Making the head: Caspases in life and death
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
36712975
PubMed Central
PMC9880857
DOI
10.3389/fcell.2022.1075751
PII: 1075751
Knihovny.cz E-zdroje
- Klíčová slova
- apoptotic, caspases, development, head, non-apoptotic,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The term apoptosis, as a way of programmed cell death, was coined a half century ago and since its discovery the process has been extensively investigated. The anatomy and physiology of the head are complex and thus apoptosis has mostly been followed in separate structures, tissues or cell types. This review aims to provide a comprehensive overview of recent knowledge concerning apoptosis-related molecules involved in the development of structures of head with a particular focus on caspases, cysteine proteases having a key position in apoptotic pathways. Since many classical apoptosis-related molecules, including caspases, are emerging in several non-apoptotic processes, these were also considered. The largest organ of the head region is the brain and its development has been extensively investigated, including the roles of apoptosis and related molecules. Neurogenesis research also includes sensory organs such as the eye and ear, efferent nervous system and associated muscles and glands. Caspases have been also associated with normal function of the skin and hair follicles. Regarding mineralised tissues within craniofacial morphogenesis, apoptosis in bones has been of interest along with palate fusion and tooth development. Finally, the role of apoptosis and caspases in angiogenesis, necessary for any tissue/organ development and maintenance/homeostasis, are discussed. Additionally, this review points to abnormalities of development resulting from improper expression/activation of apoptosis-related molecules.
Department of Physiology University of Veterinary Sciences Brno Czechia
Faculty of Medicine Masaryk University Brno Czechia
Institute of Animal Physiology and Genetics Czech Academy of Sciences Brno Czechia
Zobrazit více v PubMed
Abdul-Ghani M., Dufort D., Stiles R., De Repentigny Y., Kothary R., Megeney L. A. (2011). Wnt11 promotes cardiomyocyte development by caspase-mediated suppression of canonical Wnt signals. Mol. Cell. Biol. 31, 163–178. 10.1128/MCB.01539-09 PubMed DOI PMC
Agnew A., Nulty C., Creagh E. M. (2021). Regulation, activation and function of caspase-11 during health and disease. Int. J. Mol. Sci. 22, 1506–1520. 10.3390/IJMS22041506 PubMed DOI PMC
Akagawa H., Hara Y., Togane Y., Iwabuchi K., Hiraoka T., Tsujimura H. (2015). The role of the effector caspases drICE and dcp-1 for cell death and corpse clearance in the developing optic lobe in Drosophila. Dev. Biol. 404, 61–75. 10.1016/j.ydbio.2015.05.013 PubMed DOI
Alibardi L., Tschachler E., Eckhart L. (2005). Distribution of caspase-14 in epidermis and hair follicles is evolutionarily conserved among mammals. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 286, 962–973. 10.1002/ar.a.20234 PubMed DOI
Ankawa R., Goldberger N., Yosefzon Y., Koren E., Yusupova M., Rosner D., et al. (2021). Apoptotic cells represent a dynamic stem cell niche governing proliferation and tissue regeneration. Dev. Cell 56, 1900–1916.e5. e5. 10.1016/J.DEVCEL.2021.06.008 PubMed DOI
Appleby D. W., Modak S. P. (1977). DNA degradation in terminally differentiating lens fiber cells from chick embryos. Proc. Natl. Acad. Sci. U. S. A. 74, 5579–5583. 10.1073/pnas.74.12.5579 PubMed DOI PMC
Aranha M. M., Solá S., Low W. C., Steer C. J., Rodrigues C. M. P. (2009). Caspases and p53 modulate FOXO3A/Id1 signaling during mouse neural stem cell differentiation. J. Cell. Biochem. 107, 748–758. 10.1002/jcb.22172 PubMed DOI
Asadi M., Taghizadeh S., Kaviani E., Vakili O., Taheri-Anganeh M., Tahamtan M., et al. (2022). Caspase-3: Structure, function, and biotechnological aspects. Biotechnol. Appl. Biochem. 69, 1633–1645. 10.1002/BAB.2233 PubMed DOI
Avrutsky M. I., Troy C. M. (2021). Caspase-9: A multimodal therapeutic target with diverse cellular expression in human disease. Front. Pharmacol. 12, 701301. 10.3389/FPHAR.2021.701301 PubMed DOI PMC
Bassnett S., Beebe D. C. (1992). Coincident loss of mitochondria and nuclei during lens fiber cell differentiation. Dev. Dyn. 194, 85–93. 10.1002/aja.1001940202 PubMed DOI
Bassnett S., Mataic D. (1997). Chromatin degradation in differentiating fiber cells of the eye lens. J. Cell Biol. 137, 37–49. 10.1083/jcb.137.1.37 PubMed DOI PMC
Basu S., Rajakaruna S., Menko A. S. (2012). Insulin-like growth factor receptor-1 and nuclear factor κB are crucial survival signals that regulate caspase-3-mediated lens epithelial cell differentiation initiation. J. Biol. Chem. 287, 8384–8397. 10.1074/jbc.M112.341586 PubMed DOI PMC
Beazley L. D., Perry V. H., Baker B., Darby J. E. (1987). An investigation into the role of ganglion cells in the regulation of division and death of other retinal cells. Brain Res. 430, 169–184. 10.1016/0165-3806(87)90151-9 PubMed DOI
Bergeron L., Perez G. I., Macdonald G., Shi L., Sun Y., Jurisicova A., et al. (1998). Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev. 12, 1304–1314. 10.1101/gad.12.9.1304 PubMed DOI PMC
Berthelet J., Dubrez L. (2013). Regulation of apoptosis by inhibitors of apoptosis (IAPs). Cells 2, 163–187. 10.3390/CELLS2010163 PubMed DOI PMC
Boonstra K., Bloemberg D., Quadrilatero J. (2018). Caspase-2 is required for skeletal muscle differentiation and myogenesis. Biochim. Biophys. acta. Mol. Cell Res. 1865, 95–104. 10.1016/j.bbamcr.2017.07.016 PubMed DOI
