Caspase-1 Inhibition Impacts the Formation of Chondrogenic Nodules, and the Expression of Markers Related to Osteogenic Differentiation and Lipid Metabolism
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR 19-12023S
Grantová Agentura České Republiky
PubMed
34502478
PubMed Central
PMC8431148
DOI
10.3390/ijms22179576
PII: ijms22179576
Knihovny.cz E-zdroje
- Klíčová slova
- Cd36, cartilage, caspase-1, chondrocytes, inhibition, lipid metabolism, osteoarthritis,
- MeSH
- buněčná diferenciace účinky léků MeSH
- chondrocyty metabolismus MeSH
- chondrogeneze účinky léků MeSH
- diferenciační antigeny biosyntéza MeSH
- inhibitory kaspas farmakologie MeSH
- kaspasa 1 metabolismus MeSH
- metabolismus lipidů účinky léků MeSH
- myši MeSH
- osteogeneze účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Casp1 protein, mouse MeSH Prohlížeč
- diferenciační antigeny MeSH
- inhibitory kaspas MeSH
- kaspasa 1 MeSH
Caspase-1, as the main pro-inflammatory cysteine protease, was investigated mostly with respect to inflammation-related processes. Interestingly, caspase-1 was identified as being involved in lipid metabolism, which is extremely important for the proper differentiation of chondrocytes. Based on a screening investigation, general caspase inhibition impacts the expression of Cd36 in chondrocytes, the fatty acid translocase with a significant impact on lipid metabolism. However, the engagement of individual caspases in the effect has not yet been identified. Therefore, the hypothesis that caspase-1 might be a candidate here appears challenging. The primary aim of this study thus was to find out whether the inhibition of caspase-1 activity would affect Cd36 expression in a chondrogenic micromass model. The expression of Pparg, a regulator Cd36, was examined as well. In the caspase-1 inhibited samples, both molecules were significantly downregulated. Notably, in the treated group, the formation of the chondrogenic nodules was apparently disrupted, and the subcellular deposition of lipids and polysaccharides showed an abnormal pattern. To further investigate this observation, the samples were subjected to an osteogenic PCR array containing selected markers related to cartilage/bone cell differentiation. Among affected molecules, Bmp7 and Gdf10 showed a significantly increased expression, while Itgam, Mmp9, Vdr, and Rankl decreased. Notably, Rankl is a key marker in bone remodeling/homeostasis and thus is a target in several treatment strategies, including a variety of fatty acids, and is balanced by its decoy receptor Opg (osteoprotegerin). To evaluate the effect of Cd36 downregulation on Rankl and Opg, Cd36 silencing was performed using micromass cultures. After Cd36 silencing, the expression of Rankl was downregulated and Opg upregulated, which was an inverse effect to caspase-1 inhibition (and Cd36 upregulation). These results demonstrate new functions of caspase-1 in chondrocyte differentiation and lipid metabolism-related pathways. The effect on the Rankl/Opg ratio, critical for bone maintenance and pathology, including osteoarthritis, is particularly important here as well.
Zobrazit více v PubMed
Berendsen A.D., Olsen B.R. Bone development. Bone. 2015;80:14–18. doi: 10.1016/j.bone.2015.04.035. PubMed DOI PMC
Yang Y., Wei J., Li J., Cui Y., Zhou X., Xie J. Lipid metabolism in cartilage and its diseases: A concise review of the research progress. Acta Biochim. Biophys. Sin. 2021;53:517–527. doi: 10.1093/abbs/gmab021. PubMed DOI
Villalvilla A., Gómez R., Largo R., Herrero-Beaumont G. Lipid transport and metabolism in healthy and osteoarthritic cartilage. Int. J. Mol. Sci. 2013;14:20793–20808. doi: 10.3390/ijms141020793. PubMed DOI PMC
