• This record comes from PubMed

Getting Closer to Absolute Molar Masses of Technical Lignins

. 2018 Sep 21 ; 11 (18) : 3259-3268. [epub] 20180821

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article

Determination of molecular weight parameters of native and, in particular, technical lignins are based on size exclusion chromatography (SEC) approaches. However, no matter which approach is used, either conventional SEC with a refractive index detector and calibration with standards or multi-angle light scattering (MALS) detection at 488 nm, 633 nm, 658 nm, or 690 nm, all variants can be severely erroneous. The lack of calibration standards with high structural similarity to lignin impairs the quality of the molar masses determined by conventional SEC, and the typical fluorescence of (technical) lignins renders the corresponding MALS data rather questionable. Application of MALS detection at 785 nm by using an infrared laser largely overcomes those problems and allows for a reliable and reproducible determination of the molar mass distributions of all types of lignins, which has been demonstrated in this study for various and structurally different analytes, such as kraft lignins, milled-wood lignin, lignosulfonates, and biorefinery lignins. The topics of calibration, lignin fluorescence, and lignin UV absorption in connection with MALS detection are critically discussed in detail, and a reliable protocol is presented. Correction factors based on MALS measurements have been determined for commercially available calibration standards, such as pullulan and polystyrene sulfonate, so that now more reliable mass data can be obtained also if no MALS system is available and these conventional calibration standards have to be resorted to.

See more in PubMed

Rinaldi R., Jastrzebski R., Clough M. T., Ralph J., Kennema M., Bruijnincx P. C. A., Weckhuysen B. M., Angew. Chem. Int. Ed. 2016, 55, 8164–8215; PubMed PMC

Angew. Chem. 2016, 128, 8296–8354.

Freudenberg K., Nature 1959, 183, 1152–1155. PubMed

Glasser W. G., Glasser H. R., Macromolecules 1974, 7, 17–27.

Nimz H., Angew. Chem. Int. Ed. Engl. 1974, 13, 313–321;

Angew. Chem. 1974, 86, 336–344.

Adler E., Wood Sci. Technol. 1977, 11, 169–218.

Sakakibara A., Wood Sci. Technol. 1980, 14, 89–100.

Ralph J., Lundquist K., Brunow G., Lu F., Kim H., Schatz P. F., Marita J. M., Hatfield R. D., Ralph S. A., Christensen J. H., Boerjan W., Phytochem. Rev. 2004, 3, 29–60.

Crestini C., Melone F., Sette M., Saladino R., Biomacromolecules 2011, 12, 3928–3935. PubMed

Obiaga T. I., Wayman M., J. Appl. Polym. Sci. 1974, 18, 1943–1952.

Harding S. E., Adams G. G., Almutairi F., Alzahrani Q., Erten T., Kök M. S., Gillis R. B. Methods in Enzymology, 2015, 562, 391–439. PubMed

Vainio U., Maximova N., Hortling B., Laine J., Stenius P., Simola L. K., Gravitis J., Serimaa R., Langmuir 2004, 20, 9736–9744. PubMed

Salentinig S., Schubert M., Biomacromolecules 2017, 18, 2649–2653. PubMed

Gidh A. V., Decker S. R., Vinzant T. B., Himmel M. E., Williford C., J. Chromatogr. A 2006, 1114, 102–110. PubMed

Jacobs A., Dahlman O., Nord. Pulp Pap. Res. J. 2000, 15, 120–127.

Rönnols J., Jacobs A., Aldaeus F., Holzforschung 2017, 71, 563–570.

Mattinen M.-L., Suortti T., Gosselink R., Argyropoulos D. S., Evtuguin D., Suurnäkki A., de Jong E., Tamminen T., BioResources 2008, 3, 549–565.

Richel A., Vanderghem C., Simon M., Wathelet B., Paquot M., Anal. Chem. Insights 2012, 7, 79–89. PubMed PMC

Evtuguin D. V., Domingues P., Amado F. L., Neto C. P., Correia A. J. F., Holzforschung 1999, 53, 525–528.

Banoub J. H., Benjelloun-Mlayah B., Ziarelli F., Joly N., Delmas M., Rapid Commun. Mass Spectrom. 2007, 21, 2867–2888. PubMed

Gellerstedt G. in Methods in Lignin Chemistry (Eds.: S. Y. Lin, C. W. Dence) Springer, Berlin, 1992, pp. 487–497.

Sulaeva I., Zinovyev G., Plankeele J.-M., Sumerskii I., Rosenau T., Potthast A., ChemSusChem 2017, 10, 629–635. PubMed

Ringena O., Lebioda S., Lehnen R., Saake B., J. Chromatogr. A 2006, 1102, 154–163. PubMed

Harton S. E., Pingali S. V., Nunnery G. A., Baker D. A., Walker S. H., Muddiman D. C., Koga T., Rials T. G., Urban V. S., Langan P., ACS Macro Lett. 2012, 1, 568–573. PubMed

Glasser W. G., Davé V., Frazier C. E., J. Wood Chem. Technol. 1993, 13, 545–559.

