Caspase-1 Inhibition Impacts the Formation of Chondrogenic Nodules, and the Expression of Markers Related to Osteogenic Differentiation and Lipid Metabolism

. 2021 Sep 03 ; 22 (17) : . [epub] 20210903

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34502478

Grantová podpora
GACR 19-12023S Grantová Agentura České Republiky

Caspase-1, as the main pro-inflammatory cysteine protease, was investigated mostly with respect to inflammation-related processes. Interestingly, caspase-1 was identified as being involved in lipid metabolism, which is extremely important for the proper differentiation of chondrocytes. Based on a screening investigation, general caspase inhibition impacts the expression of Cd36 in chondrocytes, the fatty acid translocase with a significant impact on lipid metabolism. However, the engagement of individual caspases in the effect has not yet been identified. Therefore, the hypothesis that caspase-1 might be a candidate here appears challenging. The primary aim of this study thus was to find out whether the inhibition of caspase-1 activity would affect Cd36 expression in a chondrogenic micromass model. The expression of Pparg, a regulator Cd36, was examined as well. In the caspase-1 inhibited samples, both molecules were significantly downregulated. Notably, in the treated group, the formation of the chondrogenic nodules was apparently disrupted, and the subcellular deposition of lipids and polysaccharides showed an abnormal pattern. To further investigate this observation, the samples were subjected to an osteogenic PCR array containing selected markers related to cartilage/bone cell differentiation. Among affected molecules, Bmp7 and Gdf10 showed a significantly increased expression, while Itgam, Mmp9, Vdr, and Rankl decreased. Notably, Rankl is a key marker in bone remodeling/homeostasis and thus is a target in several treatment strategies, including a variety of fatty acids, and is balanced by its decoy receptor Opg (osteoprotegerin). To evaluate the effect of Cd36 downregulation on Rankl and Opg, Cd36 silencing was performed using micromass cultures. After Cd36 silencing, the expression of Rankl was downregulated and Opg upregulated, which was an inverse effect to caspase-1 inhibition (and Cd36 upregulation). These results demonstrate new functions of caspase-1 in chondrocyte differentiation and lipid metabolism-related pathways. The effect on the Rankl/Opg ratio, critical for bone maintenance and pathology, including osteoarthritis, is particularly important here as well.

Zobrazit více v PubMed

Berendsen A.D., Olsen B.R. Bone development. Bone. 2015;80:14–18. doi: 10.1016/j.bone.2015.04.035. PubMed DOI PMC

Yang Y., Wei J., Li J., Cui Y., Zhou X., Xie J. Lipid metabolism in cartilage and its diseases: A concise review of the research progress. Acta Biochim. Biophys. Sin. 2021;53:517–527. doi: 10.1093/abbs/gmab021. PubMed DOI

Villalvilla A., Gómez R., Largo R., Herrero-Beaumont G. Lipid transport and metabolism in healthy and osteoarthritic cartilage. Int. J. Mol. Sci. 2013;14:20793–20808. doi: 10.3390/ijms141020793. PubMed DOI PMC

Cecil D.L., Appleton C.T.G., Polewski M.D., Mort J.S., Schmidt A.M., Bendele A., Beier F., Terkeltaub R. The pattern recognition receptor CD36 is a chondrocyte hypertrophy marker associated with suppression of catabolic responses and promotion of repair responses to inflammatory stimuli. J. Immunol. 2009;182:5024–5031. doi: 10.4049/jimmunol.0803603. PubMed DOI PMC

Adamova E., Janeckova E., Kleparnik K., Matalova E. Caspases and osteogenic markers—in vitro screening of inhibition impact. In Vitro Cell. Dev. Biol.-Anim. 2016;52:144–148. doi: 10.1007/s11626-015-9964-1. PubMed DOI

Janečková E., Bíliková P., Matalová E. Osteogenic Potential of Caspases Related to Endochondral Ossification. J. Histochem. Cytochem. 2018;66:47–58. doi: 10.1369/0022155417739283. PubMed DOI PMC

Shalini S., Dorstyn L., Dawar S., Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22:526–539. doi: 10.1038/cdd.2014.216. PubMed DOI PMC

