Exploring caspase functions in mouse models

. 2024 Aug ; 29 (7-8) : 938-966. [epub] 20240602

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38824481
Odkazy

PubMed 38824481
PubMed Central PMC11263464
DOI 10.1007/s10495-024-01976-z
PII: 10.1007/s10495-024-01976-z
Knihovny.cz E-zdroje

Caspases are enzymes with protease activity. Despite being known for more than three decades, caspase investigation still yields surprising and fascinating information. Initially associated with cell death and inflammation, their functions have gradually been revealed to extend beyond, targeting pathways such as cell proliferation, migration, and differentiation. These processes are also associated with disease mechanisms, positioning caspases as potential targets for numerous pathologies including inflammatory, neurological, metabolic, or oncological conditions. While in vitro studies play a crucial role in elucidating molecular pathways, they lack the context of the body's complexity. Therefore, laboratory animals are an indispensable part of successfully understanding and applying caspase networks. This paper aims to summarize and discuss recent knowledge, understanding, and challenges in caspase knock-out mice.

Zobrazit více v PubMed

Julien O, Wells JA (2017) Caspases and their substrates. Cell Death Differ 24:1380–1389. 10.1038/cdd.2017.44 10.1038/cdd.2017.44 PubMed DOI PMC

Sahoo G, Samal D, Khandayataray P, Murthy MK (2023) A review on caspases: key regulators of biological activities and apoptosis. Mol Neurobiol 60:5805–5837. 10.1007/S12035-023-03433-5 10.1007/S12035-023-03433-5 PubMed DOI

Kostura MJ, Tocci MJ, Limjuco G, et al (1989) Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proc Natl Acad Sci U S A 86:5227–5231. 10.1073/pnas.86.14.5227 10.1073/pnas.86.14.5227 PubMed DOI PMC

Howard AD, Kostura MJ, Thornberry N, et al (1991) IL-1-converting enzyme requires aspartic acid residues for processing of the IL-1 beta precursor at two distinct sites and does not cleave 31-kDa IL-1 alpha. J Immunol 147:2964–2969. 10.4049/jimmunol.147.9.2964 10.4049/jimmunol.147.9.2964 PubMed DOI

Thornberry NA, Bull HG, Calaycay JR, et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774. 10.1038/356768A0 10.1038/356768A0 PubMed DOI

Cerretti DP, Kozlosky CJ, Mosley B, et al (1992) Molecular cloning of the interleukin-1 beta converting enzyme. Science 256:97–100. 10.1126/SCIENCE.1373520 10.1126/SCIENCE.1373520 PubMed DOI

Kumar S, Kinoshita M, Noda M, et al (1994) Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1 beta-converting enzyme. Genes Dev 8:1613–1626. 10.1101/GAD.8.14.1613 10.1101/GAD.8.14.1613 PubMed DOI

Alnemri ES, Livingston DJ, Nicholson DW, et al (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171. 10.1016/S0092-8674(00)81334-3 10.1016/S0092-8674(00)81334-3 PubMed DOI

Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911. 10.1101/GAD.13.15.1899 10.1101/GAD.13.15.1899 PubMed DOI

Eckhart L, Ballaun C, Hermann M, et al (2008) Identification of novel mammalian caspases reveals an important role of gene loss in shaping the human caspase repertoire. Mol Biol Evol 25:831–841. 10.1093/MOLBEV/MSN012 10.1093/MOLBEV/MSN012 PubMed DOI

Eckhart L, Ballaun C, Uthman A, et al (2005) Identification and characterization of a novel mammalian caspase with proapoptotic activity. J Biol Chem 280:35077–35080. 10.1074/JBC.C500282200 10.1074/JBC.C500282200 PubMed DOI

Agnew A, Nulty C, Creagh EM (2021) Regulation, activation and function of Caspase-11 during health and disease. Int J Mol Sci 22:1–20. 10.3390/IJMS2204150610.3390/IJMS22041506 PubMed DOI PMC

Fischer H, Koenig U, Eckhart L, Tschachler E (2002) Human caspase 12 has acquired deleterious mutations. Biochem Biophys Res Commun 293:722–726. 10.1016/S0006-291X(02)00289-9 10.1016/S0006-291X(02)00289-9 PubMed DOI

Saleh M, Vaillancourt JP, Graham RK, et al (2004) Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429:75–79. 10.1038/NATURE02451 10.1038/NATURE02451 PubMed DOI

Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22:526–539. 10.1038/cdd.2014.216 10.1038/cdd.2014.216 PubMed DOI PMC

Shalini S, Dorstyn L, Wilson C, et al (2012) Impaired antioxidant defence and accumulation of oxidative stress in caspase-2-deficient mice. Cell Death Differ 19:1370–1380. 10.1038/cdd.2012.13 10.1038/cdd.2012.13 PubMed DOI PMC

Van Opdenbosch N, Lamkanfi M (2019) Caspases in cell death, inflammation, and disease. Immunity 50:1352–1364. 10.1016/J.IMMUNI.2019.05.020 10.1016/J.IMMUNI.2019.05.020 PubMed DOI PMC

Sakamaki K, Satou Y (2009) Caspases: evolutionary aspects of their functions in vertebrates. J Fish Biol 74:727–753. 10.1111/J.1095-8649.2009.02184.X 10.1111/J.1095-8649.2009.02184.X PubMed DOI PMC

Lamkanfi M, Declercq W, Kalai M, et al (2002) Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 9:358–361. 10.1038/SJ.CDD.4400989 10.1038/SJ.CDD.4400989 PubMed DOI

Ramirez MLG, Salvesen GS (2018) A primer on caspase mechanisms. Semin Cell Dev Biol 82:79–85. 10.1016/j.semcdb.2018.01.002 10.1016/j.semcdb.2018.01.002 PubMed DOI PMC

Talanian R V., Quinlan C, Trautz S, et al (1997) Substrate specificities of caspase family proteases. J Biol Chem 272:9677–9682. 10.1074/JBC.272.15.9677 10.1074/JBC.272.15.9677 PubMed DOI

Poreba M, Strozyk A, Salvesen GS, Drag M (2013) Caspase substrates and inhibitors. Cold Spring Harb Perspect Biol 5:a008680–a008680. 10.1101/cshperspect.a008680 10.1101/cshperspect.a008680 PubMed DOI PMC

McStay GP, Salvesen GS, Green DR (2007) Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ 2008 152 15:322–331. 10.1038/sj.cdd.440226010.1038/sj.cdd.4402260 PubMed DOI

Lamkanfi M, Festjens N, Declercq W, et al (2007) Caspases in cell survival, proliferation and differentiation. Cell Death Differ 14:44–55. 10.1038/sj.cdd.4402047 10.1038/sj.cdd.4402047 PubMed DOI

Connolly PF, Jäger R, Fearnhead HO (2014) New roles for old enzymes: killer caspases as the engine of cell behavior changes. Front Physiol 5:149. 10.3389/fphys.2014.00149 10.3389/fphys.2014.00149 PubMed DOI PMC

Shoshan-Barmatz V, Arif T, Shteinfer-Kuzmine A (2023) Apoptotic proteins with non-apoptotic activity: expression and function in cancer. Apoptosis 28:730–753. 10.1007/S10495-023-01835-3 10.1007/S10495-023-01835-3 PubMed DOI PMC

Eskandari E, Eaves CJ (2022) Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol 221. 10.1083/JCB.202201159 PubMed PMC

Mashima T, Naito M, Noguchi K, et al (1997) Actin cleavage by CPP-32/apopain during the development of apoptosis. Oncogene 14:1007–1012. 10.1038/SJ.ONC.1200919 10.1038/SJ.ONC.1200919 PubMed DOI

Fernando P, Kelly JF, Balazsi K, et al (2002) Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci U S A 99:11025–11030. 10.1073/PNAS.162172899 10.1073/PNAS.162172899 PubMed DOI PMC

Miura M, Chen X-D, Allen MR, et al (2004) A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest 114:1704–13. 10.1172/JCI20427 10.1172/JCI20427 PubMed DOI PMC

Matalova E, Lesot H, Svandova E, et al (2013) Caspase-7 participates in differentiation of cells forming dental hard tissues. Dev Growth Differ 55:615–21. 10.1111/dgd.12066 10.1111/dgd.12066 PubMed DOI

Tisch N, Freire-Valls A, Yerbes R, et al (2019) Caspase-8 modulates physiological and pathological angiogenesis during retina development. J Clin Invest 129:5092–5107. 10.1172/JCI122767 10.1172/JCI122767 PubMed DOI PMC

Fritsch M, Günther SD, Schwarzer R, et al (2019) Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575:683–687. 10.1038/S41586-019-1770-6 10.1038/S41586-019-1770-6 PubMed DOI

Fischer U, Jänicke RU, Schulze-Osthoff K (2003) Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 10:76–100. 10.1038/sj.cdd.4401160 10.1038/sj.cdd.4401160 PubMed DOI PMC

Enari M, Sakahira H, Yokoyama H, et al (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50. 10.1038/34112 10.1038/34112 PubMed DOI

Van Raam BJ, Ehrnhoefer DE, Hayden MR, Salvesen GS (2013) Intrinsic cleavage of receptor-interacting protein kinase-1 by caspase-6. Cell Death Differ 20:86–96. 10.1038/CDD.2012.98 10.1038/CDD.2012.98 PubMed DOI PMC

Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104. 10.1038/sj.cdd.4400476 10.1038/sj.cdd.4400476 PubMed DOI

Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3, -6, and – 7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276:7320–6. 10.1074/jbc.M008363200 10.1074/jbc.M008363200 PubMed DOI

Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. 10.1080/01926230701320337 10.1080/01926230701320337 PubMed DOI PMC

D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43:582–592. 10.1002/cbin.11137 10.1002/cbin.11137 PubMed DOI

Jan R, Chaudhry G e. S (2019) Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv Pharm Bull 9:205–218. 10.15171/APB.2019.024 PubMed PMC

Kale J, Osterlund EJ, Andrews DW (2018) BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ 25:65–80. 10.1038/cdd.2017.186 10.1038/cdd.2017.186 PubMed DOI PMC

Fujita J, Crane AM, Souza MK, et al (2008) Caspase activity mediates the differentiation of embryonic stem cells. Cell Stem Cell 2:595–601. 10.1016/J.STEM.2008.04.001 10.1016/J.STEM.2008.04.001 PubMed DOI PMC

Cusack CL, Swahari V, Hampton Henley W, et al (2013) Distinct pathways mediate axon degeneration during apoptosis and axon-specific pruning. Nat Commun 4. 10.1038/NCOMMS2910 PubMed PMC

Kumar S (2009) Caspase 2 in apoptosis, the DNA damage response and tumour suppression: enigma no more? Nat Rev Cancer 9:897–903. 10.1038/NRC2745 10.1038/NRC2745 PubMed DOI

Bergeron L, Perez GI, Macdonald G, et al (1998) Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 12:1304–1314. 10.1101/GAD.12.9.1304 10.1101/GAD.12.9.1304 PubMed DOI PMC

Baliga BC, Read SH, Kumar S (2004) The biochemical mechanism of caspase-2 activation. Cell Death Differ 11:1234–1241. 10.1038/SJ.CDD.4401492 10.1038/SJ.CDD.4401492 PubMed DOI

Guo Y, Srinivasula SM, Druilhe A, et al (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277:13430–13437. 10.1074/JBC.M108029200 10.1074/JBC.M108029200 PubMed DOI

Van De Craen M, Declercq W, Van Den Brande I, et al (1999) The proteolytic procaspase activation network: an in vitro analysis. Cell Death Differ 6:1117–1124. 10.1038/SJ.CDD.4400589 10.1038/SJ.CDD.4400589 PubMed DOI

Bouchier-Hayes L, Green DR (2012) Caspase-2: the orphan caspase. Cell Death Differ 19:51–57. 10.1038/CDD.2011.157 10.1038/CDD.2011.157 PubMed DOI PMC

Forsberg J, Zhivotovsky B, Olsson M (2017) Caspase-2: an orphan enzyme out of the shadows. Oncogene 36:5441–5444. 10.1038/ONC.2017.169 10.1038/ONC.2017.169 PubMed DOI

Brown-Suedel AN, Bouchier-Hayes L (2020) Caspase-2 substrates: to apoptosis, cell cycle control, and beyond. Front cell Dev Biol 8. 10.3389/FCELL.2020.610022 PubMed PMC

Wang L, Miura M, Bergeron L, et al (1994) Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 78:739–750. 10.1016/S0092-8674(94)90422-7 10.1016/S0092-8674(94)90422-7 PubMed DOI

Machado M V., Michelotti GA, Jewell ML, et al (2016) Caspase-2 promotes obesity, the metabolic syndrome and nonalcoholic fatty liver disease. Cell Death Dis 7. 10.1038/CDDIS.2016.19 PubMed PMC

Ho LH, Taylor R, Dorstyn L, et al (2009) A tumor suppressor function for caspase-2. Proc Natl Acad Sci U S A 106:5336–5341. 10.1073/PNAS.0811928106 10.1073/PNAS.0811928106 PubMed DOI PMC

Kim IR, Murakami K, Chen NJ, et al (2009) DNA damage- and stress-induced apoptosis occurs independently of PIDD. Apoptosis 14:1039–1049. 10.1007/S10495-009-0375-1 10.1007/S10495-009-0375-1 PubMed DOI

Manzl C, Krumschnabel G, Bock F, et al (2009) Caspase-2 activation in the absence of PIDDosome formation. J Cell Biol 185:291–303. 10.1083/JCB.200811105 10.1083/JCB.200811105 PubMed DOI PMC

Pistritto G, Papaleo V, Sanchez P, et al (2012) Divergent modulation of neuronal differentiation by caspase-2 and – 9. PLoS One 7:e36002. 10.1371/journal.pone.0036002 10.1371/journal.pone.0036002 PubMed DOI PMC

Boonstra K, Bloemberg D, Quadrilatero J (2018) Caspase-2 is required for skeletal muscle differentiation and myogenesis. Biochim Biophys Acta Mol cell Res 1865:95–104. 10.1016/J.BBAMCR.2017.07.016 10.1016/J.BBAMCR.2017.07.016 PubMed DOI

Dehkordi, Mahshid H, Tashakor A, O’Connell E, Fearnhead HO (2020) Apoptosome-dependent myotube formation involves activation of caspase-3 in differentiating myoblasts. Cell Death Dis 11:308. 10.1038/s41419-020-2502-4 10.1038/s41419-020-2502-4 PubMed DOI PMC

Mogi M, Togari A (2003) Activation of caspases is required for osteoblastic differentiation. J Biol Chem 278:47477–82. 10.1074/jbc.M307055200 10.1074/jbc.M307055200 PubMed DOI

Kratochvílová A, Veselá B, Ledvina V, et al (2020) Osteogenic impact of pro-apoptotic caspase inhibitors in MC3T3-E1 cells. Sci Rep 10. 10.1038/S41598-020-64294-9 PubMed PMC

Xu ZX, Tan JW, Xu H, et al (2019) Caspase-2 promotes AMPA receptor internalization and cognitive flexibility via mTORC2-AKT-GSK3β signaling. Nat Commun 10. 10.1038/S41467-019-11575-1 PubMed PMC

Machado M V., Michelotti GA, De Almeida Pereira T, et al (2015) Reduced lipoapoptosis, hedgehog pathway activation and fibrosis in caspase-2 deficient mice with non-alcoholic steatohepatitis. Gut 64:1148–1157. 10.1136/GUTJNL-2014-307362 10.1136/GUTJNL-2014-307362 PubMed DOI PMC

Zhao X, Kotilinek LA, Smith B, et al (2016) Caspase-2 cleavage of tau reversibly impairs memory. Nat Med 22:1268–1276. 10.1038/NM.4199 10.1038/NM.4199 PubMed DOI

Fava LL, Schuler F, Sladky V, et al (2017) The PIDDosome activates p53 in response to supernumerary centrosomes. Genes Dev 31:34–45. 10.1101/gad.289728.116 10.1101/gad.289728.116 PubMed DOI PMC

Zhang Y, Padalecki SS, Chaudhuri AR, et al (2007) Caspase-2 deficiency enhances aging-related traits in mice. Mech Ageing Dev 128:213–221. 10.1016/J.MAD.2006.11.030 10.1016/J.MAD.2006.11.030 PubMed DOI PMC

Varfolomeev EE, Schuchmann M, Luria V, et al (1998) Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9:267–276. 10.1016/S1074-7613(00)80609-3 10.1016/S1074-7613(00)80609-3 PubMed DOI

Kuida K, Haydar TF, Kuan CY, et al (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94:325–37. 10.1016/s0092-8674(00)81476-2 10.1016/s0092-8674(00)81476-2 PubMed DOI

O’Reilly RC, Noelle DC, Braver TS, Cohen JD (2002) Prefrontal cortex and dynamic categorization tasks: representational organization and neuromodulatory control. Cereb Cortex 12:246–257. 10.1093/cercor/12.3.246 10.1093/cercor/12.3.246 PubMed DOI

Sharma R, Callaway D, Vanegas D, et al (2014) Caspase-2 maintains bone homeostasis by inducing apoptosis of oxidatively-damaged osteoclasts. PLoS One 9. 10.1371/JOURNAL.PONE.0093696 PubMed PMC

Callaway DA, Riquelme MA, Sharma R, et al (2015) Caspase-2 modulates osteoclastogenesis through down-regulating oxidative stress. Bone 76:40–48. 10.1016/J.BONE.2015.03.006 10.1016/J.BONE.2015.03.006 PubMed DOI PMC

Carroll JB, Lerch JP, Franciosi S, et al (2011) Natural history of disease in the YAC128 mouse reveals a discrete signature of pathology in Huntington disease. Neurobiol Dis 43:257–265. 10.1016/j.nbd.2011.03.018 10.1016/j.nbd.2011.03.018 PubMed DOI

Puccini J, Dorstyn L, Kumar S (2013) Caspase-2 as a tumour suppressor. Cell Death Differ 20:1133–1139. 10.1038/CDD.2013.87 10.1038/CDD.2013.87 PubMed DOI PMC

Parsons MJ, McCormick L, Janke L, et al (2013) Genetic deletion of caspase-2 accelerates MMTV/c-neu-driven mammary carcinogenesis in mice. Cell Death Differ 20:1174–1182. 10.1038/CDD.2013.38 10.1038/CDD.2013.38 PubMed DOI PMC

Wilson CH, Nikolic A, Kentish SJ, et al (2017) Caspase-2 deficiency enhances whole-body carbohydrate utilisation and prevents high-fat diet-induced obesity. Cell Death Dis 8:e3136. 10.1038/cddis.2017.518 10.1038/cddis.2017.518 PubMed DOI PMC