Brachmann C. B., Cagan R. L. (2003). Patterning the fly eye: The role of apoptosis. Trends Genet. 19, 91–96. 10.1016/S0168-9525(02)00041-0 PubMed DOI
Brown-Suedel A. N., Bouchier-Hayes L. (2020). Caspase-2 substrates: To apoptosis, cell cycle control, and beyond. Front. Cell Dev. Biol. 8, 610022. 10.3389/FCELL.2020.610022 PubMed DOI PMC
Campbell D. S., Okamoto H. (2013). Local caspase activation interacts with Slit-Robo signaling to restrict axonal arborization. J. Cell Biol. 203, 657–672. 10.1083/jcb.201303072 PubMed DOI PMC
Candé C., Cohen I., Daugas E., Ravagnan L., Larochette N., Zamzami N., et al. (2002). Apoptosis-inducing factor (AIF): A novel caspase-independent death effector released from mitochondria. Biochimie 84, 215–222. 10.1016/s0300-9084(02)01374-3 PubMed DOI
Carpio M. A., Michaud M., Zhou W., Fisher J. K., Walensky L. D., Katz S. G. (2015). BCL-2 family member BOK promotes apoptosis in response to endoplasmic reticulum stress. Proc. Natl. Acad. Sci. U. S. A. 112, 7201–7206. 10.1073/pnas.1421063112 PubMed DOI PMC
Cecconi F., Alvarez-Bolado G., Meyer B. I., Roth K. A., Gruss P. (1998). Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727–737. 10.1016/s0092-8674(00)81732-8 PubMed DOI
Cecconi F., Roth K. A., Dolgov O., Munarriz E., Anokhin K., Gruss P., et al. (2004). Apaf1-dependent programmed cell death is required for inner ear morphogenesis and growth. Development 131, 2125–2135. 10.1242/dev.01082 PubMed DOI
Chan S. L., Mattson M. P., Caspase and calpain substrates: Roles in synaptic plasticity and cell death, J. Neurosci. Res. 1999; 58(1):167–190. PubMed
Cohen G. M. (1997). Caspases: The executioners of apoptosis. Biochem. J. 326, 1–16. 10.1042/bj3260001 PubMed DOI PMC
Connolly P. F., Jäger R., Fearnhead H. O. (2014). New roles for old enzymes: Killer caspases as the engine of cell behavior changes. Front. Physiol. 5, 149. 10.3389/fphys.2014.00149 PubMed DOI PMC
Connolly P., Garcia-Carpio I., Villunger A. (2020). Cell-cycle cross talk with caspases and their substrates. Cold Spring Harb. Perspect. Biol. 12 (6), a036475. 10.1101/cshperspect.a036475 PubMed DOI PMC
Cotsarelis G. (2006). Gene expression profiling gets to the root of human hair follicle stem cells. J. Clin. Invest. 116, 19–22. 10.1172/JCI27490 PubMed DOI PMC
Cowan K. N., Leung W. C. Y., Mar C., Bhattacharjee R., Zhu Y., Rabinovitch M. (2005). Caspases from apoptotic myocytes degrade extracellular matrix: A novel remodeling paradigm. FASEB J. 19, 1848–1850. 10.1096/fj.05-3706fje PubMed DOI
Cuervo R., Valencia C., Chandraratna R. A. S., Covarrubias L. (2002). Programmed cell death is required for palate shelf fusion and is regulated by retinoic acid. Dev. Biol. 245, 145–156. 10.1006/dbio.2002.0620 PubMed DOI
Cusack C. L., Swahari V., Hampton Henley W., Michael Ramsey J., Deshmukh M. (2013). Distinct pathways mediate axon degeneration during apoptosis and axon-specific pruning. Nat. Commun. 4, 1876. 10.1038/ncomms2910 PubMed DOI PMC
Dadley-Moore D. (2004). Caspase-12: The long and the short of it. Nat. Rev. Immunol. 46 4, 402. 10.1038/nri1384 DOI
Dahm R. (1999). Lens fibre cell differentiation - a link with apoptosis? Ophthalmic Res. 31, 163–183. 10.1159/000055530 PubMed DOI
D’Amelio M., Sheng M., Cecconi F. (2012). Caspase-3 in the central nervous system: Beyond apoptosis. Trends Neurosci. 35, 700–709. 10.1016/j.tins.2012.06.004 PubMed DOI
D’Arcy M. S. (2019). Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 43, 582–592. 10.1002/cbin.11137 PubMed DOI
Dash P. K., Blum S., Moore A. N. (2000). Caspase activity plays an essential role in long-term memory. Neuroreport 11, 2811–2816. 10.1097/00001756-200008210-00040 PubMed DOI
DehkordiMahshid H., Tashakor A., O’Connell E., Fearnhead H. O. (2020). Apoptosome-dependent myotube formation involves activation of caspase-3 in differentiating myoblasts. Cell Death Dis. 11, 308. 10.1038/s41419-020-2502-4 PubMed DOI PMC
Denecker G., Hoste E., Gilbert B., Hochepied T., Ovaere P., Lippens S., et al. (2007). Caspase-14 protects against epidermal UVB photodamage and water loss. Nat. Cell Biol. 9, 666–674. 10.1038/ncb1597 PubMed DOI
Denecker G., Ovaere P., Vandenabeele P., Declercq W. (2008). Caspase-14 reveals its secrets. J. Cell Biol. 180, 451–458. 10.1083/JCB.200709098 PubMed DOI PMC
Dent E. W., Gupton S. L., Gertler F. B. (2011). The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb. Perspect. Biol. 3, a001800–a001839. 10.1101/cshperspect.a001800 PubMed DOI PMC
Dick S. A., Chang N. C., Dumont N. A., Bell R. A. V., Putinski C., Kawabe Y., et al. (2015). Caspase 3 cleavage of Pax7 inhibits self-renewal of satellite cells. Proc. Natl. Acad. Sci. U. S. A. 112, E5246–E5252. 10.1073/pnas.1512869112 PubMed DOI PMC
Du J., Wang X., Miereles C., Bailey J. L., Debigare R., Zheng B., et al. (2004). Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J. Clin. Invest. 113, 115–123. 10.1172/JCI18330 PubMed DOI PMC
Echeverry N., Bachmann D., Ke F., Strasser A., Simon H. U., Kaufmann T. (2013). Intracellular localization of the BCL-2 family member BOK and functional implications. Cell Death Differ. 20, 785–799. 10.1038/cdd.2013.10 PubMed DOI PMC
Elmore S. (2007). Apoptosis: A review of programmed cell death. Toxicol. Pathol. 35, 495–516. 10.1080/01926230701320337 PubMed DOI PMC
Eskandari E., Eaves C. J. (2022). Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J. Cell Biol. 221, e202201159. 10.1083/JCB.202201159 PubMed DOI PMC