Huser C.A.M., Peacock M., Davies M.E. Inhibition of caspase-9 reduces chondrocyte apoptosis and proteoglycan loss following mechanical trauma. Osteoarthr. Cartil. 2006;14:1002–1010. doi: 10.1016/j.joca.2006.03.012. PubMed DOI

Vesela B., Svandova E., Ramesova A., Kratochvilova A., Tucker A.S., Matalova E. Caspase Inhibition Affects the Expression of Autophagy-Related Molecules in Chondrocytes. Cartilage. 2020:1947603520938444. doi: 10.1177/1947603520938444. PubMed DOI PMC

An S., Hu H., Li Y., Hu Y. Pyroptosis Plays a Role in Osteoarthritis. Aging Dis. 2020;11:1146–1157. doi: 10.14336/AD.2019.1127. PubMed DOI PMC

Denes A., Lopez-Castejon G., Brough D. Caspase-1: Is IL-1 just the tip of the ICEberg? Cell Death Dis. 2012;3:e338. doi: 10.1038/cddis.2012.86. PubMed DOI PMC

Kotas M.E., Jurczak M.J., Annicelli C., Gillum M.P., Cline G.W., Shulman G.I., Medzhitov R. Role of caspase-1 in regulation of triglyceride metabolism. Proc. Natl. Acad. Sci. USA. 2013;110:4810–4815. doi: 10.1073/pnas.1301996110. PubMed DOI PMC

Fernandes-Alnemri T., Wu J., Yu J.-W., Datta P., Miller B., Jankowski W., Rosenberg S., Zhang J., Alnemri E.S. The pyroptosome: A supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14:1590–1604. doi: 10.1038/sj.cdd.4402194. PubMed DOI PMC

Zhang Y., Zheng Y., Li H. NLRP3 inflammasome plays an important role in the pathogenesis of collagen-induced arthritis. Mediat. Inflamm. 2016;2016:9656270. doi: 10.1155/2016/9656270. PubMed DOI PMC

Wang H., Capell W., Yoon J.H., Faubel S., Eckel R.H. Obesity development in caspase-1-deficient mice. Int. J. Obes. 2014;38:152–155. doi: 10.1038/ijo.2013.59. PubMed DOI

Qian J., Fu P., Li S., Li X., Chen Y., Lin Z. miR-107 affects cartilage matrix degradation in the pathogenesis of knee osteoarthritis by regulating caspase-1. J. Orthop. Surg. Res. 2021;16:40. doi: 10.1186/s13018-020-02121-7. PubMed DOI PMC

Mello M.A., Tuan R.S. High density micromass cultures of embryonic limb bud mesenchymal cells: An in vitro model of endochondral skeletal development. In Vitro Cell. Dev. Biol.-Anim. 1999;35:262–269. doi: 10.1007/s11626-999-0070-0. PubMed DOI

Herrera E., Ortega-Senovilla H. Lipid Metabolism During Pregnancy and its Implications for Fetal Growth. Curr. Pharm. Biotechnol. 2014;15:24–31. doi: 10.2174/1389201015666140330192345. PubMed DOI

Butterfield N.C., Qian C., Logan M.P.O. Pitx1 determines characteristic hindlimb morphologies in cartilage micromass culture. PLoS ONE. 2017;12:e0180453. doi: 10.1371/journal.pone.0180453. PubMed DOI PMC

Silverstein R.L., Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci. Signal. 2009;2:re3. doi: 10.1126/scisignal.272re3. PubMed DOI PMC

Brodeur M.R., Brissette L., Falstrault L., Luangrath V., Moreau R. Scavenger receptor of class B expressed by osteoblastic cells are implicated in the uptake of cholesteryl ester and estradiol from LDL and HDL3. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2008;23:326–337. doi: 10.1359/jbmr.071022. PubMed DOI

Pepino M.Y., Kuda O., Samovski D., Abumrad N.A. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu. Rev. Nutr. 2014;34:281–303. doi: 10.1146/annurev-nutr-071812-161220. PubMed DOI PMC

Mahib M.R., Hosojima S., Kushiyama H., Kinoshita T., Shiroishi T., Suda T., Tsuchiya K. Caspase-7 mediates caspase-1-induced apoptosis independently of Bid. Microbiol. Immunol. 2020;64:143–152. doi: 10.1111/1348-0421.12756. PubMed DOI