Cecil D.L., Appleton C.T.G., Polewski M.D., Mort J.S., Schmidt A.M., Bendele A., Beier F., Terkeltaub R. The pattern recognition receptor CD36 is a chondrocyte hypertrophy marker associated with suppression of catabolic responses and promotion of repair responses to inflammatory stimuli. J. Immunol. 2009;182:5024–5031. doi: 10.4049/jimmunol.0803603. PubMed DOI PMC
Adamova E., Janeckova E., Kleparnik K., Matalova E. Caspases and osteogenic markers—in vitro screening of inhibition impact. In Vitro Cell. Dev. Biol.-Anim. 2016;52:144–148. doi: 10.1007/s11626-015-9964-1. PubMed DOI
Janečková E., Bíliková P., Matalová E. Osteogenic Potential of Caspases Related to Endochondral Ossification. J. Histochem. Cytochem. 2018;66:47–58. doi: 10.1369/0022155417739283. PubMed DOI PMC
Shalini S., Dorstyn L., Dawar S., Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22:526–539. doi: 10.1038/cdd.2014.216. PubMed DOI PMC
Huser C.A.M., Peacock M., Davies M.E. Inhibition of caspase-9 reduces chondrocyte apoptosis and proteoglycan loss following mechanical trauma. Osteoarthr. Cartil. 2006;14:1002–1010. doi: 10.1016/j.joca.2006.03.012. PubMed DOI
Vesela B., Svandova E., Ramesova A., Kratochvilova A., Tucker A.S., Matalova E. Caspase Inhibition Affects the Expression of Autophagy-Related Molecules in Chondrocytes. Cartilage. 2020:1947603520938444. doi: 10.1177/1947603520938444. PubMed DOI PMC
An S., Hu H., Li Y., Hu Y. Pyroptosis Plays a Role in Osteoarthritis. Aging Dis. 2020;11:1146–1157. doi: 10.14336/AD.2019.1127. PubMed DOI PMC
Denes A., Lopez-Castejon G., Brough D. Caspase-1: Is IL-1 just the tip of the ICEberg? Cell Death Dis. 2012;3:e338. doi: 10.1038/cddis.2012.86. PubMed DOI PMC
Kotas M.E., Jurczak M.J., Annicelli C., Gillum M.P., Cline G.W., Shulman G.I., Medzhitov R. Role of caspase-1 in regulation of triglyceride metabolism. Proc. Natl. Acad. Sci. USA. 2013;110:4810–4815. doi: 10.1073/pnas.1301996110. PubMed DOI PMC
Fernandes-Alnemri T., Wu J., Yu J.-W., Datta P., Miller B., Jankowski W., Rosenberg S., Zhang J., Alnemri E.S. The pyroptosome: A supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14:1590–1604. doi: 10.1038/sj.cdd.4402194. PubMed DOI PMC
Zhang Y., Zheng Y., Li H. NLRP3 inflammasome plays an important role in the pathogenesis of collagen-induced arthritis. Mediat. Inflamm. 2016;2016:9656270. doi: 10.1155/2016/9656270. PubMed DOI PMC
Wang H., Capell W., Yoon J.H., Faubel S., Eckel R.H. Obesity development in caspase-1-deficient mice. Int. J. Obes. 2014;38:152–155. doi: 10.1038/ijo.2013.59. PubMed DOI
Qian J., Fu P., Li S., Li X., Chen Y., Lin Z. miR-107 affects cartilage matrix degradation in the pathogenesis of knee osteoarthritis by regulating caspase-1. J. Orthop. Surg. Res. 2021;16:40. doi: 10.1186/s13018-020-02121-7. PubMed DOI PMC
Mello M.A., Tuan R.S. High density micromass cultures of embryonic limb bud mesenchymal cells: An in vitro model of endochondral skeletal development. In Vitro Cell. Dev. Biol.-Anim. 1999;35:262–269. doi: 10.1007/s11626-999-0070-0. PubMed DOI
Herrera E., Ortega-Senovilla H. Lipid Metabolism During Pregnancy and its Implications for Fetal Growth. Curr. Pharm. Biotechnol. 2014;15:24–31. doi: 10.2174/1389201015666140330192345. PubMed DOI
Butterfield N.C., Qian C., Logan M.P.O. Pitx1 determines characteristic hindlimb morphologies in cartilage micromass culture. PLoS ONE. 2017;12:e0180453. doi: 10.1371/journal.pone.0180453. PubMed DOI PMC
Silverstein R.L., Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci. Signal. 2009;2:re3. doi: 10.1126/scisignal.272re3. PubMed DOI PMC