Muzio M, Chinnaiyan AM, Kischkel FC, et al (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death–inducing signaling complex. Cell 85:817–827. 10.1016/S0092-8674(00)81266-0 10.1016/S0092-8674(00)81266-0 PubMed DOI

Hughes MA, Harper N, Butterworth M, et al (2009) Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival. Mol Cell 35:265–279. 10.1016/J.MOLCEL.2009.06.012 10.1016/J.MOLCEL.2009.06.012 PubMed DOI

Oberst A, Dillon CP, Weinlich R, et al (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471:363–368. 10.1038/NATURE09852 10.1038/NATURE09852 PubMed DOI PMC

Kaiser WJ, Upton JW, Long AB, et al (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471:368–373. 10.1038/NATURE09857 10.1038/NATURE09857 PubMed DOI PMC

Tenev T, Bianchi K, Darding M, et al (2011) the ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43:432–448. 10.1016/J.MOLCEL.2011.06.006 10.1016/J.MOLCEL.2011.06.006 PubMed DOI

Alvarez-Diaz S, Dillon CP, Lalaoui N, et al (2016) The pseudokinase MLKL and the kinase RIPK3 have distinct roles in autoimmune disease caused by loss of death-receptor-induced apoptosis. Immunity 45:513–526. 10.1016/J.IMMUNI.2016.07.016 10.1016/J.IMMUNI.2016.07.016 PubMed DOI PMC

Pang J, Vince JE (2023) The role of caspase-8 in inflammatory signalling and pyroptotic cell death. Semin Immunol 70. 10.1016/J.SMIM.2023.101832 PubMed

Gringhuis SI, Kaptein TM, Wevers BA, et al (2012) Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat Immunol 13:246–254. 10.1038/NI.2222 10.1038/NI.2222 PubMed DOI

Gurung P, Anand PK, Malireddi RKS, et al (2014) FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol 192:1835–1846. 10.4049/JIMMUNOL.1302839 10.4049/JIMMUNOL.1302839 PubMed DOI PMC

Phillips FC, Gurung P, Kanneganti TD (2016) Microbiota and caspase-1/caspase-8 regulate IL-1β-mediated bone disease. Gut Microbes 7:334–341. 10.1080/19490976.2016.1182289 10.1080/19490976.2016.1182289 PubMed DOI PMC

Helfer B, Boswell BC, Finlay D, et al (2006) Caspase-8 promotes cell motility and calpain activity under nonapoptotic conditions. Cancer Res 66:4273–4278. 10.1158/0008-5472.CAN-05-4183 10.1158/0008-5472.CAN-05-4183 PubMed DOI

Torres VA, Mielgo A, Barbero S, et al (2010) Rab5 mediates caspase-8-promoted cell motility and metastasis. Mol Biol Cell 21:369–376. 10.1091/MBC.E09-09-0769 10.1091/MBC.E09-09-0769 PubMed DOI PMC

Alam A, Cohen LY, Aouad S, Sékaly RP (1999) Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J Exp Med 190:1879–1890. 10.1084/JEM.190.12.1879 10.1084/JEM.190.12.1879 PubMed DOI PMC

Salmena L, Lemmers B, Hakem A, et al (2003) Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev 17:883–895. 10.1101/GAD.1063703 10.1101/GAD.1063703 PubMed DOI PMC

Beisner DR, Ch’en IL, Kolla R V., et al (2005) Cutting edge: innate immunity conferred by B cells is regulated by caspase-8. J Immunol 175:3469–3473. 10.4049/JIMMUNOL.175.6.3469 10.4049/JIMMUNOL.175.6.3469 PubMed DOI

Pellegrini M, Bath S, Marsden VS, et al (2005) FADD and caspase-8 are required for cytokine-induced proliferation of hemopoietic progenitor cells. Blood 106:1581–1589. 10.1182/BLOOD-2005-01-0284 10.1182/BLOOD-2005-01-0284 PubMed DOI PMC

Yu L, Alva A, Su H, et al (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304:1500–1502. 10.1126/SCIENCE.1096645 10.1126/SCIENCE.1096645 PubMed DOI

Kovalenko A, Kim JC, Kang TB, et al (2009) Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J Exp Med 206:2161–2177. 10.1084/JEM.20090616 10.1084/JEM.20090616 PubMed DOI PMC

Stupack DG (2013) Caspase-8 as a therapeutic target in cancer. Cancer Lett 332:133–140. 10.1016/J.CANLET.2010.07.022 10.1016/J.CANLET.2010.07.022 PubMed DOI PMC

Orning P, Lien E (2021) Multiple roles of caspase-8 in cell death, inflammation, and innate immunity. J Leukoc Biol 109:121–141. 10.1002/JLB.3MR0420-305R 10.1002/JLB.3MR0420-305R PubMed DOI PMC

Kang T-B, Ben-Moshe T, Varfolomeev EE, et al (2004) Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol 173:2976–2984. 10.4049/JIMMUNOL.173.5.2976 10.4049/JIMMUNOL.173.5.2976 PubMed DOI

Sakamaki K, Inoue T, Asano M, et al (2002) Ex vivo whole-embryo culture of caspase-8-deficient embryos normalize their aberrant phenotypes in the developing neural tube and heart. Cell Death Differ 9:1196–1206. 10.1038/SJ.CDD.4401090 10.1038/SJ.CDD.4401090 PubMed DOI

Morgan MJ, Kim YS (2022) Roles of RIPK3 in necroptosis, cell signaling, and disease. Exp Mol Med 54:1695–1704. 10.1038/S12276-022-00868-Z 10.1038/S12276-022-00868-Z PubMed DOI PMC

Kang TB, Jeong JS, Yang SH, et al (2018) Caspase-8 deficiency in mouse embryos triggers chronic RIPK1-dependent activation of inflammatory genes, independently of RIPK3. Cell Death Differ 25:1107–1117. 10.1038/S41418-018-0104-9 10.1038/S41418-018-0104-9 PubMed DOI PMC

Cuda CM, Misharin A V., Khare S, et al (2015) Conditional deletion of caspase-8 in macrophages alters macrophage activation in a RIPK-dependent manner. Arthritis Res Ther 17. 10.1186/S13075-015-0794-Z PubMed PMC

Lee P, Lee DJ, Chan C, et al (2009) Dynamic expression of epidermal caspase 8 simulates a wound healing response. Nature 458:519–523. 10.1038/NATURE07687 10.1038/NATURE07687 PubMed DOI PMC

Salmena L, Hakem R (2005) Caspase-8 deficiency in T cells leads to a lethal lymphoinfiltrative immune disorder. J Exp Med 202:727–732. 10.1084/JEM.20050683 10.1084/JEM.20050683 PubMed DOI PMC

Su H, Bidère N, Zheng L, et al (2005) Requirement for caspase-8 in NF-κB activation by antigen receptor. Science (80-) 307:1465–1468. 10.1126/SCIENCE.1104765/SUPPL_FILE/SU.SOM.PDF10.1126/SCIENCE.1104765/SUPPL_FILE PubMed DOI

Lemmers B, Salmena L, Bidere N, et al (2007) Essential role for Caspase-8 in toll-like receptors and NF-κB signalling. J Biol Chem 282:7416–7423. 10.1074/jbc.M606721200 10.1074/jbc.M606721200 PubMed DOI

Liedtke C, Bangen JM, Freimuth J, et al (2011) Loss of caspase-8 protects mice against inflammation-related hepatocarcinogenesis but induces non-apoptotic liver injury. Gastroenterology 141:2176–2187. 10.1053/J.GASTRO.2011.08.037 10.1053/J.GASTRO.2011.08.037 PubMed DOI

Freimuth J, Bangen JM, Lambertz D, et al (2013) Loss of caspase-8 in hepatocytes accelerates the onset of liver regeneration in mice through premature nuclear factor kappa B activation. Hepatology 58:1779–1789. 10.1002/HEP.26538 10.1002/HEP.26538 PubMed DOI

An HK, Chung KM, Park H, et al (2020) CASP9 (caspase 9) is essential for autophagosome maturation through regulation of mitochondrial homeostasis. Autophagy 16:1598–1617. 10.1080/15548627.2019.1695398 10.1080/15548627.2019.1695398 PubMed DOI PMC

Denault J-B, Drag M, Salvesen GS, et al (2007) Small molecules not direct activators of caspases. Nat. Chem. Biol. 3:519; author reply 520 10.1038/nchembio0907-519 PubMed DOI

Stennicke HR, Salvesen GS (1999) Catalytic properties of the caspases. Cell Death Differ 6:1054–9. 10.1038/sj.cdd.4400599 10.1038/sj.cdd.4400599 PubMed DOI

Nakanishi K, Maruyama M, Shibata T, Morishima N (2001) Identification of a caspase-9 substrate and detection of its cleavage in programmed cell death during mouse development. J Biol Chem 276:41237–41244. 10.1074/JBC.M105648200 10.1074/JBC.M105648200 PubMed DOI

Byun Y, Chen F, Chang R, et al (2001) Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis. Cell Death Differ 8:443–450. 10.1038/SJ.CDD.4400840 10.1038/SJ.CDD.4400840 PubMed DOI

Srinivasula SM, Ahmad M, Guo Y, et al (1999) Identification of an endogenous dominant-negative short isoform of caspase-9 that can regulate apoptosis. Cancer Res 59:999–1002 PubMed

Laguna A, Aranda S, Barallobre MJ, et al (2008) The protein kinase DYRK1A regulates caspase-9-mediated apoptosis during retina development. Dev Cell 15:841–853. 10.1016/J.DEVCEL.2008.10.014 10.1016/J.DEVCEL.2008.10.014 PubMed DOI

