Intragenomic diversity of the V9 hypervariable domain in eukaryotes has little effect on metabarcoding
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37554448
PubMed Central
PMC10404988
DOI
10.1016/j.isci.2023.107291
PII: S2589-0042(23)01368-8
Knihovny.cz E-zdroje
- Klíčová slova
- Computational bioinformatics, Genetics, Genomics,
- Publikační typ
- časopisecké články MeSH
Metabarcoding revolutionized our understanding of diversity and ecology of microorganisms in different habitats. However, it is also associated with several inherent biases, one of which is associated with intragenomic diversity of a molecular barcode. Here, we compare intragenomic variability of the V9 region of the 18S rRNA gene in 19 eukaryotic phyla abundant in marine plankton. The level of intragenomic variability is comparable across all the phyla, and in most genomes and transcriptomes one V9 sequence and one OTU is predominant. However, most of the variability observed at the barcode level is probably caused by sequencing errors and is mitigated by using a denoising tool, DADA2. The SWARM algorithm commonly used in metabarcoding studies is not optimal for collapsing genuine and erroneous sequences into a single OTU, leading to an overestimation of diversity in metabarcoding data. For an unknown reason, SWARM inflates diversity of eupelagonemids more than that of other eukaryotes.
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Keeling P.J., Campo J.D. Marine protists are not just big bacteria. Curr. Biol. 2017;27:R541–R549. doi: 10.1016/j.cub.2017.03.075. PubMed DOI
Caron D.A., Hu S.K. Are we overestimating protistan diversity in nature? Trends Microbiol. 2019;27:197–205. doi: 10.1016/j.tim.2018.10.009. PubMed DOI
Taberlet P., Coissac E., Pompanon F., Brochmann C., Willerslev E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 2012;21:2045–2050. doi: 10.1111/J.1365-294X.2012.05470.X. PubMed DOI
Santoferrara L.F. Current practice in plankton metabarcoding: Optimization and error management. J. Plankton Res. 2019;41:571–582. doi: 10.1093/plankt/fbz041. DOI
Santoferrara L., Burki F., Filker S., Logares R., Dunthorn M., McManus G.B. Perspectives from ten years of protist studies by high-throughput metabarcoding. J. Eukaryot. Microbiol. 2020;67:612–622. doi: 10.1111/jeu.12813. PubMed DOI
Decelle J., Romac S., Sasaki E., Not F., Mahé F. Intracellular diversity of the V4 and V9 regions of the 18S rRNA in marine protists (radiolarians) assessed by high-throughput sequencing. PLoS One. 2014;9:e104297. doi: 10.1371/journal.pone.0104297. PubMed DOI PMC
Sandin M.M., Romac S., Not F. Intra-genomic rRNA gene variability of Nassellaria and Spumellaria (Rhizaria, Radiolaria) assessed by Sanger, MinION and Illumina sequencing. Environ. Microbiol. 2022;24:2979–2993. doi: 10.1111/1462-2920.16081. PubMed DOI PMC
Gong J., Dong J., Liu X., Massana R. Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist. 2013;164:369–379. doi: 10.1016/j.protis.2012.11.006. PubMed DOI
Forster D., Lentendu G., Filker S., Dubois E., Wilding T.A., Stoeck T. Improving eDNA-based protist diversity assessments using networks of amplicon sequence variants. Environ. Microbiol. 2019;21:4109–4124. doi: 10.1111/1462-2920.14764. PubMed DOI
Mukherjee I., Salcher M.M., Andrei A.Ş., Kavagutti V.S., Shabarova T., Grujčić V., Haber M., Layoun P., Hodoki Y., Nakano S.I., et al. A freshwater radiation of diplonemids. Environ. Microbiol. 2020;22:4658–4668. doi: 10.1111/1462-2920.15209. PubMed DOI