Fabian D., Makarevich A. V., Chrenek P., Bukovská A., Koppel J., Bukovska A. (2007). Chronological appearance of spontaneous and induced apoptosis during preimplantation development of rabbit and mouse embryos. Theriogenology 68, 1271–1281. 10.1016/j.theriogenology.2007.08.025 PubMed DOI
Fava L. L., Schuler F., Sladky V., Haschka M. D., Soratroi C., Eiterer L., et al. (2017). The PIDDosome activates p53 in response to supernumerary centrosomes. Genes Dev. 31, 34–45. 10.1101/gad.289728.116 PubMed DOI PMC
Fernando P., Brunette S., Megeney L. A. (2005). Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J. 19, 1671–1673. 10.1096/FJ.04-2981FJE PubMed DOI
Fernando P., Kelly J. F., Balazsi K., Slack R. S., Megeney L. A. (2002). Caspase 3 activity is required for skeletal muscle differentiation. Proc. Natl. Acad. Sci. U. S. A. 99, 11025–11030. 10.1073/pnas.162172899 PubMed DOI PMC
Fischer U., Jänicke R. U., Schulze-Osthoff K. (2003). Many cuts to ruin: A comprehensive update of caspase substrates. Cell Death Differ. 10, 76–100. 10.1038/sj.cdd.4401160 PubMed DOI PMC
Fromm L., Overbeek P. A. (1997). Inhibition of cell death by lens-specific overexpression of bcl-2 in transgenic mice. Dev. Genet. 20, 276–287. 10.1002/(SICI)1520-6408 PubMed DOI
Fujita J., Crane A. M., Souza M. K., Dejosez M., Kyba M., Flavell R. A., et al. (2008). Caspase activity mediates the differentiation of embryonic stem cells. Cell Stem Cell 2, 595–601. 10.1016/J.STEM.2008.04.001 PubMed DOI PMC
Geelen J. A., Langman J. (1977). Closure of the neural tube in the cephalic region of the mouse embryo. Anat. Rec. 189, 625–640. 10.1002/ar.1091890407 PubMed DOI
Gemma C., Bachstetter A. D., Cole M. J., Fister M., Hudson C., Bickford P. C. (2007). Blockade of caspase-1 increases neurogenesis in the aged hippocampus. Eur. J. Neurosci. 26, 2795–2803. 10.1111/j.1460-9568.2007.05875.x PubMed DOI
Geueke A., Mantellato G., Kuester F., Schettina P., Nelles M., Seeger J. M., et al. (2021). The anti-apoptotic Bcl-2 protein regulates hair follicle stem cell function. EMBO Rep. 22, e52301. 10.15252/EMBR.202052301 PubMed DOI PMC
Grabow S., Kueh A. J., Ke F., Vanyai H. K., Sheikh B. N., Dengler M. A., et al. (2018). Subtle changes in the levels of BCL-2 proteins cause severe craniofacial abnormalities. Cell Rep. 24, 3285–3295. 10.1016/j.celrep.2018.08.048 PubMed DOI
Green D. R., Llambi F. (2015). Cell death signaling. Cold Spring Harb. Perspect. Biol. 7, a006080. 10.1101/cshperspect.a006080 PubMed DOI PMC
Greidinger E. L., Miller D. K., Yamin T. T., Casciola-Rosen L., Rosen A. (1996). Sequential activation of three distinct ICE-like activities in Fas-ligated Jurkat cells. FEBS Lett. 390, 299–303. 10.1016/0014-5793(96)00678-3 PubMed DOI
Gu Z., Serradj N., Ueno M., Liang M., Li J., Baccei M. L., et al. (2017). Skilled movements require non-apoptotic bax/bak pathway-mediated corticospinal circuit reorganization. Neuron 94, 626–641. e4. 10.1016/j.neuron.2017.04.019 PubMed DOI PMC
Guicciardi M. E., Miyoshi H., Bronk S. F., Gores G. J. (2001). Cathepsin B knockout mice are resistant to tumor necrosis factor-alpha-mediated hepatocyte apoptosis and liver injury: Implications for therapeutic applications. Am. J. Pathol. 159, 2045–2054. 10.1016/s0002-9440(10)63056-8 PubMed DOI PMC
Hakem R., Hakem A., Duncan G. S., Henderson J. T., Woo M., Soengas M. S., et al. (1998). Differential requirement for caspase 9 in apoptotic pathways in vivo . Cell 94, 339–352. 10.1016/s0092-8674(00)81477-4 PubMed DOI
Honarpour N., Du C., Richardson J. A., Hammer R. E., Wang X., Herz J. (2000). Adult Apaf-1-deficient mice exhibit male infertility. Dev. Biol. 218, 248–258. 10.1006/dbio.1999.9585 PubMed DOI
Hoste E., Kemperman P., Devos M., Denecker G., Kezic S., Yau N., et al. (2011). Caspase-14 is required for filaggrin degradation to natural moisturizing factors in the skin. J. Invest. Dermatol. 131, 2233–2241. 10.1038/jid.2011.153 PubMed DOI
Houde C., Banks K. G., Coulombe N., Rasper D., Grimm E., Roy S., et al. (2004). Caspase-7 expanded function and intrinsic expression level underlies strain-specific brain phenotype of caspase-3-null mice. J. Neurosci. 24, 9977–9984. 10.1523/JNEUROSCI.3356-04.2004 PubMed DOI PMC
Hu S., Snipas S. J., Vincenz C., Salvesen G., Dixit V. M. (1998). Caspase-14 is a novel developmentally regulated protease. J. Biol. Chem. 273, 29648–29653. 10.1074/jbc.273.45.29648 PubMed DOI
Huang X., Yokota T., Iwata J., Chai Y. (2011). Tgf-beta-mediated FasL-Fas-Caspase pathway is crucial during palatogenesis. J. Dent. Res. 90, 981–987. 10.1177/0022034511408613 PubMed DOI PMC
Huesmann G. R., Clayton D. F. (2006). Dynamic role of postsynaptic caspase-3 and BIRC4 in zebra finch song-response habituation. Neuron 52, 1061–1072. 10.1016/j.neuron.2006.10.033 PubMed DOI PMC
Hughes D. E., Boyce B. F. (1997). Apoptosis in bone physiology and disease. Mol. Pathol. 50, 132–137. 10.1136/mp.50.3.132 PubMed DOI PMC
Ichim G., Lopez J., Ahmed S. U., Muthalagu N., Giampazolias E., Delgado M. E., et al. (2015). Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 57, 860–872. 10.1016/j.molcel.2015.01.018 PubMed DOI PMC
Ishizaki Y., Jacobson M. D., Raff M. C. (1998). A role for caspases in lens fiber differentiation. J. Cell Biol. 140, 153–158. 10.1083/jcb.140.1.153 PubMed DOI PMC
Jin J.-Z., Ding J. (2006). Analysis of cell migration, transdifferentiation and apoptosis during mouse secondary palate fusion. Development 133, 3341–3347. 10.1242/dev.02520 PubMed DOI
Julien O., Wells J. A. (2017). Caspases and their substrates. Cell Death Differ. 24, 1380–1389. 10.1038/cdd.2017.44 PubMed DOI PMC