Sanders EJ, Parker E (2002) The role of mitochondria, cytochrome c and caspase-9 in embryonic lens fibre cell denucleation. J Anat 201:121–35. 10.1046/j.1469-7580.2002.00081.x 10.1046/j.1469-7580.2002.00081.x PubMed DOI PMC

Cecconi F, Roth KA, Dolgov O, et al (2004) Apaf1-dependent programmed cell death is required for inner ear morphogenesis and growth. Development 131:2125–35. 10.1242/dev.01082 10.1242/dev.01082 PubMed DOI

Molnár T, Pallagi P, Tél B, et al (2021) Caspase-9 acts as a regulator of necroptotic cell death. FEBS J 288:6476–6491. 10.1111/FEBS.15898 10.1111/FEBS.15898 PubMed DOI

Avrutsky MI, Troy CM (2021) Caspase-9: a multimodal therapeutic target with diverse cellular expression in human disease. Front Pharmacol 12. 10.3389/FPHAR.2021.701301 PubMed PMC

Murray TVA, McMahon JM, Howley BA, et al (2008) A non-apoptotic role for caspase-9 in muscle differentiation. J Cell Sci 121:3786–3793. 10.1242/JCS.024547 10.1242/JCS.024547 PubMed DOI

Lu EP, McLellan M, Ding L, et al (2014) Caspase-9 is required for normal hematopoietic development and protection from alkylator-induced DNA damage in mice. Blood 124:3887–3895. 10.1182/BLOOD-2014-06-582551 10.1182/BLOOD-2014-06-582551 PubMed DOI PMC

Rongvaux A, Jackson R, Harman CCD, et al (2014) Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159:1563. 10.1016/J.CELL.2014.11.037 10.1016/J.CELL.2014.11.037 PubMed DOI PMC

Ohsawa S, Hamada S, Kuida K, et al (2010) Maturation of the olfactory sensory neurons by Apaf-1/caspase-9-mediated caspase activity. Proc Natl Acad Sci U S A 107:13366–71. 10.1073/pnas.0910488107 10.1073/pnas.0910488107 PubMed DOI PMC

Kuida K (2000) Caspase-9. Int J Biochem Cell Biol 32:121–124. 10.1016/S1357-2725(99)00024-2 10.1016/S1357-2725(99)00024-2 PubMed DOI

Hakem R, Hakem A, Duncan GS, et al (1998) Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94:339–52. 10.1016/s0092-8674(00)81477-4 10.1016/s0092-8674(00)81477-4 PubMed DOI

Ene AC, Park S, Edelmann W, Taketo T (2013) Caspase 9 is constitutively activated in mouse oocytes and plays a key role in oocyte elimination during meiotic prophase progression. Dev Biol 377:213–223. 10.1016/J.YDBIO.2013.01.027 10.1016/J.YDBIO.2013.01.027 PubMed DOI PMC

Setkova J, Matalova E, Sharpe PT, et al (2007) Primary enamel knot cell death in Apaf-1 and caspase-9 deficient mice. Arch Oral Biol 52:15–9. 10.1016/j.archoralbio.2006.07.006 10.1016/j.archoralbio.2006.07.006 PubMed DOI

Thesleff I, Keränen S, Jernvall J (2001) Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res 15:14–18. 10.1177/08959374010150010401 10.1177/08959374010150010401 PubMed DOI

Jernvall J, Åberg T, Kettunen P, et al (1998) The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development 125:161–169. 10.1242/DEV.125.2.161 10.1242/DEV.125.2.161 PubMed DOI

Ankawa R, Goldberger N, Yosefzon Y, et al (2021) Apoptotic cells represent a dynamic stem cell niche governing proliferation and tissue regeneration. Dev Cell 56:1900–1916.e5. 10.1016/J.DEVCEL.2021.06.008 10.1016/J.DEVCEL.2021.06.008 PubMed DOI

Huang Y, Shin NH, Sun Y, Wang KKW (2001) Molecular cloning and characterization of a novel caspase-3 variant that attenuates apoptosis induced by proteasome inhibition. Biochem Biophys Res Commun 283:762–769. 10.1006/BBRC.2001.4871 10.1006/BBRC.2001.4871 PubMed DOI

Kuida K, Zheng TS, Na S, et al (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372. 10.1038/384368a0 10.1038/384368a0 PubMed DOI

Zeiss CJ, Neal J, Johnson EA (2004) Caspase-3 in postnatal retinal development and degeneration. Invest Ophthalmol Vis Sci 45:964–70. 10.1167/iovs.03-0439 10.1167/iovs.03-0439 PubMed DOI

Makishima T, Hochman L, Armstrong P, et al (2011) Inner ear dysfunction in caspase-3 deficient mice. BMC Neurosci 12:102. 10.1186/1471-2202-12-102 10.1186/1471-2202-12-102 PubMed DOI PMC

Woo M, Hakem R, Furlonger C, et al (2003) Caspase-3 regulates cell cycle in B cells: a consequence of substrate specificity. Nat Immunol 4:1016–1022. 10.1038/NI976 10.1038/NI976 PubMed DOI

Fernando P, Brunette S, Megeney LA (2005) Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J 19:1671–1673. 10.1096/FJ.04-2981FJE 10.1096/FJ.04-2981FJE PubMed DOI

Boland K, Flanagan L, Prehn JHM (2013) Paracrine control of tissue regeneration and cell proliferation by Caspase-3. Cell Death Dis 4. 10.1038/CDDIS.2013.250 PubMed PMC

Fan W, Dai Y, Xu H, et al (2014) Caspase-3 modulates regenerative response after stroke. Stem Cells 32:473–486. 10.1002/STEM.1503 10.1002/STEM.1503 PubMed DOI

Zhou Z, Xu S, Jiang L, et al (2022) A systematic Pan-cancer analysis of CASP3 as a potential target for Immunotherapy. Front Mol Biosci 9. 10.3389/FMOLB.2022.776808 PubMed PMC

Khan S, Ahmad K, Alshammari EMA, et al (2015) Implication of Caspase-3 as a common therapeutic target for multineurodegenerative disorders and its inhibition using nonpeptidyl natural compounds. Biomed Res Int 2015. 10.1155/2015/379817 PubMed PMC

Yang B, Ye D, Wang Y (2013) Caspase-3 as a therapeutic target for heart failure. Expert Opin Ther Targets 17:255–263. 10.1517/14728222.2013.745513 10.1517/14728222.2013.745513 PubMed DOI

Leonard JR, Klocke BJ, D’sa C, et al (2002) Strain-dependent neurodevelopmental abnormalities in caspase-3-deficient mice. J Neuropathol Exp Neurol 61:673–677. 10.1093/JNEN/61.8.673 10.1093/JNEN/61.8.673 PubMed DOI

Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6:1028–1042. 10.1038/SJ.CDD.4400598 10.1038/SJ.CDD.4400598 PubMed DOI

Houde C, Banks KG, Coulombe N, et al (2004) Caspase-7 expanded function and intrinsic expression level underlies strain-specific brain phenotype of caspase-3-null mice. J Neurosci 24:9977–84. 10.1523/JNEUROSCI.3356-04.2004 10.1523/JNEUROSCI.3356-04.2004 PubMed DOI PMC

Takahashi K, Kamiya K, Urase K, et al (2001) Caspase-3-deficiency induces hyperplasia of supporting cells and degeneration of sensory cells resulting in the hearing loss. Brain Res 894:359–67. 10.1016/s0006-8993(01)02123-0 10.1016/s0006-8993(01)02123-0 PubMed DOI

Matalova E, Sharpe PT, Lakhani SA, et al (2006) Molar tooth development in caspase-3 deficient mice. Int J Dev Biol 50:491–497. 10.1387/IJDB.052117EM 10.1387/IJDB.052117EM PubMed DOI

Suzuki T, Ichii O, Nakamura T, et al (2020) Immune-associated renal disease found in caspase 3-deficient mice. Cell Tissue Res 379:323–335. 10.1007/S00441-019-03084-W/FIGURES/8 10.1007/S00441-019-03084-W/FIGURES/8 PubMed DOI

Liu X, He Y, Li F, et al (2015) Caspase-3 promotes genetic instability and carcinogenesis. Mol Cell 58:284–296. 10.1016/J.MOLCEL.2015.03.003 10.1016/J.MOLCEL.2015.03.003 PubMed DOI PMC

Woo M, Hakem R, Soengas MS, et al (1998) Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 12:806–19. 10.1101/gad.12.6.806 10.1101/gad.12.6.806 PubMed DOI PMC

Janzen V, Fleming HE, Riedt T, et al (2008) Hematopoietic stem cell responsiveness to exogenous signals is limited by caspase-3. Cell Stem Cell 2:584–594. 10.1016/J.STEM.2008.03.012 10.1016/J.STEM.2008.03.012 PubMed DOI PMC

Yosefzon Y, Soteriou D, Feldman A, et al (2018) Caspase-3 regulates YAP-dependent cell proliferation and organ size. Mol Cell 70:573–587.e4. 10.1016/J.MOLCEL.2018.04.019 10.1016/J.MOLCEL.2018.04.019 PubMed DOI

Szymczyk K, Freeman T, Adams C, et al (2006) Active caspase-3 is required for osteoclast differentiation. J Cell Physiol 209:836–844. 10.1002/JCP.20770 10.1002/JCP.20770 PubMed DOI