Dong D., Fricke A. L., Polymer 1995, 36, 2075–2078.

Qushmua E. A., Gary G. A., Richard B. G., Tabot M. D. B., Kök M. S., Fong E., Richard A. H., van Dam Jan E. G., Gosselink R. J. A., Arthur J. R., Harding S. E., Holzforschung 2016, 70, 117–125.

Merkle G., Auerbach S., Burchard W., Lindner A., Wegener G., J. Appl. Polym. Sci. 1992, 45, 407–415.

Mikame K., Funaoka M., Polym. J. 2006, 38, 592–596.

Demesa A. G., Laari A., Turunen I., Sillanpää M., Chem. Eng. Technol. 2015, 38, 2270–2278.

Kouisni L., Paleologou M., Gagné A., Landry E., Romeh A. A., Alassuity A. S., Al-Hakim A. in Proceedings the 6th Nordic Wood Biorefinery Conference (Ed.: E. Hytönen), VTT Technical Research Centre of Finland Ltd, Helsinki, 2015, pp. 289–294.

Falkehag S. I., Marton J., Adler E., Adv. Chem. Ser. 1966, 59, 75–89.

Fredheim G. E., Braaten S. M., Christensen B. E., J. Chromatogr. A 2002, 942, 191–199. PubMed

Braaten S. M., Christensen B. E., Fredheim G. E., J. Wood Chem. Technol. 2003, 23, 197–215.

Contreras S., Gaspar A. R., Guerra A., Lucia L. A., Argyropoulos D. S., Biomacromolecules 2008, 9, 3362–3369. PubMed

Qian Y., Deng Y., Guo Y., Yi C., Qiu X., Holzforschung 2013, 67, 265–271.

Asikkala J., Tamminen T., Argyropoulos D. S., J. Agric. Food Chem. 2012, 60, 8968–8973. PubMed

Dong D., Fricke A. L., J. Appl. Polym. Sci. 1993, 50, 1131–1140.

Larsen K. L., Barsberg S., J. Phys. Chem. B 2010, 114, 8009–8021. PubMed

Carlfors J., Rymdén R., Eur. Polym. J. 1982, 18, 933–937.

Coto B., Escola J. M., Suárez I., Caballero M. J., Polym. Test. 2007, 26, 568–575.

Huglin M. B., O'Donohue S. J., Radwan M. A., Eur. Polym. J. 1989, 25, 543–547.

Zhao H., Brown P. H., Schuck P., Biophys. J. 2011, 100, 2309–2317. PubMed PMC

Perlmann G. E., Longsworth L. G., J. Am. Chem. Soc. 1948, 70, 2719–2724. PubMed

Striegel A. M., Chromatographia 2017, 80, 989–996. PubMed PMC

Podzimek S. in Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation, Wiley, Hoboken, 2011, pp. 37–98.

Berkowitz S. A., J. Liq. Chromatogr. 1983, 6, 1359–1373.

Brüssau R., Goetz N., Mächtle W., Stölting J., Tenside Surfactants Deterg. 1991, 28, 396–496.

“Synthetic Polymers”: Mori S., Barth H. G. in Size Exclusion Chromatography (Eds.: S. Mori, H. G. Barth), Springer, Berlin, 1999; pp. 131–153.

Singh R., Hu J., Regner M. R., Round J. W., Ralph J., Saddler J. N., Eltis L. D., Sci. Rep. 2017, 7, 42121. PubMed PMC

Berggren R., Berthold F., Sjöholm E., Lindström M., J. Appl. Polym. Sci. 2003, 88, 1170–1179.

Oberlerchner J. T., Vejdovszky P., Zweckmair T., Kindler A., Koch S., Rosenau T., Potthast A., J. Chromatogr. A 2016, 1471, 87–93. PubMed

Lange H., Rulli F., Crestini C., ACS Sustainable Chem. Eng. 2016, 4, 5167–5180.

Bjorkman A., Sven. Papperstidn. 1965, 59, 477–485.

Balakshin M., Capanema E., Gracz H., Chang H. M., Jameel H., Planta 2011, 233, 1097–1110. PubMed

Cathala B., Saake B., Faix O., Monties B., J. Chromatogr. A 2003, 1020, 229–239. PubMed

Kilpeläinen I., Tervilä-Wilo A., Peräkylä H., Matikainen J., Brunow G., Holzforschung 1994, 48, 381–386.

Sumerskii I., Korntner P., Zinovyev G., Rosenau T., Potthast A., RSC Adv. 2015, 5, 92732–92742.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...