Jung A.-R., Kim T. W., Rhyu I. J., Kim H., Lee Y. D., Vinsant S., et al. (2008). Misplacement of purkinje cells during postnatal development in Bax knock-out mice: A novel role for programmed cell death in the nervous system? J. Neurosci. 28, 2941–2948. 10.1523/JNEUROSCI.3897-07.2008 PubMed DOI PMC
Kale J., Osterlund E. J., Andrews D. W. (2018). BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 25, 65–80. 10.1038/cdd.2017.186 PubMed DOI PMC
Kamada S., Kikkawa U., Tsujimoto Y., Hunter T. (2005). Nuclear translocation of caspase-3 is dependent on its proteolytic activation and recognition of a substrate-like protein(s). J. Biol. Chem. 280, 857–860. 10.1074/jbc.C400538200 PubMed DOI
Katow H., Kanaya T., Ogawa T., Egawa R., Yawo H. (2017). Regulation of axon arborization pattern in the developing chick ciliary ganglion: Possible involvement of caspase 3. Dev. Growth Differ. 59, 115–128. 10.1111/dgd.12346 PubMed DOI
Kayagaki N., Warming S., Lamkanfi M., Vande Walle L., Louie S., Dong J., et al. (2011). Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121. 10.1038/nature10558 PubMed DOI
Kesavardhana S., Malireddi R. K. S., Kanneganti T.-D. (2020). Caspases in cell death, inflammation, and pyroptosis. Annu. Rev. Immunol. 38, 567–595. 10.1146/annurev-immunol-073119-095439 PubMed DOI PMC
Kletzien H., Hare A. J., Leverson G., Connor N. P. (2018). Age-related effect of cell death on fiber morphology and number in tongue muscle. Muscle Nerve 57, E29–E37. 10.1002/mus.25671 PubMed DOI PMC
Kovalenko A., Kim J. C., Kang T. B., Rajput A., Bogdanov K., Dittrich-Breiholz O., et al. (2009). Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J. Exp. Med. 206, 2161–2177. 10.1084/JEM.20090616 PubMed DOI PMC
Kratochvilova A., Ramesova A., Vesela B., Svandova E., Lesot H., Gruber R., et al. (2021). Impact of FasL stimulation on sclerostin expression and osteogenic profile in IDG-SW3 osteocytes. Biol. (Basel) 10, 757. 10.3390/biology10080757 PubMed DOI PMC
Kratochvílová A., Veselá B., Ledvina V., Švandová E., Klepárník K., Dadáková K., et al. (2020). Osteogenic impact of pro-apoptotic caspase inhibitors in MC3T3-E1 cells. Sci. Rep. 10, 7489. 10.1038/s41598-020-64294-9 PubMed DOI PMC
Kuida K., Haydar T. F., Kuan C. Y., Gu Y., Taya C., Karasuyama H., et al. (1998). Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325–337. 10.1016/s0092-8674(00)81476-2 PubMed DOI
Kuida K., Lippke J. A., Ku G., Harding M. W., Livingston D. J., Su M. S. S., et al. (1995). Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267, 2000–2003. 10.1126/science.7535475 PubMed DOI
Kuida K., Zheng T. S., Na S., Kuan C.-Y., Yang D., Karasuyama H., et al. (1996). Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372. 10.1038/384368a0 PubMed DOI
Kumar S. (2007). Caspase function in programmed cell death. Cell Death Differ. 14, 32–43. 10.1038/sj.cdd.4402060 PubMed DOI
Laguna A., Aranda S., Barallobre M. J., Barhoum R., Fernández E., Fotaki V., et al. (2008). The protein kinase DYRK1A regulates caspase-9-mediated apoptosis during retina development. Dev. Cell 15, 841–853. 10.1016/j.devcel.2008.10.014 PubMed DOI
Lakhani S. A., Masud A., Kuida K., Porter G. A., Booth C. J., Mehal W. Z., et al. (2006). Caspases 3 and 7: Key mediators of mitochondrial events of apoptosis. Science 311, 847–851. 10.1126/science.1115035 PubMed DOI PMC
Lamkanfi M., Declercq W., Kalai M., Saelens X., Vandenabeele P. (2002). Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ. 9, 358–361. 10.1038/sj.cdd.4400989 PubMed DOI
Lamkanfi M., Festjens N., Declercq W., Vanden Berghe T., Vandenabeele P. (2007). Caspases in cell survival, proliferation and differentiation. Cell Death Differ. 14, 44–55. 10.1038/sj.cdd.4402047 PubMed DOI
Lamkanfi M., Kalai M., Vandenabeele P. (2004). Caspase-12: An overview. Cell Death Differ. 11, 365–368. 10.1038/sj.cdd.4401364 PubMed DOI
Lamkanfi M., Kanneganti T. D. (2010). Caspase-7: A protease involved in apoptosis and inflammation. Int. J. Biochem. Cell Biol. 42, 21–24. 10.1016/J.BIOCEL.2009.09.013 PubMed DOI PMC
Lee D.-J., Du F., Chen S.-W., Nakasaki M., Rana I., Shih V. F. S., et al. (2015). Regulation and function of the caspase-1 in an inflammatory microenvironment. J. Invest. Dermatol. 135, 2012–2020. 10.1038/jid.2015.119 PubMed DOI PMC
Leonard J. R., Klocke B. J., D’Sa C., Flavell R. A., Roth K. A. (2002). Strain-dependent neurodevelopmental abnormalities in caspase-3-deficient mice. J. Neuropathol. Exp. Neurol. 61, 673–677. 10.1093/jnen/61.8.673 PubMed DOI
Li P., Allen H., Banerjee S., Franklin S., Herzog L., Johnston C., et al. (1995). Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80, 401–411. 10.1016/0092-8674(95)90490-5 PubMed DOI
Li P., Zhou L., Zhao T., Liu X., Zhang P., Liu Y., et al. (2017). Caspase-9: Structure, mechanisms and clinical application. Oncotarget 8, 23996–24008. 10.18632/ONCOTARGET.15098 PubMed DOI PMC
Lippens S., Kockx M., Denecker G., Knaapen M., Verheyen A., Christiaen R., et al. (2004). Vitamin D3 induces caspase-14 expression in psoriatic lesions and enhances caspase-14 processing in organotypic skin cultures. Am. J. Pathol. 165, 833–841. 10.1016/S0002-9440(10)63346-9 PubMed DOI PMC
Lippens S., Kockx M., Knaapen M., Mortier L., Polakowska R., Verheyen A., et al. (2000). Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death Differ. 7, 1218–1224. 10.1038/sj.cdd.4400785 PubMed DOI