Li F, Huang Q, Chen J, et al (2010) Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci Signal 3. 10.1126/SCISIGNAL.2000634 PubMed PMC

Morishita H, Makishima T, Kaneko C, et al (2001) Deafness due to degeneration of cochlear neurons in caspase-3-deficient mice. Biochem Biophys Res Commun 284:142–149. 10.1006/bbrc.2001.4939 10.1006/bbrc.2001.4939 PubMed DOI

Lo SC, Scearce-Levie K, Sheng M (2016) Characterization of social behaviors in caspase-3 deficient mice. Sci Rep 6. 10.1038/SREP18335 PubMed PMC

Lo SC, Wang Y, Weber M, et al (2015) Caspase-3 deficiency results in disrupted synaptic homeostasis and impaired attention control. J Neurosci 35:2118–2132. 10.1523/JNEUROSCI.3280-14.2015 10.1523/JNEUROSCI.3280-14.2015 PubMed DOI PMC

Thornberry NA, Rano TA, Peterson EP, et al (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272:17907–17911. 10.1074/JBC.272.29.17907 10.1074/JBC.272.29.17907 PubMed DOI

Zheng TS, Hunot S, Kuida K, Flavell RA (1999) Caspase knockouts: matters of life and death. Cell Death Differ 6:1043–1053. 10.1038/SJ.CDD.4400593 10.1038/SJ.CDD.4400593 PubMed DOI

Ruchaud S, Korfali N, Villa P, et al (2002) Caspase-6 gene disruption reveals a requirement for lamin A cleavage in apoptotic chromatin condensation. EMBO J 21:1967–1977. 10.1093/EMBOJ/21.8.1967 10.1093/EMBOJ/21.8.1967 PubMed DOI PMC

Guo H, Pétrin D, Zhang Y, et al (2006) Caspase-1 activation of caspase-6 in human apoptotic neurons. Cell Death Differ 13:285–292. 10.1038/SJ.CDD.4401753 10.1038/SJ.CDD.4401753 PubMed DOI

Zheng M, Karki R, Vogel P, Kanneganti TD (2020) Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. Cell 181:674–687.e13. 10.1016/J.CELL.2020.03.040 10.1016/J.CELL.2020.03.040 PubMed DOI PMC

Ladha S, Qiu X, Casal L, et al (2018) Constitutive ablation of caspase-6 reduces the inflammatory response and behavioural changes caused by peripheral pro-inflammatory stimuli. Cell Death Discov 4. 10.1038/S41420-018-0043-8 PubMed PMC

Qi L, Wang L, Jin M, et al (2023) Caspase-6 is a key regulator of cross-talk signal way in PANoptosis in cancer. Immunology 169:245–259. 10.1111/IMM.13633 10.1111/IMM.13633 PubMed DOI

Uribe V, Wong BKY, Graham RK, et al (2012) Rescue from excitotoxicity and axonal degeneration accompanied by age-dependent behavioral and neuroanatomical alterations in caspase-6-deficient mice. Hum Mol Genet 21:1954–1967. 10.1093/HMG/DDS005 10.1093/HMG/DDS005 PubMed DOI PMC

Angel A, Volkman R, Royal TG, Offen D (2020) Caspase-6 knockout in the 5xFAD model of Alzheimer’s disease reveals favorable outcome on memory and neurological hallmarks. Int J Mol Sci 21. 10.3390/IJMS21031144 PubMed PMC

Wang XJ, Cao Q, Zhang Y, Su XD (2015) Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 55:553–572. 10.1146/ANNUREV-PHARMTOX-010814-124414 10.1146/ANNUREV-PHARMTOX-010814-124414 PubMed DOI

Zheng TS, Hunot S, Kuida K, et al (2000) Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nat Med 6:1241–7. 10.1038/81343 10.1038/81343 PubMed DOI

Watanabe C, Shu GL, Zheng TS, et al (2008) Caspase 6 regulates b cell activation and differentiation into plasma cells. J Immunol 181:6810–6819. 10.4049/JIMMUNOL.181.10.6810 10.4049/JIMMUNOL.181.10.6810 PubMed DOI PMC

Akpan N, Serrano-Saiz E, Zacharia BE, et al (2011) Intranasal delivery of caspase-9 inhibitor reduces caspase-6-dependent axon/neuron loss and improves neurological function after stroke. J Neurosci 31:8894–8904. 10.1523/JNEUROSCI.0698-11.2011 10.1523/JNEUROSCI.0698-11.2011 PubMed DOI PMC

Sheng M, Weng Y, Cao Y, et al (2023) Caspase 6/NR4A1/SOX9 signaling axis regulates hepatic inflammation and pyroptosis in ischemia-stressed fatty liver. Cell Death Discov 9. 10.1038/S41420-023-01396-Z PubMed PMC

Nikolaev A, McLaughlin T, O’Leary DDM, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457:981–989. 10.1038/NATURE07767 10.1038/NATURE07767 PubMed DOI PMC

Swanson K V., Deng M, Ting JPY (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19:477–489. 10.1038/S41577-019-0165-0 10.1038/S41577-019-0165-0 PubMed DOI PMC

Watanabe C, Shu GL, Giltiay N V., Clark EA (2018) Regulation of B-lineage cells by caspase 6. Immunol Cell Biol 96:1072–1082. 10.1111/IMCB.12172 10.1111/IMCB.12172 PubMed DOI PMC

Walsh JG, Cullen SP, Sheridan C, et al (2008) Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci U S A 105:12815–9. 10.1073/pnas.0707715105 10.1073/pnas.0707715105 PubMed DOI PMC

Choudhury S, Bhootada Y, Gorbatyuk O, Gorbatyuk M (2013) Caspase-7 ablation modulates UPR, reprograms TRAF2-JNK apoptosis and protects T17M rhodopsin mice from severe retinal degeneration. Cell Death Dis 4. 10.1038/CDDIS.2013.34 PubMed PMC

Nozaki K, Maltez VI, Rayamajhi M, et al (2022) Caspase-7 activates ASM to repair gasdermin and perforin pores. Nature 606:960–967. 10.1038/S41586-022-04825-8 10.1038/S41586-022-04825-8 PubMed DOI PMC

Akhter A, Gavrilin MA, Frantz L, et al (2009) Caspase-7 activation by the Nlrc4/Ipaf inflammasome restricts Legionella pneumophila infection. PLoS Pathog 5. 10.1371/JOURNAL.PPAT.1000361 PubMed PMC

Lamkanfi M, Moreira LO, Makena P, et al (2009) Caspase-7 deficiency protects from endotoxin-induced lymphocyte apoptosis and improves survival. Blood 113:2742–2745. 10.1182/BLOOD-2008-09-178038 10.1182/BLOOD-2008-09-178038 PubMed DOI PMC

Lamkanfi M, Kanneganti TD, van Damme P, et al (2008) Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol Cell Proteomics 7:2350–2363. 10.1074/MCP.M800132-MCP200 10.1074/MCP.M800132-MCP200 PubMed DOI PMC

Svandova E, Lesot H, Vanden Berghe T, et al (2014) Non-apoptotic functions of caspase-7 during osteogenesis. Cell Death Dis 5:e1366. 10.1038/cddis.2014.330 10.1038/cddis.2014.330 PubMed DOI PMC

Veselá B, Matalová E (2015) Expression of apoptosis-related genes in the mouse skin during the first postnatal catagen stage, focused on localization of Bnip3L and caspase-12. Connect Tissue Res 56:326–335. 10.3109/03008207.2015.1040546 10.3109/03008207.2015.1040546 PubMed DOI

Cowan KN, Leung WCY, Mar C, et al (2005) Caspases from apoptotic myocytes degrade extracellular matrix: a novel remodeling paradigm. FASEB J 19:1848–1850. 10.1096/FJ.05-3706FJE 10.1096/FJ.05-3706FJE PubMed DOI

Hermel E, Gafni J, Propp S, et al (2004) Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington’s disease. Cell Death Differ 11:424–438. 10.1038/sj.cdd.4401358 10.1038/sj.cdd.4401358 PubMed DOI

Hotchkiss RS, Nicholson DW (2006) Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol 6:813–822. 10.1038/NRI1943 10.1038/NRI1943 PubMed DOI

Teixeira VH, Jacq L, Lasbleiz S, et al (2008) Genetic and expression analysis of CASP7 gene in a European Caucasian population with rheumatoid arthritis. J Rheumatol 35:1912–1918 PubMed

Babu SR, Bao F, Roberts CM, et al (2003) Caspase 7 is a positional candidate gene for IDDM 17 in a Bedouin Arab family. Ann N Y Acad Sci 1005:340–343. 10.1196/ANNALS.1288.054 10.1196/ANNALS.1288.054 PubMed DOI

Lakhani SA, Masud A, Kuida K, et al (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311:847–851. 10.1126/SCIENCE.1115035 10.1126/SCIENCE.1115035 PubMed DOI PMC

Choudhury S, Liu Y, Clark AF, Pang IH (2015) Caspase-7: a critical mediator of optic nerve injury-induced retinal ganglion cell death. Mol Neurodegener 10. 10.1186/S13024-015-0039-2 PubMed PMC

Musch T, Öz Y, Lyko F, Breiling A (2010) Nucleoside drugs induce cellular differentiation by caspase-dependent degradation of stem cell factors. PLoS One 5. 10.1371/JOURNAL.PONE.0010726 PubMed PMC