Flegontova O., Flegontov P., Londoño P.A.C., Walczowski W., Šantić D., Edgcomb V.P., Lukeš J., Horák A. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ. Microbiol. 2020;22:4014–4031. doi: 10.1111/1462-2920.15190. PubMed DOI
de Vargas C., Audic S., Henry N., Decelle J., Mahé F., Logares R., Lara E., Berney Ć., Le Bescot N., Probert I., et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605. doi: 10.1126/SCIENCE.1261605. PubMed DOI
Ibarbalz F.M., Henry N., Brandão M.C., Martini S., Busseni G., Byrne H., Coelho L.P., Endo H., Gasol J.M., Gregory A.C., et al. Global trends in marine plankton diversity across kingdoms of life. Cell. 2019;179:1084–1097.e21. doi: 10.1016/j.cell.2019.10.008. PubMed DOI PMC
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Antich A., Palacin C., Wangensteen O.S., Turon X. To denoise or to cluster, that is not the question: optimizing pipelines for COI metabarcoding and metaphylogeography. BMC Bioinf. 2021;22:177. doi: 10.1186/s12859-021-04115-6. PubMed DOI PMC
Brandt M.I., Trouche B., Quintric L., Günther B., Wincker P., Poulain J., Arnaud-Haond S. Bioinformatic pipelines combining denoising and clustering tools allow for more comprehensive prokaryotic and eukaryotic metabarcoding. Mol. Ecol. Resour. 2021;21:1904–1921. doi: 10.1111/1755-0998.13398. PubMed DOI
Frøslev T.G., Kjøller R., Bruun H.H., Ejrnæs R., Brunbjerg A.K., Pietroni C., Hansen A.J. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 2017;8:1188. doi: 10.1038/s41467-017-01312-x. PubMed DOI PMC
Özkurt E., Fritscher J., Soranzo N., Ng D.Y.K., Davey R.P., Bahram M., Hildebrand F. Lotus2: an ultrafast and highly accurate tool for amplicon sequencing analysis. Microbiome. 2022;10:176. doi: 10.1186/s40168-022-01365-1. PubMed DOI PMC
Eshghi Sahraei S., Furneaux B., Kluting K., Zakieh M., Rydin H., Hytteborn H., Rosling A. Effects of operational taxonomic unit inference methods on soil microeukaryote community analysis using long-read metabarcoding. Ecol. Evol. 2022;12:e8676. doi: 10.1002/ece3.8676. PubMed DOI PMC
Guillou L., Bachar D., Audic S., Bass D., Berney C., Bittner L., Boutte C., Burgaud G., de Vargas C., Decelle J., et al. The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote small subunit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–D604. doi: 10.1093/nar/gks1160. PubMed DOI PMC
Mahé F., Rognes T., Quince C., de Vargas C., Dunthorn M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ. 2015;3:e1420. doi: 10.7717/peerj.1420. PubMed DOI PMC
Gawryluk R.M.R., del Campo J., Okamoto N., Strassert J.F.H., Lukeš J., Richards T.A., Worden A.Z., Santoro A.E., Keeling P.J. Morphological identification and single-cell genomics of marine diplonemids. Curr. Biol. 2016;26:3053–3059. doi: 10.1016/J.CUB.2016.09.013. PubMed DOI
Flegontova O., Flegontov P., Malviya S., Audic S., Wincker P., de Vargas C., Bowler C., Lukeš J., Horák A. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 2016;26:3060–3065. doi: 10.1016/j.cub.2016.09.031. PubMed DOI
Gong W., Marchetti A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front. Mar. Sci. 2019;6:219. doi: 10.3389/fmars.2019.00219. DOI
Bálint M., Bahram M., Eren A.M., Faust K., Fuhrman J.A., Lindahl B., O’Hara R.B., Öpik M., Sogin M.L., Unterseher M., Tedersoo L. Millions of reads, thousands of taxa: Microbial community structure and associations analyzed via marker genesa. FEMS Microbiol. Rev. 2016;40:686–700. doi: 10.1093/femsre/fuw017. PubMed DOI
