Getting Closer to Absolute Molar Masses of Technical Lignins
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
29989331
PubMed Central
PMC6175078
DOI
10.1002/cssc.201801177
Knihovny.cz E-resources
- Keywords
- infrared laser, kraft lignin, lignosulfonate, multi-angle light scattering, size exclusion chromatography,
- Publication type
- Journal Article MeSH
Determination of molecular weight parameters of native and, in particular, technical lignins are based on size exclusion chromatography (SEC) approaches. However, no matter which approach is used, either conventional SEC with a refractive index detector and calibration with standards or multi-angle light scattering (MALS) detection at 488 nm, 633 nm, 658 nm, or 690 nm, all variants can be severely erroneous. The lack of calibration standards with high structural similarity to lignin impairs the quality of the molar masses determined by conventional SEC, and the typical fluorescence of (technical) lignins renders the corresponding MALS data rather questionable. Application of MALS detection at 785 nm by using an infrared laser largely overcomes those problems and allows for a reliable and reproducible determination of the molar mass distributions of all types of lignins, which has been demonstrated in this study for various and structurally different analytes, such as kraft lignins, milled-wood lignin, lignosulfonates, and biorefinery lignins. The topics of calibration, lignin fluorescence, and lignin UV absorption in connection with MALS detection are critically discussed in detail, and a reliable protocol is presented. Correction factors based on MALS measurements have been determined for commercially available calibration standards, such as pullulan and polystyrene sulfonate, so that now more reliable mass data can be obtained also if no MALS system is available and these conventional calibration standards have to be resorted to.
Department of Chemistry University of Helsinki A 1 Virtasen Aukio 1 00014 Helsinki Finland
Wyatt Technology Europe GmbH Hochstrasse 12a 56307 Dernbach Germany
See more in PubMed
Rinaldi R., Jastrzebski R., Clough M. T., Ralph J., Kennema M., Bruijnincx P. C. A., Weckhuysen B. M., Angew. Chem. Int. Ed. 2016, 55, 8164–8215; PubMed PMC
Angew. Chem. 2016, 128, 8296–8354.
Freudenberg K., Nature 1959, 183, 1152–1155. PubMed
Glasser W. G., Glasser H. R., Macromolecules 1974, 7, 17–27.
Nimz H., Angew. Chem. Int. Ed. Engl. 1974, 13, 313–321;
Angew. Chem. 1974, 86, 336–344.
Adler E., Wood Sci. Technol. 1977, 11, 169–218.
Sakakibara A., Wood Sci. Technol. 1980, 14, 89–100.
Ralph J., Lundquist K., Brunow G., Lu F., Kim H., Schatz P. F., Marita J. M., Hatfield R. D., Ralph S. A., Christensen J. H., Boerjan W., Phytochem. Rev. 2004, 3, 29–60.
Crestini C., Melone F., Sette M., Saladino R., Biomacromolecules 2011, 12, 3928–3935. PubMed
Obiaga T. I., Wayman M., J. Appl. Polym. Sci. 1974, 18, 1943–1952.
Harding S. E., Adams G. G., Almutairi F., Alzahrani Q., Erten T., Kök M. S., Gillis R. B. Methods in Enzymology, 2015, 562, 391–439. PubMed
Vainio U., Maximova N., Hortling B., Laine J., Stenius P., Simola L. K., Gravitis J., Serimaa R., Langmuir 2004, 20, 9736–9744. PubMed
Salentinig S., Schubert M., Biomacromolecules 2017, 18, 2649–2653. PubMed
Gidh A. V., Decker S. R., Vinzant T. B., Himmel M. E., Williford C., J. Chromatogr. A 2006, 1114, 102–110. PubMed
Jacobs A., Dahlman O., Nord. Pulp Pap. Res. J. 2000, 15, 120–127.
Rönnols J., Jacobs A., Aldaeus F., Holzforschung 2017, 71, 563–570.
Mattinen M.-L., Suortti T., Gosselink R., Argyropoulos D. S., Evtuguin D., Suurnäkki A., de Jong E., Tamminen T., BioResources 2008, 3, 549–565.
Richel A., Vanderghem C., Simon M., Wathelet B., Paquot M., Anal. Chem. Insights 2012, 7, 79–89. PubMed PMC
Evtuguin D. V., Domingues P., Amado F. L., Neto C. P., Correia A. J. F., Holzforschung 1999, 53, 525–528.
Banoub J. H., Benjelloun-Mlayah B., Ziarelli F., Joly N., Delmas M., Rapid Commun. Mass Spectrom. 2007, 21, 2867–2888. PubMed
Gellerstedt G. in Methods in Lignin Chemistry (Eds.: S. Y. Lin, C. W. Dence) Springer, Berlin, 1992, pp. 487–497.
