food characteristics modulate community growth response of freshwater bacterivorous flagellates. Limnol Oceanogr 63: 484-502.
Šimek, K., Grujčić, V., Nedoma, J., Jezberová, J., Šorf, M., Matoušů, A., et al. (2019) Microbial food webs in hypertrophic fishponds: omnivorous ciliate taxa are major protistan bacterivores. Limnol Oceanogr 64: 2295-2309.
Šimek, K., Kasalický, V., Jezbera, J., Horňák, K., Nedoma, J., Hahn, M.W., et al. (2013) Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria. ISME J 7: 1519-1530.
Šimek, K., Nedoma, J., Znachor, P., Kasalický, V., Jezbera, J., Hornňák, K., and Sed'a, J. (2014) A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr 59: 1477-1492.
Steinegger, M., and Söding, J. (2017) MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 35: 1026-1028.
Stoeck, T., Bass, D., Nebel, M., Christen, R., Jones, M.D.M., Breiner, H.W., and Richards, T.A. (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19: 21-31.
Tashyreva, D., Prokopchuk, G., Votýpka, J., Yabuki, A., Horák, A., and Lukeš, J. (2018) Life cycle, ultrastructure, and phylogeny of new diplonemids and their endosymbiotic bacteria. MBio 9: 1-20.
Yabuki, A., and Tame, A. (2015) Phylogeny and reclassification of Hemistasia phaeocysticola (Scherffel) Elbrächter & Schnepf, 1996. J Eukaryot Microbiol 62: 426-429.
Global freshwater distribution of Telonemia protists
Ubiquitous genome streamlined Acidobacteriota in freshwater environments
Massive Accumulation of Strontium and Barium in Diplonemid Protists
High-resolution metagenomic reconstruction of the freshwater spring bloom
Cryptic and ubiquitous aplastidic cryptophytes are key freshwater flagellated bacterivores
Ecogenomics sheds light on diverse lifestyle strategies in freshwater CPR
Trophic flexibility of marine diplonemids - switching from osmotrophy to bacterivory
Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum
CARD-FISH in the Sequencing Era: Opening a New Universe of Protistan Ecology
Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses
figshare
10.6084/m9.figshare.12091749.v1