Lossi L., Castagna C., Merighi A. (2018). Caspase-3 mediated cell death in the normal development of the mammalian cerebellum. Int. J. Mol. Sci. 19, 3999. 10.3390/IJMS19123999 PubMed DOI PMC
Low L. K., Cheng H.-J. (2006). Axon pruning: An essential step underlying the developmental plasticity of neuronal connections. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 361, 1531–1544. 10.1098/rstb.2006.1883 PubMed DOI PMC
Lüthi A. U., Cullen S. P., McNeela E. A., Duriez P. J., Afonina I. S., Sheridan C., et al. (2009). Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31, 84–98. 10.1016/j.immuni.2009.05.007 PubMed DOI
Lüthi A. U., Martin S. J. (2007). The CASBAH: A searchable database of caspase substrates. Cell Death Differ. 14, 641–650. 10.1038/sj.cdd.4402103 PubMed DOI
Makishima T., Hochman L., Armstrong P., Rosenberger E., Ridley R., Woo M., et al. (2011). Inner ear dysfunction in caspase-3 deficient mice. BMC Neurosci. 12, 102. 10.1186/1471-2202-12-102 PubMed DOI PMC
Mandal R., Barrón J. C., Kostova I., Becker S., Strebhardt K. (2020). Caspase-8: The double-edged sword. Biochim. Biophys. acta. Rev. cancer 1873, 188357. 10.1016/J.BBCAN.2020.188357 PubMed DOI
Martin S. J., O’Brien G. A., Nishioka W. K., McGahon A. J., Mahboubi A., Saido T. C., et al. (1995). Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J. Biol. Chem. 270, 6425–6428. 10.1074/jbc.270.12.6425 PubMed DOI
Mashima T., Naito M., Noguchi K., Miller D. K., Nicholson D. W., Tsuruo T. (1997). Actin cleavage by CPP-32/apopain during the development of apoptosis. Oncogene 14, 1007–1012. 10.1038/sj.onc.1200919 PubMed DOI
Matalova E., Lesot H., Svandova E., Vanden Berghe T., Sharpe P. T., Healy C., et al. (2013). Caspase-7 participates in differentiation of cells forming dental hard tissues. Dev. Growth Differ. 55, 615–621. 10.1111/dgd.12066 PubMed DOI
Matalova E., Sharpe P. T., Lakhani S. A., Roth K. A., Flavell R. A., Setkova J., et al. (2006). Molar tooth development in caspase-3 deficient mice. Int. J. Dev. Biol. 50, 491–497. 10.1387/ijdb.052117em PubMed DOI
Matalova E., Vanden Berghe T., Svandova E., Vandenabeele P., Healy C., Sharpe P., et al. (2012). Caspase-7 in molar tooth development. Arch. Oral Biol. 57, 1474–1481. 10.1016/J.ARCHORALBIO.2012.06.009 PubMed DOI
Mayordomo R., Valenciano A. I., de la Rosa E. J., Hallböök F. (2003). Generation of retinal ganglion cells is modulated by caspase-dependent programmed cell death. Eur. J. Neurosci. 18, 1744–1750. 10.1046/j.1460-9568.2003.02891.x PubMed DOI
Mazzoni C., Falcone C. (2008). Caspase-dependent apoptosis in yeast. Biochim. Biophys. Acta - Mol. Cell Res. 1783, 1320–1327. 10.1016/j.bbamcr.2008.02.015 PubMed DOI
Meier P., Silke J., Leevers S. J., Evan G. I. (2000). The Drosophila caspase DRONC is regulated by DIAP1. EMBO J. 19, 598–611. 10.1093/emboj/19.4.598 PubMed DOI PMC
Michaelidis T. M., Sendtner M., Cooper J. D., Airaksinen M. S., Holtmann B., Meyer M., et al. (1996). Inactivation of bcl-2 results in progressive degeneration of motoneurons, sympathetic and sensory neurons during early postnatal development. Neuron 17, 75–89. 10.1016/s0896-6273(00)80282-2 PubMed DOI
Miura M., Chen X.-D., Allen M. R., Bi Y., Gronthos S., Seo B.-M., et al. (2004). A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J. Clin. Invest. 114, 1704–1713. 10.1172/JCI20427 PubMed DOI PMC
Mogi M., Togari A. (2003). Activation of caspases is required for osteoblastic differentiation. J. Biol. Chem. 278, 47477–47482. 10.1074/jbc.M307055200 PubMed DOI
Mohamed Y. H., Gong H., Amemiya T. (2003). Role of apoptosis in eyelid development. Exp. Eye Res. 76, 115–123. 10.1016/s0014-4835(02)00269-5 PubMed DOI
Mollazadeh S., Fazly Bazzaz B. S., Kerachian M. A. (2015). Role of apoptosis in pathogenesis and treatment of bone-related diseases. J. Orthop. Surg. Res. 10, 15. 10.1186/s13018-015-0152-5 PubMed DOI PMC
Montagutelli X. (2000). Effect of the genetic background on the phenotype of mouse mutations. J. Am. Soc. Nephrol. 11, S101–S105. 10.1681/ASN.V11SUPPL_2S101 PubMed DOI
Moresi V., Garcia-Alvarez G., Pristerà A., Rizzuto E., Albertini M. C., Rocchi M., et al. (2009). Modulation of caspase activity regulates skeletal muscle regeneration and function in response to vasopressin and tumor necrosis factor. PLoS One 4, e5570. 10.1371/journal.pone.0005570 PubMed DOI PMC
Morishita H., Makishima T., Kaneko C., Lee Y. S., Segil N., Takahashi K., et al. (2001). Deafness due to degeneration of cochlear neurons in caspase-3-deficient mice. Biochem. Biophys. Res. Commun. 284, 142–149. 10.1006/bbrc.2001.4939 PubMed DOI
Mosinger Ogilvie J., Deckwerth T. L., Knudson C. M., Korsmeyer S. J. (1998). Suppression of developmental retinal cell death but not of photoreceptor degeneration in Bax-deficient mice. Invest. Ophthalmol. Vis. Sci. 39, 1713–1720. PubMed
Murray T. V. A., McMahon J. M., Howley B. A., Stanley A., Ritter T., Mohr A., et al. (2008). A non-apoptotic role for caspase-9 in muscle differentiation. J. Cell Sci. 121, 3786–3793. 10.1242/jcs.024547 PubMed DOI
Nakagawa T., Zhu H., Morishima N., Li E., Xu J., Yankner B. A., et al. (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98–103. 10.1038/47513 PubMed DOI
Nakajima Y., Kuranaga E. (2017). Caspase-dependent non-apoptotic processes in development. Cell Death Differ. 24, 1422–1430. 10.1038/cdd.2017.36 PubMed DOI PMC
Nguyen T. T. M., Gillet G., Popgeorgiev N. (2021). Caspases in the developing central nervous system: Apoptosis and beyond. Front. Cell Dev. Biol. 9, 702404. 10.3389/fcell.2021.702404 PubMed DOI PMC