Sogin M.L., Morrison H.G., Huber J.A., Mark Welch D., Huse S.M., Neal P.R., Arrieta J.M., Herndl G.J. Microbial diversity in the deep sea and the underexplored “rare biosphere. Proc. Natl. Acad. Sci. USA. 2006;103:12115–12120. doi: 10.1073/pnas.0605127103. PubMed DOI PMC
Caron D.A., Countway P.D. Hypotheses on the role of the protistan rare biosphere in a changing world. Aquat. Microb. Ecol. 2009;57:227–238. doi: 10.3354/ame01352. DOI
Logares R., Audic S., Bass D., Bittner L., Boutte C., Christen R., Claverie J.M., Decelle J., Dolan J.R., Dunthorn M., et al. Patterns of rare and abundant marine microbial eukaryotes. Curr. Biol. 2014;24:813–821. doi: 10.1016/j.cub.2014.02.050. PubMed DOI
Kunin V., Engelbrektson A., Ochman H., Hugenholtz P. Wrinkles in the rare biosphere: Pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol. 2010;12:118–123. doi: 10.1111/j.1462-2920.2009.02051.x. PubMed DOI
Quince C., Lanzen A., Davenport R.J., Turnbaugh P.J. Removing noise from pyrosequenced amplicons. BMC Bioinf. 2011;12:38. doi: 10.1186/1471-2105-12-38. PubMed DOI PMC
Dunthorn M., Klier J., Bunge J., Stoeck T. Comparing the hyper-variable V4 and V9 regions of the small subunit rDNA for assessment of ciliate environmental diversity. J. Eukaryot. Microbiol. 2012;59:185–187. doi: 10.1111/j.1550-7408.2011.00602.x. PubMed DOI
Hu S.K., Liu Z., Lie A.A.Y., Countway P.D., Kim D.Y., Jones A.C., Gast R.J., Cary S.C., Sherr E.B., Sherr B.F., Caron D.A. Estimating protistan diversity using high-throughput sequencing. J. Eukaryot. Microbiol. 2015;62:688–693. doi: 10.1111/jeu.12217. PubMed DOI
Stoeck T., Bass D., Nebel M., Christen R., Jones M.D.M., Breiner H.-W., Richards T.A. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 2010;19:21–31. doi: 10.1111/j.1365-294X.2009.04480.x. PubMed DOI
Tragin M., Zingone A., Vaulot D. Comparison of coastal phytoplankton composition estimated from the V4 and V9 regions of the 18S rRNA gene with a focus on photosynthetic groups and especially Chlorophyta. Environ. Microbiol. 2018;20:506–520. doi: 10.1111/1462-2920.13952. PubMed DOI
Choi J., Park J.S. Comparative analyses of the V4 and V9 regions of 18S rDNA for the extant eukaryotic community using the Illumina platform. Sci. Rep. 2020;10:6519–6611. doi: 10.1038/s41598-020-63561-z. PubMed DOI PMC
Piredda R., Tomasino M.P., D’Erchia A.M., Manzari C., Pesole G., Montresor M., Kooistra W.H.C.F., Sarno D., Zingone A. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean long term ecological research site. FEMS Microbiol. Ecol. 2017;93:fiw200. doi: 10.1093/femsec/fiw200. PubMed DOI
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/MOLBEV/MST010. PubMed DOI PMC
Amaral-Zettler L.A., McCliment E.A., Ducklow H.W., Huse S.M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA Genes. PLoS One. 2009;4:e6372. doi: 10.1371/JOURNAL.PONE.0006372. PubMed DOI PMC
Bushnell B., Rood J., Singer E. BBMerge – Accurate paired shotgun read merging via overlap. PLoS One. 2017;12:e0185056. doi: 10.1371/journal.pone.0185056. PubMed DOI PMC
Rognes T., Flouri T., Nichols B., Quince C., Mahé F. VSEARCH: A versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. doi: 10.7717/peerj.2584. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. j. 2011;17:10–12. doi: 10.14806/EJ.17.1.200. DOI