Joosten L.A.B., Netea M.G., Fantuzzi G., Koenders M.I., Helsen M.M.A., Sparrer H., Pham C.T., van der Meer J.W.M., Dinarello C.A., van den Berg W.B. Inflammatory arthritis in caspase 1 gene-deficient mice: Contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1beta. Arthritis Rheum. 2009;60:3651–3662. doi: 10.1002/art.25006. PubMed DOI PMC

Farnaghi S., Crawford R., Xiao Y., Prasadam I. Cholesterol metabolism in pathogenesis of osteoarthritis disease. Int. J. Rheum. Dis. 2017;20:131–140. doi: 10.1111/1756-185X.13061. PubMed DOI

McAllister M.J., Chemaly M., Eakin A.J., Gibson D.S., McGilligan V.E. NLRP3 as a potentially novel biomarker for the management of osteoarthritis. Osteoarthr. Cartil. 2018;26:612–619. doi: 10.1016/j.joca.2018.02.901. PubMed DOI

Maréchal L., Laviolette M., Rodrigue-Way A., Sow B., Brochu M., Caron V., Tremblay A. The CD36-PPARγ Pathway in Metabolic Disorders. Int. J. Mol. Sci. 2018;19:1529. doi: 10.3390/ijms19051529. PubMed DOI PMC

Molla M.D., Ayelign B., Dessie G., Geto Z., Admasu T.D. Caspase-1 as a regulatory molecule of lipid metabolism. Lipids Health Dis. 2020;19:34. doi: 10.1186/s12944-020-01220-y. PubMed DOI PMC

Shao W., Yeretssian G., Doiron K., Hussain S.N., Saleh M. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J. Biol. Chem. 2007;282:36321–36329. doi: 10.1074/jbc.M708182200. PubMed DOI

Vaisid T., Kosower N.S., Barnoy S. Caspase-1 activity is required for neuronal differentiation of PC12 cells: Cross-talk between the caspase and calpain systems. Biochim. Biophys. Acta—Mol. Cell Res. 2005;1743:223–230. doi: 10.1016/j.bbamcr.2005.01.001. PubMed DOI

Barnoy S., Kosower N.S. Caspase-1-induced calpastatin degradation in myoblast differentiation and fusion: Cross-talk between the caspase and calpain systems. FEBS Lett. 2003;546:213–217. doi: 10.1016/S0014-5793(03)00573-8. PubMed DOI

Tetlow L.C., Woolley D.E. Expression of vitamin D receptors and matrix metalloproteinases in osteoarthritic cartilage and human articular chondrocytes in vitro. Osteoarthr. Cartil. 2001;9:423–431. doi: 10.1053/joca.2000.0408. PubMed DOI

Hernandez-Anzaldo S., Brglez V., Hemmeryckx B., Leung D., Filep J.G., Vance J.E., Vance D.E., Kassiri Z., Lijnen R.H., Lambeau G., et al. Novel Role for Matrix Metalloproteinase 9 in Modulation of Cholesterol Metabolism. J. Am. Heart Assoc. 2016;5:e004228. doi: 10.1161/JAHA.116.004228. PubMed DOI PMC

Silvagno F., Pescarmona G. Spotlight on vitamin D receptor, lipid metabolism and mitochondria: Some preliminary emerging issues. Mol. Cell. Endocrinol. 2017;450:24–31. doi: 10.1016/j.mce.2017.04.013. PubMed DOI

Ehirchiou D., Bernabei I., Chobaz V., Castelblanco M., Hügle T., So A., Zhang L., Busso N., Nasi S. CD11b Signaling Prevents Chondrocyte Mineralization and Attenuates the Severity of Osteoarthritis. Front. Cell Dev. Biol. 2020;8:1757. doi: 10.3389/fcell.2020.611757. PubMed DOI PMC

Chubinskaya S., Kuettner K.E., Cole A.A. Expression of matrix metalloproteinases in normal and damaged articular cartilage from human knee and ankle joints. Lab. Investig. 1999;79:1669–1677. PubMed