Nikolaev A., McLaughlin T., O’Leary D. D. M., Tessier-Lavigne M. (2009). APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457, 981–989. 10.1038/nature07767 PubMed DOI PMC
Nohe A., Keating E., Knaus P., Petersen N. O. (2004). Signal transduction of bone morphogenetic protein receptors. Cell. Signal. 16, 291–299. 10.1016/j.cellsig.2003.08.011 PubMed DOI
Ohsawa S., Hamada S., Kuida K., Yoshida H., Igaki T., Miura M. (2010). Maturation of the olfactory sensory neurons by Apaf-1/caspase-9-mediated caspase activity. Proc. Natl. Acad. Sci. U. S. A. 107, 13366–13371. 10.1073/pnas.0910488107 PubMed DOI PMC
Oomman S., Finckbone V., Dertien J., Attridge J., Henne W., Medina M., et al. (2004). Active caspase-3 expression during postnatal development of rat cerebellum is not systematically or consistently associated with apoptosis. J. Comp. Neurol. 476, 154–173. 10.1002/cne.20223 PubMed DOI
Oomman S., Strahlendorf H., Dertien J., Strahlendorf J. (2006). Bergmann glia utilize active caspase-3 for differentiation. Brain Res. 1078, 19–34. 10.1016/j.brainres.2006.01.041 PubMed DOI
Pampfer S., Donnay I. (1999). Apoptosis at the time of embryo implantation in mouse and rat. Cell Death Differ. 6, 533–545. 10.1038/sj.cdd.4400516 PubMed DOI
Parker A., Hardisty-Hughes R. E., Wisby L., Joyce S., Brown S. D. M. (2010). Melody, an ENU mutation in Caspase 3, alters the catalytic cysteine residue and causes sensorineural hearing loss in mice. Mamm. Genome 21, 565–576. 10.1007/s00335-010-9306-2 PubMed DOI PMC
Parrish A. B., Freel C. D., Kornbluth S. (2013). Cellular mechanisms controlling caspase activation and function. Cold Spring Harb. Perspect. Biol. 5, a008672. 10.1101/cshperspect.a008672 PubMed DOI PMC
Pistritto G., Papaleo V., Sanchez P., Ceci C., Barbaccia M. L. (2012). Divergent modulation of neuronal differentiation by caspase-2 and -9. PLoS One 7, e36002. 10.1371/journal.pone.0036002 PubMed DOI PMC
Poreba M., Strozyk A., Salvesen G. S., Drag M. (2013). Caspase substrates and inhibitors. Cold Spring Harb. Perspect. Biol. 5, a008680. 10.1101/cshperspect.a008680 PubMed DOI PMC
Porter A. G., Jänicke R. U. (1999). Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 6, 99–104. 10.1038/sj.cdd.4400476 PubMed DOI
Prokhorova E. A., Kopeina G. S., Lavrik I. N., Zhivotovsky B. (2018). Apoptosis regulation by subcellular relocation of caspases. Sci. Rep. 8, 12199. 10.1038/s41598-018-30652-x PubMed DOI PMC
Ramirez M. L. G., Salvesen G. S. (2018). A primer on caspase mechanisms. Semin. Cell Dev. Biol. 82, 79–85. 10.1016/j.semcdb.2018.01.002 PubMed DOI PMC
Ren D., Tu H.-C., Kim H., Wang G. X., Bean G. R., Takeuchi O., et al. (2010). BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 330, 1390–1393. 10.1126/science.1190217 PubMed DOI PMC
Ru J., Wang Y. (2020). Osteocyte apoptosis: The roles and key molecular mechanisms in resorption-related bone diseases. Cell Death Dis. 11, 846. 10.1038/s41419-020-03059-8 PubMed DOI PMC
Sabatino G., Nicoletti M., Neri G., Saggini A., Rosati M., Conti F., et al. (2012). Impact of IL -9 and IL-33 in mast cells. J. Biol. Regul. Homeost. Agents 26 (4), 577–86. PubMed
Sakai J. (2020). Core Concept: How synaptic pruning shapes neural wiring during development and, possibly, in disease. Proc. Natl. Acad. Sci. U. S. A. 117, 16096–16099. 10.1073/pnas.2010281117 PubMed DOI PMC
Sakamaki K., Inoue T., Asano M., Sudo K., Kazama H., Sakagami J., et al. (2002). Ex vivo whole-embryo culture of caspase-8-deficient embryos normalize their aberrant phenotypes in the developing neural tube and heart. Cell Death Differ. 9, 1196–1206. 10.1038/sj.cdd.4401090 PubMed DOI
Saleh M., Mathison J. C., Wolinski M. K., Bensinger S. J., Fitzgerald P., Droin N., et al. (2006). Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 440, 1064–1068. 10.1038/nature04656 PubMed DOI
Saluja R., Hawro T., Eberle J., Church M. K., Maurer M. (2014). Interleukin-33 promotes the proliferation of mouse mast cells through ST2/MyD88 and p38 MAPK-dependent and Kit-independent pathways. J. Biol. Regul. Homeost. Agents 28 (4), 575–85. PubMed
Sanders E. J., Parker E. (2003). Retroviral overexpression of bcl-2 in the embryonic chick lens influences denucleation in differentiating lens fiber cells. Differentiation 71, 425–433. 10.1046/j.1432-0436.2003.7107005.x PubMed DOI
Sanders E. J., Parker E. (2002). The role of mitochondria, cytochrome c and caspase-9 in embryonic lens fibre cell denucleation. J. Anat. 201, 121–135. 10.1046/j.1469-7580.2002.00081.x PubMed DOI PMC
Sandri M., Carraro U. (1999). Apoptosis of skeletal muscles during development and disease. Int. J. Biochem. Cell Biol. 31, 1373–1390. 10.1016/s1357-2725(99)00063-1 PubMed DOI
Schwartz L. M. (2018). Skeletal muscles do not undergo apoptosis during either atrophy or programmed cell death-revisiting the myonuclear domain hypothesis. Front. Physiol. 9, 1887. 10.3389/fphys.2018.01887 PubMed DOI PMC
Setkova J., Matalova E., Sharpe P. T., Misek I., Tucker A. S. (2007). Primary enamel knot cell death in Apaf-1 and caspase-9 deficient mice. Arch. Oral Biol. 52, 15–19. 10.1016/j.archoralbio.2006.07.006 PubMed DOI
Shalini S., Dorstyn L., Dawar S., Kumar S. (2015). Old, new and emerging functions of caspases. Cell Death Differ. 22, 526–539. 10.1038/cdd.2014.216 PubMed DOI PMC
Sharma R., Callaway D., Vanegas D., Bendele M., Lopez-Cruzan M., Horn D., et al. (2014). Caspase-2 maintains bone homeostasis by inducing apoptosis of oxidatively-damaged osteoclasts. PLoS One 9, e93696. 10.1371/journal.pone.0093696 PubMed DOI PMC