Brodeur M.R., Brissette L., Falstrault L., Luangrath V., Moreau R. Scavenger receptor of class B expressed by osteoblastic cells are implicated in the uptake of cholesteryl ester and estradiol from LDL and HDL3. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2008;23:326–337. doi: 10.1359/jbmr.071022. PubMed DOI
Pepino M.Y., Kuda O., Samovski D., Abumrad N.A. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu. Rev. Nutr. 2014;34:281–303. doi: 10.1146/annurev-nutr-071812-161220. PubMed DOI PMC
Mahib M.R., Hosojima S., Kushiyama H., Kinoshita T., Shiroishi T., Suda T., Tsuchiya K. Caspase-7 mediates caspase-1-induced apoptosis independently of Bid. Microbiol. Immunol. 2020;64:143–152. doi: 10.1111/1348-0421.12756. PubMed DOI
Joosten L.A.B., Netea M.G., Fantuzzi G., Koenders M.I., Helsen M.M.A., Sparrer H., Pham C.T., van der Meer J.W.M., Dinarello C.A., van den Berg W.B. Inflammatory arthritis in caspase 1 gene-deficient mice: Contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1beta. Arthritis Rheum. 2009;60:3651–3662. doi: 10.1002/art.25006. PubMed DOI PMC
Farnaghi S., Crawford R., Xiao Y., Prasadam I. Cholesterol metabolism in pathogenesis of osteoarthritis disease. Int. J. Rheum. Dis. 2017;20:131–140. doi: 10.1111/1756-185X.13061. PubMed DOI
McAllister M.J., Chemaly M., Eakin A.J., Gibson D.S., McGilligan V.E. NLRP3 as a potentially novel biomarker for the management of osteoarthritis. Osteoarthr. Cartil. 2018;26:612–619. doi: 10.1016/j.joca.2018.02.901. PubMed DOI
Maréchal L., Laviolette M., Rodrigue-Way A., Sow B., Brochu M., Caron V., Tremblay A. The CD36-PPARγ Pathway in Metabolic Disorders. Int. J. Mol. Sci. 2018;19:1529. doi: 10.3390/ijms19051529. PubMed DOI PMC
Molla M.D., Ayelign B., Dessie G., Geto Z., Admasu T.D. Caspase-1 as a regulatory molecule of lipid metabolism. Lipids Health Dis. 2020;19:34. doi: 10.1186/s12944-020-01220-y. PubMed DOI PMC
Shao W., Yeretssian G., Doiron K., Hussain S.N., Saleh M. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J. Biol. Chem. 2007;282:36321–36329. doi: 10.1074/jbc.M708182200. PubMed DOI
Vaisid T., Kosower N.S., Barnoy S. Caspase-1 activity is required for neuronal differentiation of PC12 cells: Cross-talk between the caspase and calpain systems. Biochim. Biophys. Acta—Mol. Cell Res. 2005;1743:223–230. doi: 10.1016/j.bbamcr.2005.01.001. PubMed DOI
Barnoy S., Kosower N.S. Caspase-1-induced calpastatin degradation in myoblast differentiation and fusion: Cross-talk between the caspase and calpain systems. FEBS Lett. 2003;546:213–217. doi: 10.1016/S0014-5793(03)00573-8. PubMed DOI
Tetlow L.C., Woolley D.E. Expression of vitamin D receptors and matrix metalloproteinases in osteoarthritic cartilage and human articular chondrocytes in vitro. Osteoarthr. Cartil. 2001;9:423–431. doi: 10.1053/joca.2000.0408. PubMed DOI
Hernandez-Anzaldo S., Brglez V., Hemmeryckx B., Leung D., Filep J.G., Vance J.E., Vance D.E., Kassiri Z., Lijnen R.H., Lambeau G., et al. Novel Role for Matrix Metalloproteinase 9 in Modulation of Cholesterol Metabolism. J. Am. Heart Assoc. 2016;5:e004228. doi: 10.1161/JAHA.116.004228. PubMed DOI PMC
Silvagno F., Pescarmona G. Spotlight on vitamin D receptor, lipid metabolism and mitochondria: Some preliminary emerging issues. Mol. Cell. Endocrinol. 2017;450:24–31. doi: 10.1016/j.mce.2017.04.013. PubMed DOI
Ehirchiou D., Bernabei I., Chobaz V., Castelblanco M., Hügle T., So A., Zhang L., Busso N., Nasi S. CD11b Signaling Prevents Chondrocyte Mineralization and Attenuates the Severity of Osteoarthritis. Front. Cell Dev. Biol. 2020;8:1757. doi: 10.3389/fcell.2020.611757. PubMed DOI PMC