Sulaeva I., Zinovyev G., Plankeele J.-M., Sumerskii I., Rosenau T., Potthast A., ChemSusChem 2017, 10, 629–635. PubMed
Ringena O., Lebioda S., Lehnen R., Saake B., J. Chromatogr. A 2006, 1102, 154–163. PubMed
Harton S. E., Pingali S. V., Nunnery G. A., Baker D. A., Walker S. H., Muddiman D. C., Koga T., Rials T. G., Urban V. S., Langan P., ACS Macro Lett. 2012, 1, 568–573. PubMed
Glasser W. G., Davé V., Frazier C. E., J. Wood Chem. Technol. 1993, 13, 545–559.
Dong D., Fricke A. L., Polymer 1995, 36, 2075–2078.
Qushmua E. A., Gary G. A., Richard B. G., Tabot M. D. B., Kök M. S., Fong E., Richard A. H., van Dam Jan E. G., Gosselink R. J. A., Arthur J. R., Harding S. E., Holzforschung 2016, 70, 117–125.
Merkle G., Auerbach S., Burchard W., Lindner A., Wegener G., J. Appl. Polym. Sci. 1992, 45, 407–415.
Mikame K., Funaoka M., Polym. J. 2006, 38, 592–596.
Demesa A. G., Laari A., Turunen I., Sillanpää M., Chem. Eng. Technol. 2015, 38, 2270–2278.
Kouisni L., Paleologou M., Gagné A., Landry E., Romeh A. A., Alassuity A. S., Al-Hakim A. in Proceedings the 6th Nordic Wood Biorefinery Conference (Ed.: E. Hytönen), VTT Technical Research Centre of Finland Ltd, Helsinki, 2015, pp. 289–294.
Falkehag S. I., Marton J., Adler E., Adv. Chem. Ser. 1966, 59, 75–89.
Fredheim G. E., Braaten S. M., Christensen B. E., J. Chromatogr. A 2002, 942, 191–199. PubMed
Braaten S. M., Christensen B. E., Fredheim G. E., J. Wood Chem. Technol. 2003, 23, 197–215.
Contreras S., Gaspar A. R., Guerra A., Lucia L. A., Argyropoulos D. S., Biomacromolecules 2008, 9, 3362–3369. PubMed
Qian Y., Deng Y., Guo Y., Yi C., Qiu X., Holzforschung 2013, 67, 265–271.
Asikkala J., Tamminen T., Argyropoulos D. S., J. Agric. Food Chem. 2012, 60, 8968–8973. PubMed
Dong D., Fricke A. L., J. Appl. Polym. Sci. 1993, 50, 1131–1140.
Larsen K. L., Barsberg S., J. Phys. Chem. B 2010, 114, 8009–8021. PubMed
Carlfors J., Rymdén R., Eur. Polym. J. 1982, 18, 933–937.
Coto B., Escola J. M., Suárez I., Caballero M. J., Polym. Test. 2007, 26, 568–575.
Huglin M. B., O'Donohue S. J., Radwan M. A., Eur. Polym. J. 1989, 25, 543–547.
Zhao H., Brown P. H., Schuck P., Biophys. J. 2011, 100, 2309–2317. PubMed PMC
Perlmann G. E., Longsworth L. G., J. Am. Chem. Soc. 1948, 70, 2719–2724. PubMed
Striegel A. M., Chromatographia 2017, 80, 989–996. PubMed PMC
Podzimek S. in Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation, Wiley, Hoboken, 2011, pp. 37–98.
Berkowitz S. A., J. Liq. Chromatogr. 1983, 6, 1359–1373.
Brüssau R., Goetz N., Mächtle W., Stölting J., Tenside Surfactants Deterg. 1991, 28, 396–496.
“Synthetic Polymers”: Mori S., Barth H. G. in Size Exclusion Chromatography (Eds.: S. Mori, H. G. Barth), Springer, Berlin, 1999; pp. 131–153.
Singh R., Hu J., Regner M. R., Round J. W., Ralph J., Saddler J. N., Eltis L. D., Sci. Rep. 2017, 7, 42121. PubMed PMC
Berggren R., Berthold F., Sjöholm E., Lindström M., J. Appl. Polym. Sci. 2003, 88, 1170–1179.
Oberlerchner J. T., Vejdovszky P., Zweckmair T., Kindler A., Koch S., Rosenau T., Potthast A., J. Chromatogr. A 2016, 1471, 87–93. PubMed
Lange H., Rulli F., Crestini C., ACS Sustainable Chem. Eng. 2016, 4, 5167–5180.
Bjorkman A., Sven. Papperstidn. 1965, 59, 477–485.
Balakshin M., Capanema E., Gracz H., Chang H. M., Jameel H., Planta 2011, 233, 1097–1110. PubMed
Cathala B., Saake B., Faix O., Monties B., J. Chromatogr. A 2003, 1020, 229–239. PubMed
Kilpeläinen I., Tervilä-Wilo A., Peräkylä H., Matikainen J., Brunow G., Holzforschung 1994, 48, 381–386.
Sumerskii I., Korntner P., Zinovyev G., Rosenau T., Potthast A., RSC Adv. 2015, 5, 92732–92742.