Shinotsuka N., Yamaguchi Y., Nakazato K., Matsumoto Y., Mochizuki A., Miura M. (2018). Caspases and matrix metalloproteases facilitate collective behavior of non-neural ectoderm after hindbrain neuropore closure. BMC Dev. Biol. 18, 17. 10.1186/s12861-018-0175-3 PubMed DOI PMC
Simon D. J., Weimer R. M., McLaughlin T., Kallop D., Stanger K., Yang J., et al. (2012). A caspase cascade regulating developmental axon degeneration. J. Neurosci. 32, 17540–17553. 10.1523/JNEUROSCI.3012-12.2012 PubMed DOI PMC
Skeldon A. M., Morizot A., Douglas T., Santoro N., Kursawe R., Kozlitina J., et al. (2016). Caspase-12, but not caspase-11, inhibits obesity and insulin resistance. J. Immunol. 196, 437–447. 10.4049/JIMMUNOL.1501529 PubMed DOI PMC
Slee E. A., Adrain C., Martin S. J. (2001). Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J. Biol. Chem. 276, 7320–7326. 10.1074/jbc.M008363200 PubMed DOI
Sollberger G., Strittmatter G. E., Garstkiewicz M., Sand J., Beer H. D. (2014). Caspase-1: The inflammasome and beyond. Innate Immun. 20, 115–125. 10.1177/1753425913484374 PubMed DOI
Soma T., Ogo M., Suzuki J., Takahashi T., Hibino T. (1998). Analysis of apoptotic cell death in human hair follicles in vivo and in vitro . J. Invest. Dermatol. 111, 948–954. 10.1046/J.1523-1747.1998.00408.X PubMed DOI
Sotiropoulou P. A., Candi A., Mascré G., De Clercq S., Youssef K. K., Lapouge G., et al. (2010). Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nat. Cell Biol. 12, 572–582. 10.1038/NCB2059 PubMed DOI
Spead O., Verreet T., Donelson C. J., Poulain F. E. (2018). Characterization of the caspase family in zebrafish. PLoS One 13, e0197966. 10.1371/journal.pone.0197966 PubMed DOI PMC
Stenn K. S., Lawrence L., Veis D., Korsmeyer S., Seiberg M. (1994). Expression of the bcl-2 protooncogene in the cycling adult mouse hair follicle. J. Invest. Dermatol. 103, 107–111. 10.1111/1523-1747.EP12391844 PubMed DOI
Stennicke H. R., Deveraux Q. L., Humke E. W., Reed J. C., Dixit V. M., Salvesen G. S. (1999). Caspase-9 can Be activated without proteolytic processing. J. Biol. Chem. 274, 8359–8362. 10.1074/jbc.274.13.8359 PubMed DOI
Stennicke H. R., Salvesen G. S. (1999). Catalytic properties of the caspases. Cell Death Differ. 6, 1054–1059. 10.1038/sj.cdd.4400599 PubMed DOI
Strettoi E., Volpini M. (2002). Retinal organization in the bcl-2-overexpressing transgenic mouse. J. Comp. Neurol. 446, 1–10. 10.1002/cne.10177 PubMed DOI
Svandova E. B., Vesela B., Lesot H., Poliard A., Matalova E. (2017). Expression of Fas, FasL, caspase-8 and other factors of the extrinsic apoptotic pathway during the onset of interdigital tissue elimination. Histochem. Cell Biol. 147, 497–510. 10.1007/s00418-016-1508-6 PubMed DOI
Svandova E., Lesot H., Vanden Berghe T., Tucker A. S., Sharpe P. T., Vandenabeele P., et al. (2014). Non-apoptotic functions of caspase-7 during osteogenesis. Cell Death Dis. 5, e1366. 10.1038/cddis.2014.330 PubMed DOI PMC
Svandova E., Sadoine J., Vesela B., Djoudi A., Lesot H., Poliard A., et al. (2019). Growth-dependent phenotype in FasL-deficient mandibular/alveolar bone. J. Anat. 235, 256–261. 10.1111/joa.13015 PubMed DOI PMC
Svandova E., Vesela B., Tucker A. S., Matalova E. (2018). Activation of pro-apoptotic caspases in non-apoptotic cells during odontogenesis and related osteogenesis. Front. Physiol. 9, 174. 10.3389/fphys.2018.00174 PubMed DOI PMC
Tafra R., Brakus S. M., Vukojevic K., Kablar B., Colovic Z., Saraga-Babic M. (2014). Interplay of proliferation and proapoptotic and antiapoptotic factors is revealed in the early human inner ear development. Otol. Neurotol. 35, 695–703. 10.1097/MAO.0000000000000210 PubMed DOI
Tafreshi A. P., Zeynali B., Krieglstein K. (2006). The role of caspase 9 during programmed cell death in ciliary ganglia of chick embryos. J. Sci. Islam. Repub. Iran. 17, 221–224.
Tait S. W. G., Green D. R. (2010). Mitochondria and cell death: Outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632. 10.1038/nrm2952 PubMed DOI
Takahashi K., Kamiya K., Urase K., Suga M., Takizawa T., Mori H., et al. (2001). Caspase-3-deficiency induces hyperplasia of supporting cells and degeneration of sensory cells resulting in the hearing loss. Brain Res. 894, 359–367. 10.1016/s0006-8993(01)02123-0 PubMed DOI
Takahashi T., Ogo M., Hibino T. (1998). Partial purification and characterization of two distinct types of caspases from human epidermis. J. Invest. Dermatol. 111, 367–372. 10.1046/J.1523-1747.1998.00295.X PubMed DOI
Takemoto K., Kuranaga E., Tonoki A., Nagai T., Miyawaki A., Miura M. (2007). Local initiation of caspase activation in Drosophila salivary gland programmed cell death in vivo . Proc. Natl. Acad. Sci. U. S. A. 104, 13367–13372. 10.1073/pnas.0702733104 PubMed DOI PMC
Talebizadeh N., Yu Z., Kronschläger M., Hallböök F., Söderberg P. (2015). Specific spatial distribution of caspase-3 in normal lenses. Acta Ophthalmol. 93, 289–292. 10.1111/aos.12501 PubMed DOI
Teshima T. H. N., Ianez R. C. F., Coutinho-Camillo C. M., Tucker A. S., Lourenço S. V. (2016a). Apoptosis-associated protein expression in human salivary gland morphogenesis. Arch. Oral Biol. 69, 71–81. 10.1016/j.archoralbio.2016.05.013 PubMed DOI
Teshima T. H. N., Wells K. L., Lourenço S. V., Tucker A. S. (2016b). Apoptosis in early salivary gland duct morphogenesis and lumen formation. J. Dent. Res. 95, 277–283. 10.1177/0022034515619581 PubMed DOI
Tisch N., Freire-Valls A., Yerbes R., Paredes I., La Porta S., Wang X., et al. (2019). Caspase-8 modulates physiological and pathological angiogenesis during retina development. J. Clin. Invest. 129, 5092–5107. 10.1172/JCI122767 PubMed DOI PMC