Malemud C.J., Meszaros E.C., Wylie M.A., Dahoud W., Skomorovska-Prokvolit Y., Mesiano S. Matrix Metalloproteinase-9 Production by Immortalized Human Chondrocyte Lines. J. Clin. Cell. Immunol. 2016;7:422. doi: 10.4172/2155-9899.1000422. PubMed DOI PMC

González-Huerta N.C., Borgonio-Cuadra V.M., Morales-Hernández E., Duarte-Salazar C., Miranda-Duarte A. Vitamin D receptor gene polymorphisms and susceptibility for primary osteoarthritis of the knee in a Latin American population. Adv. Rheumatol. 2018;58:6. doi: 10.1186/s42358-018-0002-3. PubMed DOI

Cameron T.L., Belluoccio D., Farlie P.G., Brachvogel B., Bateman J.F. Global comparative transcriptome analysis of cartilage formation in vivo. BMC Dev. Biol. 2009;9:20. doi: 10.1186/1471-213X-9-20. PubMed DOI PMC

Platko K., Lebeau P.F., Byun J.H., Poon S.V., Day E.A., MacDonald M.E., Holzapfel N., Mejia-Benitez A., Maclean K.N., Krepinsky J.C., et al. GDF10 blocks hepatic PPARγ activation to protect against diet-induced liver injury. Mol. Metab. 2019;27:62–74. doi: 10.1016/j.molmet.2019.06.021. PubMed DOI PMC

Hayashi M., Muneta T., Ju Y.-J., Mochizuki T., Sekiya I. Weekly intra-articular injections of bone morphogenetic protein-7 inhibits osteoarthritis progression. Arthritis Res. Ther. 2008;10:R118. doi: 10.1186/ar2521. PubMed DOI PMC

Boyce B.F., Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res. Ther. 2007;9(Suppl. S1):1–7. doi: 10.1186/ar2165. PubMed DOI PMC

Kwan Tat S., Amiable N., Pelletier J.-P., Boileau C., Lajeunesse D., Duval N., Martel-Pelletier J. Modulation of OPG, RANK and RANKL by human chondrocytes and their implication during osteoarthritis. Rheumatology. 2009;48:1482–1490. doi: 10.1093/rheumatology/kep300. PubMed DOI PMC

Upton A.R., Holding C.A., Dharmapatni A.A.S.S.K., Haynes D.R. The expression of RANKL and OPG in the various grades of osteoarthritic cartilage. Rheumatol. Int. 2012;32:535–540. doi: 10.1007/s00296-010-1733-6. PubMed DOI

Papadaki M., Rinotas V., Violitzi F., Thireou T., Panayotou G., Samiotaki M., Douni E. New Insights for RANKL as a Proinflammatory Modulator in Modeled Inflammatory Arthritis. Front. Immunol. 2019;10:97. doi: 10.3389/fimmu.2019.00097. PubMed DOI PMC

D’Lima D., Hermida J., Hashimoto S., Colwell C., Lotz M. Caspase inhibitors reduce severity of cartilage lesions in experimental osteoarthritis. Arthritis Rheum. 2006;54:1814–1821. doi: 10.1002/art.21874. PubMed DOI

Kevorkova O., Martineau C., Martin-Falstrault L., Sanchez-Dardon J., Brissette L., Moreau R. Low-Bone-Mass Phenotype of Deficient Mice for the Cluster of Differentiation 36 (CD36) PLoS ONE. 2013;8:e77701. doi: 10.1371/journal.pone.0077701. PubMed DOI PMC

Zhang C., Luo X., Chen J., Zhou B., Yang M., Liu R., Liu D., Gu H.F., Zhu Z., Zheng H., et al. Osteoprotegerin Promotes Liver Steatosis by Targeting the ERK-PPAR-γ-CD36 Pathway. Diabetes. 2019;68:1902–1914. doi: 10.2337/db18-1055. PubMed DOI

Niu Z., Tang J., Zhang W., Chen Y., Huang Y., Chen B., Li J., Shen P. Caspase-1 promotes monocyte-macrophage differentiation by repressing PPARγ. FEBS J. 2017;284:568–585. doi: 10.1111/febs.13998. PubMed DOI

Chen Y., Jiang W., Yong H., He M., Yang Y., Deng Z., Li Y. Macrophages in osteoarthritis: Pathophysiology and therapeutics. Am. J. Transl. Res. 2020;12:261–268. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...