Li L, Kwon HJ, Harada H, et al (2011) Expression patterns of ABCG2, Bmi-1, Oct-3/4, and Yap in the developing mouse incisor. Gene Expr Patterns 11:163–170. 10.1016/J.GEP.2010.11.001 10.1016/J.GEP.2010.11.001 PubMed DOI

Yuan J, Shaham S, Ledoux S, et al (1993) The C. Elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75:641–652. 10.1016/0092-8674(93)90485-9 10.1016/0092-8674(93)90485-9 PubMed DOI

Molla MD, Akalu Y, Geto Z, et al (2020) Role of Caspase-1 in the pathogenesis of inflammatory-associated chronic noncommunicable diseases. J Inflamm Res 13:749–764. 10.2147/JIR.S277457 10.2147/JIR.S277457 PubMed DOI PMC

Denes A, Lopez-Castejon G, Brough D (2012) Caspase-1: is IL-1 just the tip of the ICEberg? Cell Death Dis 3. 10.1038/CDDIS.2012.86 PubMed PMC

Fernandes-Alnemri T, Wu J, Yu JW, et al (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–1604. 10.1038/SJ.CDD.4402194 10.1038/SJ.CDD.4402194 PubMed DOI PMC

Barnoy S, Kosower NS (2003) Caspase-1-induced calpastatin degradation in myoblast differentiation and fusion: cross-talk between the caspase and calpain systems. FEBS Lett 546:213–217. 10.1016/S0014-5793(03)00573-8 10.1016/S0014-5793(03)00573-8 PubMed DOI

Vaisid T, Kosower NS, Barnoy S (2005) Caspase-1 activity is required for neuronal differentiation of PC12 cells: cross-talk between the caspase and calpain systems. Biochim Biophys Acta 1743:223–230. 10.1016/J.BBAMCR.2005.01.001 10.1016/J.BBAMCR.2005.01.001 PubMed DOI

Ramesova A, Vesela B, Svandova E, et al (2021) Caspase-1 inhibition impacts the formation of chondrogenic nodules, and the expression of markers related to osteogenic differentiation and lipid metabolism. Int J Mol Sci 22. 10.3390/IJMS22179576 PubMed PMC

Kotas ME, Jurczak MJ, Annicelli C, et al (2013) Role of caspase-1 in regulation of triglyceride metabolism. Proc Natl Acad Sci U S A 110:4810–4815. 10.1073/PNAS.1301996110 10.1073/PNAS.1301996110 PubMed DOI PMC

Wang H, Capell W, Yoon JH, et al (2014) Obesity development in caspase-1-deficient mice. Int J Obes (Lond) 38:152–155. 10.1038/IJO.2013.59 10.1038/IJO.2013.59 PubMed DOI

An S, Hu H, Li Y, Hu Y (2020) Pyroptosis plays a role in osteoarthritis. Aging Dis 11:1146–1157. 10.14336/AD.2019.1127 10.14336/AD.2019.1127 PubMed DOI PMC

Fève B, Bastard JP (2009) The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol 5:305–311. 10.1038/NRENDO.2009.62 10.1038/NRENDO.2009.62 PubMed DOI

Kuida K, Lippke JA, Ku G, et al (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267:2000–3. 10.1126/science.7535475 10.1126/science.7535475 PubMed DOI

Li P, Allen H, Banerjee S, et al (1995) Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80:401–11. 10.1016/0092-8674(95)90490-5 10.1016/0092-8674(95)90490-5 PubMed DOI

Menzel CL, Sun Q, Loughran PA, et al (2011) Caspase-1 is hepatoprotective during trauma and hemorrhagic shock by reducing liver injury and inflammation. Mol Med 17:1031. 10.2119/MOLMED.2011.00015 10.2119/MOLMED.2011.00015 PubMed DOI PMC

Merkle S, Frantz S, Schön MP, et al (2007) A role for caspase-1 in heart failure. Circ Res 100:645–653. 10.1161/01.RES.0000260203.55077.61 10.1161/01.RES.0000260203.55077.61 PubMed DOI

Rowe SJ, Allen L, Ridger VC, et al (2002) Caspase-1-deficient mice have delayed neutrophil apoptosis and a prolonged inflammatory response to lipopolysaccharide-induced acute lung injury. J Immunol 169:6401–6407. 10.4049/JIMMUNOL.169.11.6401 10.4049/JIMMUNOL.169.11.6401 PubMed DOI

Arai J, Katai N, Kuida K, et al (2006) Decreased retinal neuronal cell death in caspase-1 knockout mice. Jpn J Ophthalmol 50:417–425. 10.1007/s10384-006-0352-y 10.1007/s10384-006-0352-y PubMed DOI

Hu B, Elinav E, Huber S, et al (2010) Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci U S A 107:21635–21640. 10.1073/PNAS.1016814108 10.1073/PNAS.1016814108 PubMed DOI PMC

Huang CH, Chen CJ, Yen CT, et al (2013) Caspase-1 deficient mice are more susceptible to influenza a virus infection with PA variation. J Infect Dis 208:1898–1905. 10.1093/INFDIS/JIT381 10.1093/INFDIS/JIT381 PubMed DOI

Thomas PG, Dash P, Aldridge JRJ, et al (2009) The intracellular sensor NLRP3 mediates key innate and healing responses to influenza a virus via the regulation of caspase-1. Immunity 30:566–575. 10.1016/j.immuni.2009.02.006 10.1016/j.immuni.2009.02.006 PubMed DOI PMC

Lara-Tejero M, Sutterwala FS, Ogura Y, et al (2006) Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J Exp Med 203:1407. 10.1084/JEM.20060206 10.1084/JEM.20060206 PubMed DOI PMC

Koedel U, Winkler F, Angele B, et al (2002) Role of Caspase-1 in experimental pneumococcal meningitis: evidence from pharmacologic caspase inhibition and caspase-1-deficient mice. Ann Neurol 51:319–329. 10.1002/ANA.10103 10.1002/ANA.10103 PubMed DOI

Thakur A, Barrett RP, Hobden JA, Hazlett LD (2004) Caspase-1 inhibitor reduces severity of pseudomonas aeruginosa keratitis in mice. Invest Ophthalmol Vis Sci 45:3177–3184. 10.1167/IOVS.04-0041 10.1167/IOVS.04-0041 PubMed DOI

Fantuzzi G, Puren AJ, Harding MW, et al (1998) Interleukin-18 regulation of interferon γ production and cell proliferation as shown in interleukin-1β–converting enzyme (Caspase-1)-deficient mice. Blood 91:2118–2125. 10.1182/BLOOD.V91.6.2118 10.1182/BLOOD.V91.6.2118 PubMed DOI

Melnikov VY, Ecder T, Fantuzzi G, et al (2001) Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J Clin Invest 107:1145–1152. 10.1172/JCI12089 10.1172/JCI12089 PubMed DOI PMC

Wang W, Faubel S, Ljubanovic D, et al (2005) Endotoxemic acute renal failure is attenuated in caspase-1-deficient mice. Am J Physiol Renal Physiol 288. 10.1152/AJPRENAL.00130.2004 PubMed

Faubel S, Ljubanovic D, Reznikov L, et al (2004) Caspase-1-deficient mice are protected against cisplatin-induced apoptosis and acute tubular necrosis. Kidney Int 66:2202–2213. 10.1111/J.1523-1755.2004.66010.X 10.1111/J.1523-1755.2004.66010.X PubMed DOI

Schielke GP, Yang GY, Shivers BD, Betz AL (1998) Reduced ischemic brain injury in interleukin-1β converting enzyme- deficient mice. J Cereb Blood Flow Metab 18:180–185. 10.1097/00004647-199802000-00009 10.1097/00004647-199802000-00009 PubMed DOI

Kayagaki N, Warming S, Lamkanfi M, et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121. 10.1038/NATURE10558 10.1038/NATURE10558 PubMed DOI

Dixon LJ, Flask CA, Papouchado BG, et al (2013) Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS One 8. 10.1371/JOURNAL.PONE.0056100 PubMed PMC

Gage J, Hasu M, Thabet M, Whitman SC (2012) Caspase-1 deficiency decreases atherosclerosis in apolipoprotein E-null mice. Can J Cardiol 28:222–229. 10.1016/J.CJCA.2011.10.013 10.1016/J.CJCA.2011.10.013 PubMed DOI

Wang S, Miura M, Jung Y, et al (1998) Murine Caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92:501–509. 10.1016/S0092-8674(00)80943-5 10.1016/S0092-8674(00)80943-5 PubMed DOI

Shi J, Zhao Y, Wang Y, et al (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514:187–192. 10.1038/NATURE13683 10.1038/NATURE13683 PubMed DOI

Kang SJ, Wang S, Hara H, et al (2000) Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J Cell Biol 149:613–622. 10.1083/JCB.149.3.613 10.1083/JCB.149.3.613 PubMed DOI PMC

Huang X, Feng Y, Xiong G, et al (2019) Caspase-11, a specific sensor for intracellular lipopolysaccharide recognition, mediates the non-canonical inflammatory pathway of pyroptosis. Cell Biosci 9. 10.1186/S13578-019-0292-0 PubMed PMC

Kayagaki N, Stowe IB, Lee BL, et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–671. 10.1038/NATURE15541 10.1038/NATURE15541 PubMed DOI

Miao N, Wang B, Xu D, et al (2018) Caspase-11 promotes cisplatin-induced renal tubular apoptosis through a caspase-3-dependent pathway. Am J Physiol Renal Physiol 314:F269–F279. 10.1152/AJPRENAL.00091.2017 10.1152/AJPRENAL.00091.2017 PubMed DOI