Uribe V., Wong B. K. Y., Graham R. K., Cusack C. L., Skotte N. H., Pouladi M. A., et al. (2012). Rescue from excitotoxicity and axonal degeneration accompanied by age-dependent behavioral and neuroanatomical alterations in caspase-6-deficient mice. Hum. Mol. Genet. 21, 1954–1967. 10.1093/hmg/dds005 PubMed DOI PMC
Van Opdenbosch N., Lamkanfi M. (2019). Caspases in cell death, inflammation, and disease. Immunity 50, 1352–1364. 10.1016/j.immuni.2019.05.020 PubMed DOI PMC
Varfolomeev E. E., Schuchmann M., Luria V., Chiannilkulchai N., Beckmann J. S., Mett I. L., et al. (1998). Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267–276. 10.1016/s1074-7613(00)80609-3 PubMed DOI
Vecino E., Hernández M., García M. (2004). Cell death in the developing vertebrate retina. Int. J. Dev. Biol. 48, 965–974. 10.1387/ijdb.041891ev PubMed DOI
Veis D. J., Sorenson C. M., Shutter J. R., Korsmeyer S. J. (1993). Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–240. 10.1016/0092-8674(93)80065-M PubMed DOI
Vesela B., Kratochvilova A., Svandova E., Benes P., Rihova K., Poliard A., et al. (2020). Caspase-12 is present during craniofacial development and participates in regulation of osteogenic markers. Front. Cell Dev. Biol. 8, 589136. 10.3389/fcell.2020.589136 PubMed DOI PMC
Veselá B., Matalová E. (2015). Expression of apoptosis-related genes in the mouse skin during the first postnatal catagen stage, focused on localization of Bnip3L and caspase-12. Connect. Tissue Res. 56, 326–335. 10.3109/03008207.2015.1040546 PubMed DOI
Vesela B., Svandova E., Vanden Berghe T., Tucker A. S., Vandenabeele P., Matalova E. (2015). Non-apoptotic role for caspase-7 in hair follicles and the surrounding tissue. J. Mol. Histol. 46, 443–455. 10.1007/s10735-015-9636-1 PubMed DOI
Volbracht C., Leist M., Kolb S. A., Nicotera P. (2001). Apoptosis in caspase-inhibited neurons. Mol. Med. 7, 36–48. 10.1007/BF03401837 PubMed DOI PMC
Voss A. K., Strasser A. (2020). The essentials of developmental apoptosis. F1000Research 9, F1000 Faculty Rev-148. 10.12688/f1000research.21571.1 PubMed DOI
Walsh J. G., Cullen S. P., Sheridan C., Lüthi A. U., Gerner C., Martin S. J. (2008). Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc. Natl. Acad. Sci. U. S. A. 105, 12815–12819. 10.1073/pnas.0707715105 PubMed DOI PMC
Wang K. K. W., Posmantur R., Nath R., McGinnis K., Whitton M., Talanian R. V., et al. (1998a). Simultaneous degradation of alphaII- and betaII-spectrin by caspase 3 (CPP32) in apoptotic cells. J. Biol. Chem. 273, 22490–22497. 10.1074/jbc.273.35.22490 PubMed DOI
Wang S., Miura M., Jung Y., Zhu H., Li E., Yuan J. (1998b). Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–509. 10.1016/S0092-8674(00)80943-5 PubMed DOI
Wang X. J., Cao Q., Zhang Y., Su X. D. (2015). Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 55, 553–572. 10.1146/ANNUREV-PHARMTOX-010814-124414 PubMed DOI
Weghorst F., Mirzakhanyan Y., Samimi K., Dhillon M., Barzik M., Cunningham L. L., et al. (2020). Caspase-3 cleaves extracellular vesicle proteins during auditory brainstem development. Front. Cell. Neurosci. 14, 573345. 10.3389/fncel.2020.573345 PubMed DOI PMC
Weil M., Jacobson M. D., Raff M. C. (1997). Is programmed cell death required for neural tube closure? Curr. Biol. 7, 281–284. 10.1016/s0960-9822(06)00125-4 PubMed DOI
White F. A., Keller-Peck C. R., Knudson C. M., Korsmeyer S. J., Snider W. D. (1998). Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J. Neurosci. 18, 1428–1439. 10.1523/JNEUROSCI.18-04-01428.1998 PubMed DOI PMC
Woo M., Hakem R., Soengas M. S., Duncan G. S., Shahinian A., Kägi D., et al. (1998). Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev. 12, 806–819. 10.1101/gad.12.6.806 PubMed DOI PMC
Wride M. A., Sanders E. J. (1998). Nuclear degeneration in the developing lens and its regulation by TNFalpha. Exp. Eye Res. 66, 371–383. 10.1006/exer.1997.0440 PubMed DOI
Yamashita M., Mizusawa N., Hojo M., Yabu T. (2008). Extensive apoptosis and abnormal morphogenesis in pro-caspase-3 transgenic zebrafish during development. J. Exp. Biol. 211, 1874–1881. 10.1242/jeb.012690 PubMed DOI
Yin X., Gu S., Jiang J. X. (2001). Regulation of lens connexin 45.6 by apoptotic protease, caspase-3. Cell Commun. Adhes. 8, 373–376. 10.3109/15419060109080756 PubMed DOI
Yoshida H., Kong Y. Y., Yoshida R., Elia A. J., Hakem A., Hakem R., et al. (1998). Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739–750. 10.1016/s0092-8674(00)81733-x PubMed DOI
Zandy A. J., Lakhani S., Zheng T., Flavell R. A., Bassnett S. (2005). Role of the executioner caspases during lens development. J. Biol. Chem. 280, 30263–30272. 10.1074/jbc.M504007200 PubMed DOI
Zeiss C. J., Neal J., Johnson E. A. (2004). Caspase-3 in postnatal retinal development and degeneration. Invest. Ophthalmol. Vis. Sci. 45, 964–970. 10.1167/iovs.03-0439 PubMed DOI
Zhang Y., Padalecki S. S., Chaudhuri A. R., De Waal E., Goins B. A., Grubbs B., et al. (2007). Caspase-2 deficiency enhances aging-related traits in mice. Mech. Ageing Dev. 128, 213–221. 10.1016/j.mad.2006.11.030 PubMed DOI PMC
Zheng T. S., Hunot S., Kuida K., Momoi T., Srinivasan A., Nicholson D. W., et al. (2000). Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nat. Med. 6, 1241–1247. 10.1038/81343 PubMed DOI
Zhuravin I., Dubrovskaya N., Vasilev D., Kozlova D., Tumanova N., Turner A., et al. (2015). MicroRNA-target interactions in neurodegenerative diseases. SpringerPlus 4, 1–32. 10.1186/2193-1801-4-S1-L1 PubMed DOI PMC