Osteogenic impact of pro-apoptotic caspase inhibitors in MC3T3-E1 cells
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32366890
PubMed Central
PMC7198622
DOI
10.1038/s41598-020-64294-9
PII: 10.1038/s41598-020-64294-9
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- inhibitory kaspas farmakologie MeSH
- kaspasy metabolismus MeSH
- myši MeSH
- neutrální endopeptidasa regulující fosfáty metabolismus MeSH
- osteoblasty cytologie metabolismus MeSH
- osteogeneze účinky léků MeSH
- osteokalcin metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inhibitory kaspas MeSH
- kaspasy MeSH
- neutrální endopeptidasa regulující fosfáty MeSH
- osteokalcin MeSH
- Phex protein, mouse MeSH Prohlížeč
Caspases are proteases traditionally associated with inflammation and cell death. Recently, they have also been shown to modulate cell proliferation and differentiation. The aim of the current research was to search for osteogenic molecules affected by caspase inhibition and to specify the individual caspases critical for these effects with a focus on proapoptotic caspases: caspase-2, -3, -6, -7, -8 and -9. Along with osteocalcin (Ocn), general caspase inhibition significantly decreased the expression of the Phex gene in differentiated MC3T3-E1 cells. The inhibition of individual caspases indicated that caspase-8 is a major contributor to the modification of Ocn and Phex expression. Caspase-2 and-6 had effects on Ocn and caspase-6 had an effect on Phex. These data confirm and expand the current knowledge about the nonapoptotic roles of caspases and the effect of their pharmacological inhibition on the osteogenic potential of osteoblastic cells.
Department of Physiology University of Veterinary and Pharmaceutical Sciences Brno Czech Republic
Faculty of Science Masaryk University Brno Czech Republic
Institute of Analytical Chemistry of the Czech Academy of Sciences Brno Czech Republic
Institute of Animal Physiology and Genetics Academy of Sciences Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Zobrazit více v PubMed
Kudelova J, Fleischmannova J, Adamova E, Matalova E. Pharmacological caspase inhibitors: research towards therapeutic perspectives. J. Physiol. Pharmacol. 2015;66:473–82. PubMed
Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22:526–539. doi: 10.1038/cdd.2014.216. PubMed DOI PMC
Miura M, et al. A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J. Clin. Invest. 2004;114:1704–1713. doi: 10.1172/JCI20427. PubMed DOI PMC
Svandova E, Vesela B, Tucker AS, Matalova E. Activation of Pro-apoptotic Caspases in Non-apoptotic Cells During Odontogenesis and Related Osteogenesis. Front. Physiol. 2018;9:174. doi: 10.3389/fphys.2018.00174. PubMed DOI PMC
Mogi M, Togari A. Activation of Caspases Is Required for Osteoblastic Differentiation. J. Biol. Chem. 2003;278:47477–47482. doi: 10.1074/jbc.M307055200. PubMed DOI
Ivaska KK, et al. Urinary osteocalcin as a marker of bone metabolism. Clin. Chem. 2005;51:618–28. doi: 10.1373/clinchem.2004.043901. PubMed DOI
Beck GR, Zerler B, Moran E. Gene Array Analysis of Osteoblast Differentiation. Cell Growth Differ. 2001;12:61–83. PubMed
Raouf A, Seth A. Discovery of osteoblast-associated genes using cDNA microarrays. Bone. 2002;30:463–471. doi: 10.1016/S8756-3282(01)00699-8. PubMed DOI
Choi J-Y, et al. Expression patterns of bone-related proteins during osteoblastic differentiation in MC3T3-E1 cells. J. Cell. Biochem. 1996;61:609–618. doi: 10.1002/(SICI)1097-4644(19960616)61:4<609::AID-JCB15>3.0.CO;2-A. PubMed DOI
Sudo H. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol. 1983;96:191–198. doi: 10.1083/jcb.96.1.191. PubMed DOI PMC
Czekanska E, Stoddart M, Richards R, Hayes J. In search of an osteoblast cell model for in vitro research. Eur. Cells Mater. 2012;24:1–17. doi: 10.22203/eCM.v024a01. PubMed DOI
Pérez-Garijo A. When dying is not the end: Apoptotic caspases as drivers of proliferation. Semin. Cell Dev. Biol. 2018;82:86–95. doi: 10.1016/j.semcdb.2017.11.036. PubMed DOI
Thrailkill KM, Siddhanti SR, Fowlkes JL, Quarles LD. Differentiation of MC3T3-E1 Osteoblasts is associated with temporal changes in the expression of IGF-I and IGFBPs. Bone. 1995;17:307–313. doi: 10.1016/8756-3282(95)00223-Z. PubMed DOI
Yan X-Z, et al. Effects of Continuous Passaging on Mineralization of MC3T3-E1 Cells with Improved Osteogenic Culture Protocol. Tissue Eng. Part C Methods. 2014;20:198–204. doi: 10.1089/ten.tec.2012.0412. PubMed DOI
Addison WN, et al. Extracellular matrix mineralization in murine MC3T3-E1 osteoblast cultures: An ultrastructural, compositional and comparative analysis with mouse bone. Bone. 2015;71:244–256. doi: 10.1016/j.bone.2014.11.003. PubMed DOI PMC
Miron RJ, et al. Influence of Enamel Matrix Derivative on Cells at Different Maturation Stages of Differentiation. PLoS One. 2013;8:e71008. doi: 10.1371/journal.pone.0071008. PubMed DOI PMC
Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: An in vitro model of osteoblast development. J. Bone Miner. Res. 1992;7:683–692. doi: 10.1002/jbmr.5650070613. PubMed DOI
Wohlrab C, et al. The Association Between Ascorbate and the Hypoxia-Inducible Factors in Human Renal Cell Carcinoma Requires a Functional Von Hippel-Lindau Protein. Front. Oncol. 2018;8:574. doi: 10.3389/fonc.2018.00574. PubMed DOI PMC
Wohlrab C, et al. Ascorbate modulates the hypoxic pathway by increasing intracellular activity of the HIF hydroxylases in renal cell carcinoma cells. Hypoxia. 2019;7:17–31. doi: 10.2147/HP.S201643. PubMed DOI PMC
Atkins GJ, et al. RANKL Expression Is Related to the Differentiation State of Human Osteoblasts. J. Bone Miner. Res. 2003;18:1088–1098. doi: 10.1359/jbmr.2003.18.6.1088. PubMed DOI
Hojo H, Ohba S, He X, Lai LP, McMahon AP. Sp7/Osterix Is Restricted to Bone-Forming Vertebrates where It Acts as a Dlx Co-factor in Osteoblast Specification. Dev. Cell. 2016;37:238–253. doi: 10.1016/j.devcel.2016.04.002. PubMed DOI PMC
Tsapras P, Nezis IP. Caspase involvement in autophagy. Cell Death Differ. 2017;24:1369–1379. doi: 10.1038/cdd.2017.43. PubMed DOI PMC
Watanabe C, Shu GL, Zheng TS, Flavell RA, Clark EA. Caspase 6 regulates B cell activation and differentiation into plasma cells. J. Immunol. 2008;181:6810–9. doi: 10.4049/jimmunol.181.10.6810. PubMed DOI PMC
Ladha S, et al. Constitutive ablation of caspase-6 reduces the inflammatory response and behavioural changes caused by peripheral pro-inflammatory stimuli. Cell Death Discov. 2018;4:40. doi: 10.1038/s41420-018-0043-8. PubMed DOI PMC
Galande S, Dickinson LA, Mian IS, Sikorska M, Kohwi-Shigematsu T. SATB1 Cleavage by Caspase 6 Disrupts PDZ Domain-Mediated Dimerization, Causing Detachment from Chromatin Early in T-Cell Apoptosis. Mol. Cell. Biol. 2001;21:5591–5604. doi: 10.1128/MCB.21.16.5591-5604.2001. PubMed DOI PMC
Dobreva G, et al. SATB2 Is a Multifunctional Determinant of Craniofacial Patterning and Osteoblast Differentiation. Cell. 2006;125:971–986. doi: 10.1016/j.cell.2006.05.012. PubMed DOI
Zhang J, et al. Roles of SATB2 in Osteogenic Differentiation and Bone Regeneration. Tissue Eng. Part A. 2011;17:1767–1776. doi: 10.1089/ten.tea.2010.0503. PubMed DOI PMC
Bell, R. A. V. et al. Chromatin reorganization during myoblast differentiation involves the caspase-dependent removal of SATB2. bioRxiv 2019.12.19.883579 10.1101/2019.12.19.883579 (2019). PubMed PMC
Brentnall M, Rodriguez-Menocal L, De Guevara R, Cepero E, Boise LH. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 2013;14:32. doi: 10.1186/1471-2121-14-32. PubMed DOI PMC
Fuentes-Prior P, Salvesen GS. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem. J. 2004;384:201–232. doi: 10.1042/BJ20041142. PubMed DOI PMC
Ruchon AF, et al. Pex mRNA is localized in developing mouse osteoblasts and odontoblasts. J. Histochem. Cytochem. 1998;46:459–68. doi: 10.1177/002215549804600405. PubMed DOI
Yuan B, et al. Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia. J. Clin. Invest. 2008;118:722–734. PubMed PMC
Alos N, Ecarot B. Downregulation of osteoblast Phex expression by PTH. Bone. 2005;37:589–598. doi: 10.1016/j.bone.2005.05.006. PubMed DOI
Tian Y, Xu Y, Fu Q, He M. Parathyroid hormone regulates osteoblast differentiation in a Wnt/β-catenin-dependent manner. Mol. Cell. Biochem. 2011;355:211–216. doi: 10.1007/s11010-011-0856-8. PubMed DOI
Van de Craen M, et al. Proteolytic cleavage of β-catenin by caspases: an in vitro analysis. FEBS Lett. 1999;458:167–170. doi: 10.1016/S0014-5793(99)01153-9. PubMed DOI
Sabbagh Y, Carpenter TO, Demay MB. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc. Natl. Acad. Sci. 2005;102:9637–9642. doi: 10.1073/pnas.0502249102. PubMed DOI PMC
Diaz-Franco M, Franco-Diaz de Leon R, Villafan-Bernal J. Osteocalcin-GPRC6A: An update of its clinical and biological multi-organic interactions (Review) Mol. Med. Rep. 2019;19:15–22. PubMed PMC
Chlastakova I, et al. Dynamics of caspase-3 activation and inhibition in embryonic micromasses evaluated by a photon-counting chemiluminescence approach. Vitr. Cell. Dev. Biol. - Anim. 2012;48:545–549. doi: 10.1007/s11626-012-9542-8. PubMed DOI
Ledvina V, Janečková E, Matalová E, Klepárník K. Parallel single-cell analysis of active caspase-3/7 in apoptotic and non-apoptotic cells. Anal. Bioanal. Chem. 2017;409:269–274. doi: 10.1007/s00216-016-9998-6. PubMed DOI
Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics
Exploring caspase functions in mouse models
Caspase-9 inhibition decreases expression of Mmp9 during chondrogenesis
Caspase-8 Deficient Osteoblastic Cells Display Alterations in Non-Apoptotic Pathways
Making the head: Caspases in life and death