Chubinskaya S., Kuettner K.E., Cole A.A. Expression of matrix metalloproteinases in normal and damaged articular cartilage from human knee and ankle joints. Lab. Investig. 1999;79:1669–1677. PubMed
Malemud C.J., Meszaros E.C., Wylie M.A., Dahoud W., Skomorovska-Prokvolit Y., Mesiano S. Matrix Metalloproteinase-9 Production by Immortalized Human Chondrocyte Lines. J. Clin. Cell. Immunol. 2016;7:422. doi: 10.4172/2155-9899.1000422. PubMed DOI PMC
González-Huerta N.C., Borgonio-Cuadra V.M., Morales-Hernández E., Duarte-Salazar C., Miranda-Duarte A. Vitamin D receptor gene polymorphisms and susceptibility for primary osteoarthritis of the knee in a Latin American population. Adv. Rheumatol. 2018;58:6. doi: 10.1186/s42358-018-0002-3. PubMed DOI
Cameron T.L., Belluoccio D., Farlie P.G., Brachvogel B., Bateman J.F. Global comparative transcriptome analysis of cartilage formation in vivo. BMC Dev. Biol. 2009;9:20. doi: 10.1186/1471-213X-9-20. PubMed DOI PMC
Platko K., Lebeau P.F., Byun J.H., Poon S.V., Day E.A., MacDonald M.E., Holzapfel N., Mejia-Benitez A., Maclean K.N., Krepinsky J.C., et al. GDF10 blocks hepatic PPARγ activation to protect against diet-induced liver injury. Mol. Metab. 2019;27:62–74. doi: 10.1016/j.molmet.2019.06.021. PubMed DOI PMC
Hayashi M., Muneta T., Ju Y.-J., Mochizuki T., Sekiya I. Weekly intra-articular injections of bone morphogenetic protein-7 inhibits osteoarthritis progression. Arthritis Res. Ther. 2008;10:R118. doi: 10.1186/ar2521. PubMed DOI PMC
Boyce B.F., Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res. Ther. 2007;9(Suppl. S1):1–7. doi: 10.1186/ar2165. PubMed DOI PMC
Kwan Tat S., Amiable N., Pelletier J.-P., Boileau C., Lajeunesse D., Duval N., Martel-Pelletier J. Modulation of OPG, RANK and RANKL by human chondrocytes and their implication during osteoarthritis. Rheumatology. 2009;48:1482–1490. doi: 10.1093/rheumatology/kep300. PubMed DOI PMC
Upton A.R., Holding C.A., Dharmapatni A.A.S.S.K., Haynes D.R. The expression of RANKL and OPG in the various grades of osteoarthritic cartilage. Rheumatol. Int. 2012;32:535–540. doi: 10.1007/s00296-010-1733-6. PubMed DOI
Papadaki M., Rinotas V., Violitzi F., Thireou T., Panayotou G., Samiotaki M., Douni E. New Insights for RANKL as a Proinflammatory Modulator in Modeled Inflammatory Arthritis. Front. Immunol. 2019;10:97. doi: 10.3389/fimmu.2019.00097. PubMed DOI PMC
D’Lima D., Hermida J., Hashimoto S., Colwell C., Lotz M. Caspase inhibitors reduce severity of cartilage lesions in experimental osteoarthritis. Arthritis Rheum. 2006;54:1814–1821. doi: 10.1002/art.21874. PubMed DOI
Kevorkova O., Martineau C., Martin-Falstrault L., Sanchez-Dardon J., Brissette L., Moreau R. Low-Bone-Mass Phenotype of Deficient Mice for the Cluster of Differentiation 36 (CD36) PLoS ONE. 2013;8:e77701. doi: 10.1371/journal.pone.0077701. PubMed DOI PMC
Zhang C., Luo X., Chen J., Zhou B., Yang M., Liu R., Liu D., Gu H.F., Zhu Z., Zheng H., et al. Osteoprotegerin Promotes Liver Steatosis by Targeting the ERK-PPAR-γ-CD36 Pathway. Diabetes. 2019;68:1902–1914. doi: 10.2337/db18-1055. PubMed DOI
Niu Z., Tang J., Zhang W., Chen Y., Huang Y., Chen B., Li J., Shen P. Caspase-1 promotes monocyte-macrophage differentiation by repressing PPARγ. FEBS J. 2017;284:568–585. doi: 10.1111/febs.13998. PubMed DOI
Chen Y., Jiang W., Yong H., He M., Yang Y., Deng Z., Li Y. Macrophages in osteoarthritis: Pathophysiology and therapeutics. Am. J. Transl. Res. 2020;12:261–268. PubMed PMC
Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics
Exploring caspase functions in mouse models
Caspase-9 inhibition decreases expression of Mmp9 during chondrogenesis