Krause K, Caution K, Badr A, et al (2018) CASP4/caspase-11 promotes autophagosome formation in response to bacterial infection. Autophagy 14:1928–1942. 10.1080/15548627.2018.1491494 10.1080/15548627.2018.1491494 PubMed DOI PMC

Akhter A, Caution K, Abu Khweek A, et al (2012) Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization. Immunity 37:35–47. 10.1016/J.IMMUNI.2012.05.001 10.1016/J.IMMUNI.2012.05.001 PubMed DOI PMC

Zasłona Z, Flis E, Wilk MM, et al (2020) Caspase-11 promotes allergic airway inflammation. Nat Commun 11. 10.1038/S41467-020-14945-2 PubMed PMC

Sun Y, Li J, Wu H, et al (2023) GABAB receptor activation attenuates neuronal pyroptosis in post-cardiac arrest brain injury. Neuroscience 526:97–106. 10.1016/J.NEUROSCIENCE.2023.06.001 10.1016/J.NEUROSCIENCE.2023.06.001 PubMed DOI

Broz P, Ruby T, Belhocine K, et al (2012) Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490:288–291. 10.1038/NATURE11419 10.1038/NATURE11419 PubMed DOI PMC

Oficjalska K, Raverdeau M, Aviello G, et al (2015) Protective role for caspase-11 during acute experimental murine colitis. J Immunol 194:1252–1260. 10.4049/JIMMUNOL.1400501 10.4049/JIMMUNOL.1400501 PubMed DOI PMC

Flood B, Manils J, Nulty C, et al (2019) Caspase-11 regulates the tumour suppressor function of STAT1 in a murine model of colitis-associated carcinogenesis. Oncogene 38:2658–2674. 10.1038/S41388-018-0613-5 10.1038/S41388-018-0613-5 PubMed DOI PMC

Li J, Brieher WM, Scimone ML, et al (2007) Caspase-11 regulates cell migration by promoting Aip1-Cofilin-mediated actin depolymerization. Nat Cell Biol 9:276–286. 10.1038/NCB1541 10.1038/NCB1541 PubMed DOI

Bolívar BE, Vogel TP, Bouchier-Hayes L (2019) Inflammatory caspase regulation: maintaining balance between inflammation and cell death in health and disease. FEBS J 286:2628–2644. 10.1111/FEBS.14926 10.1111/FEBS.14926 PubMed DOI PMC

Salvamoser R, Brinkmann K, O’Reilly LA, et al (2019) Characterisation of mice lacking the inflammatory caspases-1/11/12 reveals no contribution of caspase-12 to cell death and sepsis. Cell Death Differ 26:1124–1137. 10.1038/S41418-018-0188-2 10.1038/S41418-018-0188-2 PubMed DOI PMC

Lamkanfi M, Kalai M, Vandenabeele P (2004) Caspase-12: an overview. Cell Death Differ 11:365–8. 10.1038/sj.cdd.4401364 10.1038/sj.cdd.4401364 PubMed DOI

Shiraishi H, Okamoto H, Yoshimura A, Yoshida H (2006) ER stress-induced apoptosis and caspase-12 activation occurs downstream of mitochondrial apoptosis involving Apaf-1. J Cell Sci 119:3958–3966. 10.1242/JCS.03160 10.1242/JCS.03160 PubMed DOI

Nakagawa T, Zhu H, Morishima N, et al (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103. 10.1038/47513 10.1038/47513 PubMed DOI

Kalai M, Lamkanfi M, Denecker G, et al (2003) Regulation of the expression and processing of caspase-12. J Cell Biol 162:457–467. 10.1083/JCB.200303157 10.1083/JCB.200303157 PubMed DOI PMC

Kilic M, Schäfer R, Hoppe J, Kagerhuber U (2002) Formation of noncanonical high molecular weight caspase-3 and – 6 complexes and activation of caspase-12 during serum starvation induced apoptosis in AKR-2B mouse fibroblasts. Cell Death Differ 9:125–137. 10.1038/SJ.CDD.4400968 10.1038/SJ.CDD.4400968 PubMed DOI

Wang X, Shao Z, Zetoune FS, et al (2003) NRADD, a novel membrane protein with a death domain involved in mediating apoptosis in response to ER stress. Cell Death Differ 10:580–591. 10.1038/SJ.CDD.4401208 10.1038/SJ.CDD.4401208 PubMed DOI

Saleh M, Mathison JC, Wolinski MK, et al (2006) Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 440:1064–1068. 10.1038/NATURE04656 10.1038/NATURE04656 PubMed DOI

Vande Walle L, Lamkanfi M (2016) Pyroptosis. Curr Biol 26:R568–R572. 10.1016/j.cub.2016.02.019 10.1016/j.cub.2016.02.019 PubMed DOI

Nakagawa T, Yuan J (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150:887–894. 10.1083/JCB.150.4.887 10.1083/JCB.150.4.887 PubMed DOI PMC

Yoneda T, Imaizumi K, Oono K, et al (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276:13935–13940. 10.1074/JBC.M010677200 10.1074/JBC.M010677200 PubMed DOI

Rao R V., Hermel E, Castro-Obregon S, et al (2001) Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 276:33869–33874. 10.1074/JBC.M102225200 10.1074/JBC.M102225200 PubMed DOI

Vesela B, Kratochvilova A, Svandova E, et al (2020) Caspase-12 is present during craniofacial development and participates in regulation of osteogenic markers. Front cell Dev Biol 8:589136. 10.3389/fcell.2020.589136 10.3389/fcell.2020.589136 PubMed DOI PMC

Bhootada Y, Choudhury S, Gully C, Gorbatyuk M (2015) Targeting Caspase-12 to preserve vision in mice with inherited retinal degeneration. Invest Ophthalmol Vis Sci 56:4725–4733. 10.1167/IOVS.15-16924 10.1167/IOVS.15-16924 PubMed DOI PMC

Moorwood C, Barton ER (2014) Caspase-12 ablation preserves muscle function in the mdx mouse. Hum Mol Genet 23:5325–5341. 10.1093/HMG/DDU249 10.1093/HMG/DDU249 PubMed DOI PMC

Liu H, Wang Z, Nowicki MJ (2014) Caspase-12 mediates carbon tetrachloride-induced hepatocyte apoptosis in mice. World J Gastroenterol 20:18189–18198. 10.3748/WJG.V20.I48.18189 10.3748/WJG.V20.I48.18189 PubMed DOI PMC

Martinez JA, Zhang Z, Svetlov SI, et al (2010) Calpain and caspase processing of caspase-12 contribute to the ER stress-induced cell death pathway in differentiated PC12 cells. Apoptosis 15:1480–1493. 10.1007/S10495-010-0526-4 10.1007/S10495-010-0526-4 PubMed DOI

Morishima N, Nakanishi K, Takenouchi H, et al (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277:34287–34294. 10.1074/JBC.M204973200 10.1074/JBC.M204973200 PubMed DOI

LeBlanc PM, Yeretssian G, Rutherford N, et al (2008) Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity. Cell Host Microbe 3:146–157. 10.1016/J.CHOM.2008.02.004 10.1016/J.CHOM.2008.02.004 PubMed DOI

Wang P, Arjona A, Zhang Y, et al (2010) Caspase-12 controls West Nile virus infection via the viral RNA receptor RIG-I. Nat Immunol 11:912–919. 10.1038/jid.2014.371 10.1038/jid.2014.371 PubMed DOI PMC

Labbé K, Miu J, Yeretssian G, et al (2010) Caspase-12 dampens the immune response to malaria independently of the inflammasome by targeting NF-kappaB signaling. J Immunol 185:5495–5502. 10.4049/JIMMUNOL.1002517 10.4049/JIMMUNOL.1002517 PubMed DOI

Miu J, Saleh M, Stevenson MM (2010) Caspase-12 deficiency enhances cytokine responses but does not protect against lethal Plasmodium Yoelii 17XL infection. Parasite Immunol 32:773–778. 10.1111/J.1365-3024.2010.01250.X 10.1111/J.1365-3024.2010.01250.X PubMed DOI

Skeldon AM, Morizot A, Douglas T, et al (2016) Caspase-12, but not Caspase-11, inhibits obesity and insulin resistance. J Immunol 196:437–447. 10.4049/JIMMUNOL.1501529 10.4049/JIMMUNOL.1501529 PubMed DOI PMC

Lippens S, Kockx M, Knaapen M, et al (2000) Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death Differ 7:1218–24. 10.1038/sj.cdd.4400785 10.1038/sj.cdd.4400785 PubMed DOI

Hoste E, Kemperman P, Devos M, et al (2011) Caspase-14 is required for filaggrin degradation to natural moisturizing factors in the skin. J Invest Dermatol 131:2233–2241. 10.1038/JID.2011.153 10.1038/JID.2011.153 PubMed DOI

Raymond AA, Méchin MC, Nachat R, et al (2007) Nine procaspases are expressed in normal human epidermis, but only caspase-14 is fully processed. Br J Dermatol 156:420–427. 10.1111/J.1365-2133.2006.07656.X 10.1111/J.1365-2133.2006.07656.X PubMed DOI

Lippens S, Kockx M, Denecker G, et al (2004) Vitamin D3 induces caspase-14 expression in psoriatic lesions and enhances caspase-14 processing in organotypic skin cultures. Am J Pathol 165:833–41. 10.1016/S0002-9440(10)63346-9 10.1016/S0002-9440(10)63346-9 PubMed DOI PMC

Markiewicz A, Sigorski D, Markiewicz M, et al (2021) Caspase-14-From biomolecular basics to clinical approach. A review of available data. Int J Mol Sci 22. 10.3390/IJMS22115575 PubMed PMC

Markiewicz A, Sigorski D, Markiewicz M, et al (2023) mRNA expression of caspase 14 in skin epithelial malignancies. Postep Dermatologii i Alergol 40:315–320. 10.5114/ADA.2023.12764610.5114/ADA.2023.127646 PubMed DOI PMC

Jung M, Choi J, Lee SA, et al (2014) Pyrrolidone carboxylic acid levels or caspase-14 expression in the corneocytes of lesional skin correlates with clinical severity, skin barrier function and lesional inflammation in atopic dermatitis. J Dermatol Sci 76:231–239. 10.1016/J.JDERMSCI.2014.09.004 10.1016/J.JDERMSCI.2014.09.004 PubMed DOI

Denecker G, Hoste E, Gilbert B, et al (2007) Caspase-14 protects against epidermal UVB photodamage and water loss. Nat Cell Biol 9:666–74. 10.1038/ncb1597 10.1038/ncb1597 PubMed DOI

Chien AJ, Presland RB, Kuechle MK (2002) Processing of native caspase-14 occurs at an atypical cleavage site in normal epidermal differentiation. Biochem Biophys Res Commun 296:911–917. 10.1016/S0006-291X(02)02015-6 10.1016/S0006-291X(02)02015-6 PubMed DOI

Hoste E, Denecker G, Gilbert B, et al (2013) Caspase-14-deficient mice are more prone to the development of parakeratosis. J Invest Dermatol 133:742–750. 10.1038/JID.2012.350 10.1038/JID.2012.350 PubMed DOI

Kubica M, Hildebrand F, Brinkman BM, et al (2014) The skin microbiome of caspase-14-deficient mice shows mild dysbiosis. Exp Dermatol 23:561–567. 10.1111/EXD.12458 10.1111/EXD.12458 PubMed DOI

Hakem R, Hakem A, Duncan GS, et al (1998) Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94:339–352. 10.1016/S0092-8674(00)81477-4 10.1016/S0092-8674(00)81477-4 PubMed DOI

Cecconi F, Alvarez-Bolado G, Meyer BI, et al (1998) Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94:727–37. 10.1016/s0092-8674(00)81732-8 10.1016/s0092-8674(00)81732-8 PubMed DOI

Ratts VS, Flaws JA, Kolp R, et al (1995) Ablation of bcl-2 gene expression decreases the numbers of oocytes and primordial follicles established in the post-natal female mouse gonad. Endocrinology 136:3665–3668. 10.1210/ENDO.136.8.7628407 10.1210/ENDO.136.8.7628407 PubMed DOI

McIlwain DR, Berger T, Mak TW (2015) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 7. 10.1101/CSHPERSPECT.A026716 PubMed PMC

Kudelova J, Fleischmannova J, Adamova E, Matalova E (2015) Pharmacological caspase inhibitors: research towards therapeutic perspectives. J Physiol Pharmacol an off J Polish Physiol Soc 66:473–482 PubMed

Dhani S, Zhao Y, Zhivotovsky B (2021) A long way to go: caspase inhibitors in clinical use. Cell Death Dis 12:949. 10.1038/s41419-021-04240-3 10.1038/s41419-021-04240-3 PubMed DOI PMC

Duan H, Liu Y, Gao Z, Huang W (2021) Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm Sin B 11:55–70. 10.1016/j.apsb.2020.09.016 10.1016/j.apsb.2020.09.016 PubMed DOI PMC

Karlgren M, Simoff I, Keiser M, et al (2018) CRISPR-Cas9: a new addition to the drug metabolism and disposition tool box. Drug Metab Dispos 46:1776–1786. 10.1124/dmd.118.082842 10.1124/dmd.118.082842 PubMed DOI

Prokhorova EA, Kopeina GS, Lavrik IN, Zhivotovsky B (2018) Apoptosis regulation by subcellular relocation of caspases. Sci Rep 8. 10.1038/S41598-018-30652-X PubMed PMC

Nakajima Y, Kuranaga E (2017) Caspase-dependent non-apoptotic processes in development. Cell Death Differ 24:1422–1430. 10.1038/cdd.2017.36 10.1038/cdd.2017.36 PubMed DOI PMC

Huesmann GR, Clayton DF (2006) Dynamic role of postsynaptic caspase-3 and BIRC4 in zebra finch song-response habituation. Neuron 52:1061–1072. 10.1016/J.NEURON.2006.10.033 10.1016/J.NEURON.2006.10.033 PubMed DOI PMC

Grabow S, Kueh AJ, Ke F, et al (2018) Subtle changes in the levels of BCL-2 proteins cause severe craniofacial abnormalities. Cell Rep 24:3285–3295.e4. 10.1016/j.celrep.2018.08.048 10.1016/j.celrep.2018.08.048 PubMed DOI

Basu S, Rajakaruna S, Menko AS (2012) Insulin-like growth factor receptor-1 and nuclear factor κB are crucial survival signals that regulate caspase-3-mediated lens epithelial cell differentiation initiation. J Biol Chem 287:8384–97. 10.1074/jbc.M112.341586 10.1074/jbc.M112.341586 PubMed DOI PMC

Bazgir N, Tahvildari A, Chavoshzade Z, et al (2023) A rare immunological disease, caspase 8 deficiency: case report and literature review. Allergy Asthma Clin Immunol 19. 10.1186/S13223-023-00778-3 PubMed PMC

Bell RAV, Megeney LA (2017) Evolution of caspase-mediated cell death and differentiation: twins separated at birth. Cell Death Differ 24:1359–1368. 10.1038/CDD.2017.37 10.1038/CDD.2017.37 PubMed DOI PMC

Fuchs Y, Steller H (2015) Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol 16:329–344. 10.1038/nrm3999 10.1038/nrm3999 PubMed DOI PMC

Kumar S (2007) Caspase function in programmed cell death. Cell Death Differ 14:32–43. 10.1038/sj.cdd.4402060 10.1038/sj.cdd.4402060 PubMed DOI

Tian F, Fu X, Gao J, et al (2014) Glutaric acid-mediated apoptosis in primary striatal neurons. Biomed Res Int 2014:484731. 10.1155/2014/484731 10.1155/2014/484731 PubMed DOI PMC

Jiménez Fernández D, Lamkanfi M (2015) Inflammatory caspases: key regulators of inflammation and cell death. Biol Chem 396:193–203. 10.1515/hsz-2014-0253 10.1515/hsz-2014-0253 PubMed DOI

Fogarty CE, Bergmann A (2017) Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease. Cell Death Differ 24:1390–1400. 10.1038/CDD.2017.47 10.1038/CDD.2017.47 PubMed DOI PMC

Olsson M, Zhivotovsky B (2011) Caspases and cancer. Cell Death Differ 18:1441–1449. 10.1038/cdd.2011.30 10.1038/cdd.2011.30 PubMed DOI PMC

Denning DP, Hatch V, Horvitz HR (2013) Both the Caspase CSP-1 and a caspase-independent pathway promote programmed cell death in parallel to the canonical pathway for apoptosis in caenorhabditis elegans. PLoS Genet 9. 10.1371/JOURNAL.PGEN.1003341 PubMed PMC

Geng X, Zhou QH, Kage-Nakadai E, et al (2009) Caenorhabditis elegans caspase homolog CSP-2 inhibits CED-3 autoactivation and apoptosis in germ cells. Cell Death Differ 16:1385–1394. 10.1038/cdd.2009.88 10.1038/cdd.2009.88 PubMed DOI PMC

Spead O, Verreet T, Donelson CJ, Poulain FE (2018) Characterization of the caspase family in zebrafish. PLoS One 13:e0197966. 10.1371/journal.pone.0197966 10.1371/journal.pone.0197966 PubMed DOI PMC

Kietz C, Meinander A (2023) Drosophila caspases as guardians of host-microbe interactions. Cell Death Differ 30:227–236. 10.1038/S41418-022-01038-4 10.1038/S41418-022-01038-4 PubMed DOI PMC

Groborz KM, Kalinka M, Grzymska J, et al (2023) Selective chemical reagents to investigate the role of caspase 6 in apoptosis in acute leukemia T cells. Chem Sci 14:2289–2302. 10.1039/D2SC05827H 10.1039/D2SC05827H PubMed DOI PMC

Tu S, McStay GP, Boucher LM, et al (2006) In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. Nat Cell Biol 8:72–77. 10.1038/NCB1340 10.1038/NCB1340 PubMed DOI

Cardona M, López JA, Serafín A, et al (2015) Executioner Caspase-3 and 7 Deficiency reduces myocyte number in the developing mouse heart. PLoS One 10. 10.1371/JOURNAL.PONE.0131411 PubMed PMC

Thant AA, Nawa A, Kikkawa F, et al (2000) Fibronectin activates matrix metalloproteinase-9 secretion via the MEK1-MAPK and the PI3K-Akt pathways in ovarian cancer cells. Clin Exp Metastasis 2000 185 18:423–428. 10.1023/A:101092173095210.1023/A:1010921730952 PubMed DOI

Vesela B, Svandova E, Vanden Berghe T, et al (2015) Non-apoptotic role for caspase-7 in hair follicles and the surrounding tissue. J Mol Histol 46:443–55. 10.1007/s10735-015-9636-1 10.1007/s10735-015-9636-1 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...